Skip to main content

Genomic Approaches and Intellectual Property Protection for Variety Release: A Perspective from the Private Sector

  • Chapter
  • First Online:
Genomics of Plant Genetic Resources

Abstract

Genetic gain is a critical means to improve crop production and will increasingly be relied upon to further improve agricultural productivity in ways that are more sustainable. Partly through the use of molecular markers plant breeders have been able to increase the rate of genetic gain by increasing efficiencies in selection for improved performance of agronomic traits. Greater knowledge of the genetic basis of agronomic traits will help breeders to more efficiently explore and harness plant genetic resources including those that are currently exotic. Efficient processes to obtain intellectual property protection (IPP) are important to allow the private sector to invest in research and product development. Morphological data are currently the criteria by which varieties are judged to meet the criteria for Plant Variety Protection (PVP); similar data also form an important component of patent filings. Molecular markers that are based upon specific Single Nucleotide Polymorphisms, including those surveyed using whole genome sequence data, now provide the basis for intellectual property (IP) systems that are more efficient, precise, cost effective, better supportive of IP, and with true potential for greater harmonization. We report on how such a transition could be undertaken.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ammann K (2008) Integrated farming: why organic farmers should use transgenic crops. N Biotechnol 25:101–107

    Article  CAS  PubMed  Google Scholar 

  • Ammann K (2009) Why farming with high tech methods should integrate elements of organic agriculture. N Biotechnol 26:378–388

    Article  Google Scholar 

  • Arabic Knowledge@Wharton (2012) Can biotechnology solve China’s food security problem? Wharton University of Pennsylvania. http://knowledge.wharton.upenn.edu/arabic/article.cfm?articleid=2850. Accessed 18 Oct 12

  • Araus JL, Ferrio JP, Buxo R, Voltas J (2007) The historical perspective of dryland agriculture: lessons learned from 10,000 years of wheat cultivation. J Exp Bot 58:131–145

    Article  CAS  PubMed  Google Scholar 

  • Austin DF, Lee M, Veldboom LR (2001) Genetic mapping in maize with hybrid progeny across testers and generations: plant height and flowering. Theor Appl Genet 102:163–176

    Article  CAS  Google Scholar 

  • Austin RB, Arnold MH (1989) Variability in wheat yields in England: analysis and future rospects. In: Anderson JR, Hazell PBR (eds) Variability in grain yields implications for agricultural research and policy in developing countries. Johns Hopkins University Press, Baltimore

    Google Scholar 

  • Bennett AJ, Bending GD, Chandler D et al (2011) Meeting the demand for crop production: the challenge of yield decline in crops grown in short rotations. Biol Rev Camb Philos Soc 87:52–71

    Article  PubMed  Google Scholar 

  • Bhattramakki D, Dolan M, Hanafey M et al (2002) Insertion–deletion polymorphisms in 3’ regions of maize genes occur frequently and can be used as highly informative genetic markers. Plant Mol Biol 48:539–547

    Article  CAS  PubMed  Google Scholar 

  • Borlaug NE, Dowswell CR (2005) Feeding a world of ten billion people: a 21st century challenge. In: Tuberosa R, Phillips RL, Gale M (eds) Proceedings of the International Congress: in the wake of the double helix: from the green revolution to the gene revolution, 27–31 May 2003, Bologna, Italy. Avenue Media, Bologna, pp 3–23

    Google Scholar 

  • Bredemeijer GMM, Cooke RJ, Ganal MW et al (2002) Construction and testing of a microsatellite database containing more than 500 tomato varieties. Theor Appl Genet 105:1019–1026

    Article  PubMed  Google Scholar 

  • Brookes G, Barfoot P (2008) Global impact of biotech crops: socio-economic and environmental effects, 1996–2006. AbBioForum 11:21–38

    Google Scholar 

  • Calderini DF, Slafer GA (1998) Changes in yield and yield stability in wheat during the 20th century. Field Crops Res 57:335–347

    Article  Google Scholar 

  • CAMBIA (undated) Can IP rights protect plants? Patent Lens. http://www.patentlens.net/daisy/patentlens/1234.html. Accessed 17 Oct 2012

  • Castleberry RM, Crum CW, Krull CF (1984) Genetic improvement of U.S. maize cultivars under varying fertility and climatic conditions. Crop Sci 24:33–36

    Article  Google Scholar 

  • Ching A, Caldwell KS, Jung M et al (2002) SNP frequency, haplotype structure and linkage disequilibrium in elite maize inbred lines. BMC Genet doi:10.1186/1471-2156-3-19

    Google Scholar 

  • Cohen JI (2000) Managing intellectual property: challenges and responses for agricultural research institutes. In: Persley GJ, Latin MM (eds) Agricultural biotechnology and the poor: proceedings of an international conference. CGIAR, Washington DC

    Google Scholar 

  • Crookston RK (2006) A top 10 list of developments and issues impacting crop management and ecology during the past 50 years. Crop Sci 46:2253–2262

    Article  Google Scholar 

  • DEFRA (2009) The potential to increase productivity of wheat and oilseed rape in the UK. Report to the government chief scientific adviser. Dept. for the Environment, Food, and Regional Affairs, London

    Google Scholar 

  • Duvick DN (2005) The contribution of breeding to yield advances in maize (Zea mays L.). Adv Agron 86:83–145

    Article  Google Scholar 

  • Enoki H, Miki K, Koinuma K (2006) Mapping of quantitative trait loci associated with early flowering of a northern flint maize (Zea mays L.) inbred line. Maydica 51:515–523

    Google Scholar 

  • ESA (2011) Position on Concept of EDV. ESA_11.0043. Eur Seed Assoc, Brussels

    Google Scholar 

  • FAOSTAT (2011) Statistics Office of FAO. http://faostat.fao.org. Accessed 18 Oct 2012

  • Fernandez-Cornejo J (2004) The seed industry in U.S. agriculture: an exploration of data and information on crop seed markets, regulation, industry structure, and research and development. Agric Inf Bull (U S Dep Agric) No 786, Washington, DC

    Google Scholar 

  • Foley JA, Ramankutty N, Brauman KA et al (2011) Solutions for a cultivated planet. Nature 478:337–342

    Article  CAS  PubMed  Google Scholar 

  • Fu H, Dooner HK (2002) Intraspecific violation of genetic colinearity and its implications in maize. Proc Natl Acad Sci U S A 99:9573–9578

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Glaszmann JC, Kilian B, Upadhyaya HD, Varshney RK (2010) Accessing genetic diversity for crop improvement. Curr Opin Plant Biol 13:167–173

    Article  CAS  PubMed  Google Scholar 

  • Godfray HCJ (2011) Food and Biodiversity. Science 333:1231–1232

    Article  CAS  PubMed  Google Scholar 

  • Green RE, Cornell SJ, Scharlemann JPW, Balmford A (2005) Farming and the fate of wild nature. Science 307:550–555

    Article  CAS  PubMed  Google Scholar 

  • Hayes DJ, Lence SH, Goggi S (2009) Impact of intellectual property rights in the seed sector on crop yield growth and social welfare: a case study approach. AgBioForum 12:155–171

    Google Scholar 

  • Heckenberger M, Bohn M, Frisch M et al (2005a) Identification of essentially derived varieties with molecular markers: an approach based on statistical test theory and computer simulations. Theor Appl Genet 111:598–608

    Article  CAS  Google Scholar 

  • Heckenberger M, Bohn M, Klein D, Melchinger AE (2005b) Identification of essentially derived Varieties obtained from biparental crosses of homozygous lines: II. Morphological distances and heterosis in comparison with simple sequence repeat and amplified fragment length polymorphism data in Maize. Crop Sci 45:1132–1140

    Article  CAS  Google Scholar 

  • Heckenberger M, Bohn M, Melchinger AE (2005c) Identification of essentially derived varieties obtained from biparental crosses of homozygous lines: I. Simple sequence repeat data from maize inbreds. Crop Sci 45:1120–1131

    Article  CAS  Google Scholar 

  • Hof IL, Reid A (2008) Construction of an integrated microsatellite and key morphological characteristic database of potato varieties on the EU common catalogue part 1: discussion of morphological and molecular data (revised). 11th session of the working group on biochemical and molecular techniques and DNA profiling in particular, Madrid, Sept 16–18, 2008. BMT/11/0 Rev, UPOV, Geneva, Switzerland

    Google Scholar 

  • Hoisington D, Khairallah M, Reeves T et al (1999) Plant genetic resources: what can they contribute toward increased crop productivity? Proc Natl Acad Sci U S A 96:5937–5943

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • ISF (2004a) Guidelines for the handling of a dispute on essential derivation in Lettuce. Int Seed Federa, Nyon, Switzerland

    Google Scholar 

  • ISF (2004b) Technical Protocol for Implementation of the ISF Guidelines for the Handling of a Dispute on EDV in Lettuce. Int Seed Federa, Nyon, Switzerland

    Google Scholar 

  • ISF (2005) Essential Derivation Information and Guidance to Breeders. Int Seed Federa, Nyon, Switzerland

    Google Scholar 

  • ISF (2006) Use of DNA markers for DUS testing, essential derivation and identification. Int Seed Federa, Nyon, Switzerland

    Google Scholar 

  • ISF (2007a) Guidelines for the handling of a dispute on essential derivation in cotton. Int Seed Federa, Nyon, Switzerland

    Google Scholar 

  • ISF (2007b) Guidelines for the handling of a dispute on essential derivation in oilseed rape. Int Seed Federa, Nyon, Switzerland

    Google Scholar 

  • ISF (2008) Guidelines for the handling of a dispute on essential derivation of maize lines. Int Seed Federa, Nyon, Switzerland

    Google Scholar 

  • ISF (2009) Guidelines for handling a dispute on essential derivation in ryegrass. Int Seed Federa, Nyon, Switzerland

    Google Scholar 

  • ISF (2012) ISF View on intellectual property. Int Seed Federa, Nyon, Switzerland. http://www.worldseed.org/cms/medias/file/PositionPapers/OnIntellectualProperty/View_on_Intellectual_Property_2012.pdf. Accessed 18 Oct 12

  • JIC (2012) JIC statement on intellectual property, John Innes Centre, Norwich. http://www.jic.ac.uk/corporate/about/policies/ip-policy.htm. Accessed 18 Oct 2012

  • Jones ES, Sullivan H, Bhattramakki D, Smith JS (2007) A comparison of simple sequence repeat and single nucleotide polymorphism marker technologies for the genotypic analysis of maize (Zea mays L.). Theor Appl Genet 115:361–371

    Article  CAS  PubMed  Google Scholar 

  • Jones H, Jarman RJ, Austin L et al (2003) The management of variety reference collections in distinctness, uniformity and stability testing of wheat. Euphytica 132:175–184

    Article  Google Scholar 

  • Kahler AL, Kahler JL, Thompson SA et al (2010) North American study on essential derivation in Maize: II. selection and evaluation of a panel of simple sequence repeat loci. Crop Sci 50:486–503

    Article  CAS  Google Scholar 

  • Kaufmann K, Pajoro A, Angenent GC (2010) Regulation of transcription in plants: mechanisms controlling developmental switches. Nat Rev Genet 11:830–842

    Article  CAS  PubMed  Google Scholar 

  • Krattiger AF (2004) Editor’s introduction: PVP and agricultural productivity. IP Strategy Today 9:ii–vi

    Google Scholar 

  • Lai J, Li R, Xu X et al (2010) Genome-wide patterns of genetic variation among elite maize inbred lines. Nat Genet 42:1027–1030

    Article  CAS  PubMed  Google Scholar 

  • Lal R (2001) Managing world soils for food security and environmental quality. Adv Agron 74:155–192

    Article  CAS  Google Scholar 

  • Laval G, SanCristobal M, Chevalet C (2002) Measuring genetic distances between breeds: use of some distances in various short term evolution models. Genet Sel Evol 34:481–507

    Article  PubMed Central  PubMed  Google Scholar 

  • Law JR, Anderson SR, Jones ES et al (2011a) Approaches to improve the determination of eligibility for plant variety protection: I Evaluation of morphological characteristics. Maydica 56:1–18

    Google Scholar 

  • Law JR, Anderson SR, Jones ES et al (2011b) Approaches to improve the determination of eligibility for plant variety protection: II Identification and evaluation of a core set of morphological characteristics. Maydica 56:209–219

    Google Scholar 

  • Law JR, Anderson SR, Jones ES et al (2011c) Characterization of maize germplasm: comparison of morphological datasets compiled using different approaches to data recording. Maydica 56–1708. http://www.maydica.org/articles/56_069.pdf. Accessed 18 Oct 2012

  • Le Buanec B (2004) Protection of plant-related innovations: evolution and current discussion. IP Strategy Today 9:1–18

    Google Scholar 

  • Li Y, Dong Y, Niu S, Cui D (2007) The genetic relationship among plant-height traits found using multiple-trait QTL mapping of a dent corn and popcorn cross. Genome 50:357–364

    Article  PubMed  Google Scholar 

  • Mackay I, Horwell A, Garner J et al (2011) Reanalyses of historical series of UK variety trials to quantify the contributions of genetic and environmental factors to trends and variability in yield over time. Theor Appl Genet 122:225–238

    Article  CAS  PubMed  Google Scholar 

  • Mackay TFC (2009) A-maize-ing Diversity. Science 325:688–689

    Article  CAS  PubMed  Google Scholar 

  • Malik S (2012) Food prices expected to rise after second wettest summer on record the guardian. http://www.guardian.co.uk/environment/2012/oct/10/food-prices-rise-wettest-summer. 10 Oct 2012

  • Marlander B, Hoffmann C, Koch H-J et al (2003) Environmental situation and yield performance of the sugar beet crop in Germany: heading for sustainable development. J Agron Crop Sci 189:2012–2026

    Article  Google Scholar 

  • Martienssen RA, Colot V (2001) DNA methylation and epigenetic inheritance in plants and filamentous fungi. Science 293:1070–1074

    Article  CAS  PubMed  Google Scholar 

  • Mauria S, Singh NN, Mukherjee AK, Bhat KV (2000) Isozyme characterization of Indian maize inbreds. Euphytica 112:253–259

    Article  CAS  Google Scholar 

  • Mauria S, Singh NN, Bhat KV, Lakhanpaul S (2002) Assessment of genetic variation in Indian maize inbreds using RAPD markers. J Genet Breed 56:15–19

    CAS  Google Scholar 

  • Mickelson SM, Stuber CS, Senior L, Kaeppler SM (2002) Quantitative trait loci controlling leaf and tassel traits in a B73 Ă— Mo17 Population of Maize. Crop Sci 42:1902–1909

    Article  CAS  Google Scholar 

  • MMEDV (1999) Molecular and other markers for establishing essential derivation in crop plants (EDV). EU-AgriNet. http://ec.europa.eu/research/agriculture/projects/qlrt_1999_01499_en.htm. Accessed 18 Oct 2012

  • Nelson BK, Kahler AL, Kahler JL et al (2011) Evaluation of the numbers of single nucleotide polymorphisms required to measure genetic gain distance in maize (Zea mays L.). Crop Sci 51:1470–1480

    Article  Google Scholar 

  • Nelson PT, Coles ND, Holland JB et al (2008) Molecular characterization of maize inbreds with expired U.S. Plant variety protection. Crop Sci 48:1673–1685

    Article  Google Scholar 

  • NFU (2012) A mixed harvest, but wheat well down. National Farmers Union. http://www.nfuonline.com/Your-sector/Crops/News/A-mixed-harvest,-but-wheat-well-down/. Accessed 10 Oct 2012

  • Ogilvie A, Farmer G (1997) Documenting the Medieval Climate. In: Hulme M, Barrow E (eds) Climates of the British Isles: present, past and future. Routledge, London

    Google Scholar 

  • Peng JH, Sun D, Nevo E (2011) Domestication evolution, genetics and genomics in wheat. Mol Breed 28:281–301

    Article  CAS  Google Scholar 

  • Phalan B, Onial M, Balmford A, Green RE (2011) Reconciling food production and biodiversity conservation: land sharing and land sparing compared. Science 333:1289–1291

    Article  CAS  PubMed  Google Scholar 

  • Qin J, Chen W, Guan R et al (2006) Genetic contribution of foreign germplasm to elite chinese soybean (Glycine max) cultivars revealed by SSR markers. Chin Sci Bull 51:1078–1084

    Article  CAS  Google Scholar 

  • Raven PH (2010) Does the use of transgenic plants diminish or promote biodiversity? New Biotechnol 27:528–533

    Article  CAS  Google Scholar 

  • Rodrigues DH, de Alcantara Neto F, Schuster I (2008) Identification of essentially derived soybean cultivars using microsatellite markers. Crop Breed Appl Biotechnol 8:74–78

    Article  CAS  Google Scholar 

  • Ronald P (2011) Plant Genetics, sustainable agriculture and global food supply. Genet 188:11–20

    Article  Google Scholar 

  • Rudel TK, Schneider L, Uriarte M et al (2009) Agricultural intensification and changes in cultivated areas, 1970–2005. Proc Natl Acad Sci U S A 106:20675–20680

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Russell WA (1984) Agronomic performance of maize cultivars representing different eras of maize breeding. Maydica 29:375–390

    Google Scholar 

  • SGRP (2010) Booklet of CGIAR centre policy instrument, guidelines and statements on genetic resources, biotechnology and intellectual property rights. Version III. System-wide genetic resources program (SGRP) and the CGIAR genetic resources policy committee (GRPC). Bioversity Int. Rome. http://www.sgrp.cgiar.org/sites/default/files/Policy_Booklet_Version3.pdf. Accessed 09 Oct 2012

  • Smith BD (1989) Origins of agriculture in Eastern North America. Science 246:1566–1571

    Google Scholar 

  • Sourdille P, Baud S, Leroy P (1996) Detection of linkage between RFLP markers and genes affecting anthocyanin pigmentation in maize (Zea mays L.). Euphytica 91:21–30

    Article  CAS  Google Scholar 

  • Tenaillon MI, Sawkins MC, Long AD et al (2001) Patterns of DNA sequence polymorphism along chromosome 1 of maize (Zea mays ssp. mays L.). Proc Natl Acad Sci U S A 98:9161–9166

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • The Royal Society (2009) Reaping the benefits: Science and the sustainable intensification of global agriculture. ISBN: 978-0-8540-784-1. The Royal Society, London

    Google Scholar 

  • Tian F, Bradbury PJ, Brown PJ et al (2011) Genome-wide association study of leaf architecture in the maize nested association mapping population. Nat Genet 43:159–162

    Article  CAS  PubMed  Google Scholar 

  • Van Inghelandt D, Melchinger AE, Lebreton C, Stich B (2010) Population structure and genetic diversity in a commercial maize breeding program assessed with SSR and SNP markers. Theor Appl Genet 120:1289–1299

    Article  PubMed Central  PubMed  Google Scholar 

  • Vroh Bi I, McMullen MD, Sanchez-Villeda H et al (2006) Single nucleotide polymorphisms and insertion-deletions for genetic markers and anchoring the maize fingerprint contig physical map. Crop Sci 46:12–21

    Article  Google Scholar 

  • Wang Q, Dooner HK (2006) Remarkable variation in maize genome structure inferred from haplotype diversity at the bz locus. Proc Natl Acad Sci U S A 103:17644–17649

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Warburton ML, Crossa J, Franco J et al (2006) Bringing wild relatives back into the family: recovering genetic diversity in CIMMYT improved wheat germplasm. Euphytica 149:289–301

    Article  CAS  Google Scholar 

  • Williams SB, Weber KA (1989) Intellectual property protection and plants. In: Caldwell BE (ed) Intellectual property rights associated with plants. ASA Spec. Publ. No. 52. ASA, CSSA, and SSSA, Madison

    Google Scholar 

  • Yan J, Warburton M, Crouch J (2011) Association mapping for enhancing maize (Zea mays L.) genetic improvement. Crop Sci 51:433–449

    Article  Google Scholar 

  • Yu J, Zhang Z, Zhu C et al (2009) Simulation appraisal of the adequacy of number of background markers for relationship estimation in association mapping. Plant Genome 2:63–77

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Stephen C. Smith .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Smith, J., Jones, E., Nelson, B., Phillips, D., Wineland, R. (2014). Genomic Approaches and Intellectual Property Protection for Variety Release: A Perspective from the Private Sector. In: Tuberosa, R., Graner, A., Frison, E. (eds) Genomics of Plant Genetic Resources. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7572-5_2

Download citation

Publish with us

Policies and ethics