Skip to main content

Creatinine Assays in Early Infancy: How to Aim for a Moving Target

  • Living reference work entry
  • First Online:
Biomarkers in Kidney Disease

Abstract

Glomerular filtration rate (GFR) in neonates is very low and can only be maintained due to a delicate balance between both vasodilatory effects at the afferent and vasoconstrictor effects at the efferent glomerular arteriole. Despite this low clearance capacity, interindividual variability is already extensive and can be predicted by covariates (gestational age, birth weight, postnatal age, drugs, growth restriction, or peripartal asphyxia).

We still commonly used creatinine as a proxy for renal clearance capacity. However, before creatinine values can be used to estimate renal elimination capacity, there are some issues that need to be considered related to physiology and methodology. Creatinine at birth does not yet reflect neonatal but maternal creatinine clearance, and because of passive tubular back leak instead of active secretion, creatinine clearance does not yet fully reflect GFR. Trends will be described. Moreover, absolute creatinine values also depend on the technique. The move toward harmonization through isotope dilution mass spectrometry (IDMS) traceability has helped but has not completely solved this problem. In line with recent observations in adults, more research is needed to document the potential add on the benefit of advanced biomarkers (e.g., cystatin C). In the meanwhile, IDMS-traceable creatinine observations, compared to age-dependent, assay-specific reference values, should be used to support clinical decisions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

95 % CI:

95 % confidence intervals

AKI:

Acute kidney injury

CALIPER:

Canadian laboratory initiative on pediatric reference intervals

cGFR:

Calculated glomerular filtration rate

CLcrea :

Creatinine clearance

CLSI:

Clinical and laboratory standards institute

Cr-EDTA:

51Chrome ethylene diamine tetra acetic acid

CysC:

Cystatin C

eGFR:

Estimated glomerular filtration rate

ELBW:

Extreme low birth weight infants (i.e., <1,000 g at birth)

ELISA:

Enzyme linked immunosorbent assay

GFR:

Glomerular filtration rate

IDMS:

Isotope dilution mass spectrometry

IgG:

Immunoglobulin G

kDa:

Kilodalton

NKDEP:

National Kidney Disease Education Program

PENIA:

Particle-enhanced nephelometric immunoassay

PETIA:

Particle-enhanced turbidimetric immunoassay

pRIFLE:

Pediatric risk, injury, failure, loss, end-stage (renal risk score)

Scr :

Serum creatinine

SD:

Standard deviation

Tc-DTPA:

99mTechnecium diethylene triamine penta acetic acid

References

  • Abitbol CL, Seeherunvong W, Galarza MG, et al. Neonatal kidney size and function in preterm infants: what is a true estimate of glomerular filtration rate? J Pediatr. 2014;164:1026–31.

    Article  PubMed  Google Scholar 

  • Akcan-Arikan A, Zappitelli M, Loftis LL, et al. Modified RIFLE criteria in critically ill children with acute kidney injury. Kidney Int. 2007;71:1028–35.

    Article  CAS  PubMed  Google Scholar 

  • Allegaert K, Keltemans J, Hendrickx S, et al. Creatininaemia in extreme low birth weight infants: from biochemical quantification to clinical interpretation. Sixth congress of Nephrology in Internet. 2011. http://trabajos.cin2011.uninet.edu/162/allegaert.pdf. Accessed 18 Apr 2014.

  • Allegaert K, Kuppens M, Mekahli D, et al. Creatinine reference values in ELBW infants: impact of quantification by Jaffe or enzymatic method. J Matern Fetal Neonatal Med. 2012;25:1678–81.

    Article  CAS  PubMed  Google Scholar 

  • Allegaert K, Pauwels S, Smits A, et al. Enzymatic isotope dilution mass spectrometry (IDMS) traceable serum creatinine is preferable over Jaffe in neonates and young infants. Clin Chem Lab Med. 2014a;52:e107–9.

    Article  CAS  PubMed  Google Scholar 

  • Allegaert K, Vermeersch P, Smits A, et al. Paired measurement of urinary creatinine in neonates based on a Jaffe and an enzymatic IDMS-traceable assay. BMC Nephrol. 2014b;15:62.

    Article  PubMed  PubMed Central  Google Scholar 

  • Apple F, Bandt C, Prosch A, et al. Creatinine clearance: enzymatic vs Jaffé determinations of creatinine in plasma and urine. Clin Chem. 1986;32:388–90.

    CAS  PubMed  Google Scholar 

  • Armangil D, Yurdakök M, Canpolat FE, et al. Determination of reference values for plasma cystatin C and comparison with creatinine in premature infants. Pediatr Nephrol. 2008;23:2081–3.

    Article  PubMed  Google Scholar 

  • Bahar A, Yilmaz Y, Unver S, et al. Reference values of umbilical cord and third-day cystatin C levels for determining glomerular filtration rates in newborns. J Int Med Res. 2003;31:231–5.

    Article  CAS  PubMed  Google Scholar 

  • Bariciak E, Yasin A, Harrold J, et al. Preliminary reference intervals for cystatin C and beta-trace protein in preterm and term neonates. Clin Biochem. 2011;44:1156–9.

    Article  CAS  PubMed  Google Scholar 

  • Bueva A, Guignard JP. Renal function in preterm neonates. Pediatr Res. 2004;36:572–7.

    Article  Google Scholar 

  • Cataldi L, Mussap M, Bertelli L, et al. Cystatin C in healthy women at term pregnancy and in their infant newborns: relationship between maternal and neonatal serum levels and reference values. Am J Perinatol. 1999;16:287–95.

    Article  CAS  PubMed  Google Scholar 

  • Ceriotti F. Establishing pediatric reference intervals: a challenging task. Clin Chem. 2012;58:808–10.

    Article  CAS  PubMed  Google Scholar 

  • Ceriotti F, Boyd JC, Klein G, et al. Reference intervals for serum creatinine concentrations: assessment of available data for global application. Clin Chem. 2008;54:559–66.

    Article  CAS  PubMed  Google Scholar 

  • Colantonio DA, Kyriakopoulou L, Chan MK, et al. Closing the gaps in pediatric laboratory reference intervals: a CALIPER database of 40 biochemical markers in a healthy and multiethnic population of children. Clin Chem. 2012;58:854–68.

    Article  CAS  PubMed  Google Scholar 

  • Delanaye P, Ebert N. Assessment of kidney function: estimating GFR in children. Nat Rev Nephrol. 2012;8:503–4.

    Article  CAS  PubMed  Google Scholar 

  • Delanaye P, Mariat C. The applicability of eGFR equations to different populations. Nat Rev Nephrol. 2013;9:513–22.

    Article  CAS  PubMed  Google Scholar 

  • Demirel G, Celik IH, Canpolat FE, et al. Reference values of serum cystatin C in very low-birth weight premature infants. Acta Paediatr. 2013;102:e4–7.

    Article  CAS  PubMed  Google Scholar 

  • Dorum S, Silfeler I, Dorum BA, et al. Reference values of serum cystatin-C for full term and preterm neonates in Istanbul. Indian J Pediatr. 2012;79:1037–42.

    Article  PubMed  Google Scholar 

  • Elmas AT, Tabel Y, Elmas ON. Serum cystatin C predicts acute kidney injury in preterm neonates with respiratory distress syndrome. Pediatr Nephrol. 2013;28:477–84.

    Article  PubMed  Google Scholar 

  • Finney H, Newman DJ, Thakkar H, et al. Reference ranges for plasma cystatin C and creatinine measurements in premature infants, neonates, and older children. Arch Dis Child. 2000;82:71–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gallini F, Maggio L, Romagnoli C, et al. Progression of renal function in preterm neonates with gestational age < or = 32 weeks. Pediatr Nephrol. 2000;15:119–24.

    Article  CAS  PubMed  Google Scholar 

  • George I, Mekahli D, Rayyan M, et al. Postnatal trends in creatinemia and its covariates in extremely low birth weight (ELBW) neonates. Pediatr Nephrol. 2011;26:1843–9.

    Article  PubMed  Google Scholar 

  • Gordjani N, Burghard R, Leititis JU, et al. Serum creatinine and creatinine clearance in healthy neonates and prematures during the first 10 days of life. Eur J Pediatr. 1988;148:143–5.

    Article  CAS  PubMed  Google Scholar 

  • Grootaert V, Willems L, Debaveye Y, et al. Augmented renal clearance in the critically ill: how to assess kidney function. Ann Pharmacother. 2012;46:952–9.

    Article  PubMed  Google Scholar 

  • Guignard JP, Gouyon JB. Glomerular filtration rate in neonates. In: Oh W, Guignard JP, Baumgart S, editors. Nephrology and fluid/electrolyte physiology; neonatology questions and controversies. 1st ed. Philadelphia: Saunders Elsevier; 2008. p. 79–96.

    Chapter  Google Scholar 

  • Harmoinen A, Ylinen E, Ala-Houhala M, et al. Reference intervals for cystatin C in pre- and full-term infants and children. Pediatr Nephrol. 2000;15:105–8.

    Article  CAS  PubMed  Google Scholar 

  • Hossain MA, Emara M, El Moselhi H, et al. Comparing measures of cystatin C in human sera by three methods. Am J Nephrol. 2009;29:381–91.

    Article  CAS  PubMed  Google Scholar 

  • Lee J-H, Hahn WH, Ahn J, et al. Serum cystatin C during 30 postnatal days is dependent on the postconceptional age in neonates. Pediatr Nephrol. 2013;28:1073–8.

    Article  PubMed  Google Scholar 

  • Jung K. Enzyme activities in urine: how should we express their excretion? A critical literature review. Eur J Clin Chem Clin Biochem. 1991;29:725–9.

    CAS  PubMed  Google Scholar 

  • Junge W, Wilke B, Halabi A, et al. Determination of reference intervals for serum creatinine, creatinine excretion and creatinine clearance with an enzymatic and a modified Jaffé method. Clin Chim Acta. 2004;344:137–48.

    Article  CAS  PubMed  Google Scholar 

  • Kaiser T, Kinny-Köster B, Bartels M, et al. Impact of different creatinine measurement methods on liver transplant allocation. PLoS One. 2014;9:e90015.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kuppens M, George I, Lewi L, et al. Creatinaemia at birth is equal to maternal creatinaemia at delivery: does this paradigm still hold? J Matern Fetal Neonatal Med. 2012;25:978–80.

    Article  PubMed  Google Scholar 

  • Lemmens AS, Mekahli D, Devlieger R, et al. Population-specific serum creatinine centiles in neonates with posterior urethral valves already predict long-term renal outcome. J Matern Fetal Neonatal Med. 2014. doi:10.3109/14767058.2014.942278.

    PubMed  Google Scholar 

  • Levey AS, Inker LA, Coresh J. GFR estimation: from physiology to public health. Am J Kidney Dis. 2014;63:820–34.

    Article  PubMed  PubMed Central  Google Scholar 

  • Li J, Dunn W, Breaud A, et al. Analytical performance of 4 automated assays for measurement of cystatin C. Clin Chem. 2010;56:1336–9.

    Article  CAS  PubMed  Google Scholar 

  • Maruniak-Chudek I, Owsianka-Podlesny T, Wroblewska J, et al. Is serum cystatin C a better marker of kidney function than serum creatinine in septic newborns. Postepy Hig Med Dosw. 2012;66:175–80.

    Article  Google Scholar 

  • Montini G, Cosmo L, Amici G, et al. Plasma cystatin C values and inulin clearance in premature neonates. Pediatr Nephrol. 2001;16:463–5.

    Article  CAS  PubMed  Google Scholar 

  • Myers GL, Miller WG, Coresh J, et al. Recommendations for improving serum creatinine measurement: a report from the Laboratory Working Group of the National Kidney Disease Education Program. Clin Chem. 2006;52:5–18.

    Article  CAS  PubMed  Google Scholar 

  • Parvex P, Combescure C, Rodriguez M, et al. Is cystatin C a promising marker of renal function, at birth, in neonates prenatally diagnosed with congenital kidney anomalies? Nephrol Dial Transplant. 2012;27:3477–82.

    Article  CAS  PubMed  Google Scholar 

  • Pohl M, Mentzel HJ, Vogt S, et al. Risk factors for renal insufficiency in children with urethral valves. Pediatr Nephrol. 2012;27:443–50.

    Article  PubMed  Google Scholar 

  • Randers E, Kristensen JH, Erlandsen EJ, et al. Serum cystatin C as a marker of the renal function. Scand J Clin Lab Invest. 1998;58:585–92

    Google Scholar 

  • Randers E, Krue S, Erlandsen EJ, et al. Reference interval for serum cystatin C in children. Clin Chem. 1999;45:1856–8.

    CAS  PubMed  Google Scholar 

  • Rhodin MM, Anderson BJ, Peters AM, et al. Human renal function maturation: a quantitative description using weight and postmenstrual age. Pediatr Nephrol. 2009;24:67–76.

    Article  PubMed  Google Scholar 

  • Shlipak MG, Matsushita K, Ärnlöv J, et al. Cystatin C versus creatinine in determining risk based on kidney function. N Engl J Med. 2013;369:932–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smits A, Kulo A, de Hoon JN, et al. Pharmacokinetics of drugs in neonates: pattern recognition beyond compound specific observations. Curr Pharm Des. 2012;18:3119–46.

    Article  CAS  PubMed  Google Scholar 

  • Smits A, Levtchenko E, van den Anker J, et al. Creatinine as biomarker for amikacin clearance in extreme low birth weight neonates: how to aim for a moving target ? [abstract]. Dutch Society of Clinical Pharmacology and Biopharmacy, annual meeting 2012. Br J Clin Pharmacol. 2013; 76:836.

    Google Scholar 

  • Sonntag J, Prankel B, Waltz S. Serum creatinine concentration, urinary creatinine excretion and creatinine clearance during the first 9 weeks in preterm infants with a birth weight below 1500 g. Eur J Pediatr. 1996;155:815–9.

    Article  CAS  PubMed  Google Scholar 

  • Srivastava T, Alon US, Althahabi R, et al. Impact of standardization of creatinine methodology on the assessment of glomerular filtration rate in children. Pediatr Res. 2008;65:113–7.

    Article  Google Scholar 

  • Treiber M, Gorenjak M, Pecovnik Balon B. Serum cystatin-C as a marker of acute kidney in the newborn after perinatal hypoxia/asphyxia. Ther Apher Dial. 2014;18:57–67.

    Article  CAS  PubMed  Google Scholar 

  • Treiber M, Pecovnik-Balon B, Gorenjak M. Cystatin C versus creatinine as a marker of glomerular filtration rate in the newborn. Wien Klin Wochenschr. 2006;118 Suppl 2:66–70.

    Article  CAS  PubMed  Google Scholar 

  • U.S. Department of Health and Human Services. About NKDEP: http://nkdep.nih.gov/about-nkdep/working-groups/laboratory-working-group.shtml (2012). Accessed 18 Aug 2014.

  • Van Lente F, Suit P. Assessment of renal function by serum creatinine and creatinine clearance: glomerular filtration rate estimated by four procedures. Clin Chem. 1989;35:2326–30.

    PubMed  Google Scholar 

  • Victor S, Dickinson H, Turner MA. Plasma aminotransferase concentrations in preterm infants. Arch Dis Child Fetal Neonatal Ed. 2011;96:F144–5.

    Article  CAS  PubMed  Google Scholar 

  • Vieux R, Hascoet JM, Merdariu D, et al. Glomerular filtration rate reference values in very preterm infants. Pediatrics. 2010;125:e1186–92.

    Article  PubMed  Google Scholar 

  • Walker MW, Clark RH, Spitzer AR. Elevation in plasma creatinine and renal failure in premature neonates without major anomalies: terminology, occurrence and factors associated with increased risk. J Perinatol. 2011;31:199–205.

    Article  CAS  PubMed  Google Scholar 

  • Zaffanello M, Antonucci R, Cuzzolin L, et al. Early diagnosis of acute kidney injury with urinary biomarkers in the newborn. J Matern Fetal Neonatal Med. 2009;22(Suppl3):62–6.

    Article  CAS  PubMed  Google Scholar 

  • Zwiers AJ, Cransberg K, de Rijke YB, et al. Reference ranges for serum β-trace protein in neonates and children younger than 1 year of age. Clin Chem Lab Med. 2014. doi:10.1515/cclm-2014-0371.

    PubMed  Google Scholar 

Download references

Acknowledgement

Karel Allegaert is supported by the Fund for Scientific Research, Flanders (Fundamental Clinical Investigatorship 1800214N), and by an IWT-SBO project (130033).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karel Allegaert .

Editor information

Editors and Affiliations

Definitions of Words and Terms

Newborn

Any child in the first 28 days of postnatal life. This time interval is commonly further subdivided in early neonatal (<day 8) and late neonatal life (day 8–28).

Infant

Any child beyond the first 28 days of postnatal life but not yet 365 days old (<1 year).

Preterm

Newborn born too soon; normal pregnancy takes 40 weeks of gestational age until delivery. Preterm delivery is any delivery before 37 weeks of gestational age.

ELBW

Within the preterm neonates, there is a further subdivision, either based on gestational age or on weight. Extreme low birth weight infants have a birth weight below 1,000 g at delivery.

Creatinine

Creatinine is a degradation product from creatine and is produced at a fairly constant rate, reflecting muscle mass. It is commonly measured as a reflection of renal function.

Creatinine assays

The Jaffe quantification is a colorimetric reaction method using alkaline picrate. Jaffe assays suffer from interference by endogenous (e.g., pseudo-creatinines, hemoglobin F, bilirubin) and exogenous (e.g., cephalosporins). More recently, enzymatic methods were introduced. These assays are less prone to such interference-related errors and thus seem more suitable. Nevertheless, enzymatic assays can also be affected by interferences. It is generally accepted that uncompensated Jaffe overestimates Scr and fixed corrections (e.g., 0.2 or 0.3 mg/dl), or adaptations in the analytical procedure (e.g., rate blanking) have been suggested to adapt Jaffe assays observations.

Matrix effect

This term refers to the change or the measurement bias of a given quantification method caused by (differences) in the non-analyte matrix. This may be of specific relevance in human biology since the matrix in neonates (e.g., blood) commonly differs (e.g., albumin, bilirubin, hemoglobin F) from other populations. These differences may affect measurement results and/or accuracy.

Clearance

Clearance is defined as the volume of fluid that – for a given time interval – is completely cleared of a specific compound. Creatinine clearance hereby reflects the renal elimination capacity or the glomerular filtration rate.

IDMS traceability

Isotope dilution mass spectrometry traceability. This has been introduced to adapt for the differences between different creatinine assays and serves as a golden standard to all currently marketed creatinine assays. This became even more important, since estimated glomerular filtration (eGFR) values are extrapolated from single-serum creatinine (Scr) measurements.

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht

About this entry

Cite this entry

Allegaert, K. (2015). Creatinine Assays in Early Infancy: How to Aim for a Moving Target. In: Patel, V. (eds) Biomarkers in Kidney Disease. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7743-9_1-1

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-7743-9_1-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Online ISBN: 978-94-007-7743-9

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics