Skip to main content

Chaperones and Proteases of Plasmodium falciparum

  • Chapter
  • First Online:
Heat Shock Proteins of Malaria

Abstract

In 2010, there were about 216 million malaria cases and an estimated 655,000 deaths (WHO). With half of the world’s population living in endemic regions, the struggle against this parasite is more salient than ever. Plasmodium falciparum is the causative agent of the most severe form of human malaria. It is known that this parasite experiences large heat shock upon entry to the human host and in the febrile episodes that accompany pathology. Thus, the protein homeostasis machinery composed of chaperones and proteases is expected to play an essential role in parasite survival. However, research on the proteostasis machinery of P. falciparum is still in its infancy. Bioinformatic analyses reveal that the parasite contains a total of about 184 chaperones and proteases. This review will summarize the available biochemical data on the chaperone and proteases and their proposed functions in parasite biology. The following chaperones and proteases are discussed: Hsp90, Hsp70, Hsp40, Hsp60, Hsp10, proteasome, and Clp proteases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Acharya P, Kumar R, Tatu U (2007) Chaperoning a cellular upheaval in malaria: heat shock proteins in Plasmodium falciparum. Mol Biochem Parasitol 153:85–94

    Article  PubMed  CAS  Google Scholar 

  • Acharya P, Chaubey S, Grover M, Tatu U (2012) An exported heat shock protein 40 associates with pathogenesis-related knobs in Plasmodium falciparum infected erythrocytes. PLoS One 7:e44605

    Article  PubMed  CAS  Google Scholar 

  • Ali MM, Roe SM, Vaughan CK, Meyer P, Panaretou B, Piper PW et al (2006) Crystal structure of an Hsp90-nucleotide-p23/Sba1 closed chaperone complex. Nature 440:1013–1017

    Article  PubMed  CAS  Google Scholar 

  • Aminake MN, Schoof S, Sologub L, Leubner M, Kirschner M, Arndt HD et al (2011) Thiostrepton and derivatives exhibit antimalarial and gametocytocidal activity by dually targeting parasite proteasome and apicoplast. Antimicrob Agents Chemother 55:1338–1348

    Article  PubMed  CAS  Google Scholar 

  • Banumathy G, Singh V, Pavithra SR, Tatu U (2003) Heat shock protein 90 function is essential for Plasmodium falciparum growth in human erythrocytes. J Biol Chem 278:18336–18345

    Article  PubMed  CAS  Google Scholar 

  • Bell SL, Chiang AN, Brodsky JL (2011) Expression of a malarial Hsp70 improves defects in chaperone-dependent activities in ssa1 mutant yeast. PLoS One 6:e20047

    Article  PubMed  CAS  Google Scholar 

  • Bender A, Dooren GG van, Ralph SA, McFadden GI, Schneider G (2003) Properties and prediction of mitochondrial transit peptides from Plasmodium falciparum. Mol Biochem Parasitol 132:59–66

    Article  PubMed  CAS  Google Scholar 

  • Bertsch U, Soll J, Seetharam R, Viitanen PV (1992) Identification, characterization, and DNA sequence of a functional “double” groES-like chaperonin from chloroplasts of higher plants. Proc Natl Acad Sci U S A 89:8696–8700

    Article  PubMed  CAS  Google Scholar 

  • Biswas S, Sharma YD (1994) Enhanced expression of Plasmodium falciparumheat shock protein PFHSP70-I at higher temperatures and parasite survival. Fems Microbiol Lett 124:425–429

    Article  PubMed  CAS  Google Scholar 

  • Bonnefoy S, Attal G, Langsley G, Tekaia F, Mercereau-Puijalon O (1994) Molecular characterization of the heat shock protein 90 gene of the human malaria parasite Plasmodium falciparum. Mol Biochem Parasitol 67:157–170

    Article  PubMed  CAS  Google Scholar 

  • Borges JC, Fischer H, Craievich AF, Ramos CH (2005) Low resolution structural study of two human HSP40 chaperones in solution. DJA1 from subfamily A and DJB4 from subfamily B have different quaternary structures. J Biol Chem 280:13671–13681

    Article  PubMed  CAS  Google Scholar 

  • Borkovich KA, Farrelly FW, Finkelstein DB, Taulien J, Lindquist S (1989) Hsp82 is an essential protein that is required in higher concentrations for growth of cells at higher temperatures. Mol Cell Biol 9:3919–3930

    PubMed  CAS  Google Scholar 

  • Botha M, Pesce ER, Blatch GL (2007) The Hsp40 proteins of Plasmodium falciparum and other apicomplexa: regulating chaperone power in the parasite and the host. Int J Biochem Cell Biol 39:1781–1803

    Article  PubMed  CAS  Google Scholar 

  • Botha M, Chiang AN, Needham PG, Stephens LL, Hoppe HC, Kulzer S et al (2011) Plasmodium falciparum encodes a single cytosolic type I Hsp40 that functionally interacts with Hsp70 and is upregulated by heat shock. Cell Stress Chaperones 16:389–401

    Article  PubMed  CAS  Google Scholar 

  • Braig K, Otwinowski Z, Hegde R, Boisvert DC, Joachimiak A, Horwich AL et al (1994) The crystal structure of the bacterial chaperonin GroEL at 2.8 A. Nature 371:578–586

    Article  PubMed  CAS  Google Scholar 

  • Chua CS, Low H, Goo KS, Sim TS (2010) Characterization of Plasmodium falciparum co-chaperone p23: its intrinsic chaperone activity and interaction with Hsp90. Cell Mol Life Sci 67:1675–1686

    Article  PubMed  CAS  Google Scholar 

  • Chua CS, Low H, Lehming N, Sim TS (2012) Molecular analysis of Plasmodium falciparum co-chaperone Aha1 supports its interaction with and regulation of Hsp90 in the malaria parasite. Int J Biochem Cell Biol 44:233–245

    Article  PubMed  CAS  Google Scholar 

  • Corbett KD, Berger JM (2010) Structure of the ATP-binding domain of Plasmodium falciparum Hsp90. Proteins 78:2738–2744

    Article  PubMed  CAS  Google Scholar 

  • Czesny B, Goshu S, Cook JL, Williamson KC (2009) The proteasome inhibitor epoxomicin has potent Plasmodium falciparum gametocytocidal activity. Antimicrob Agents Chemother 53:4080–4085

    Article  PubMed  CAS  Google Scholar 

  • Das A, Syin C, Fujioka H, Zheng H, Goldman N, Aikawa M et al (1997) Molecular characterization and ultrastructural localization of Plasmodium falciparum Hsp 60. Mol Biochem Parasitol 88:95–104

    Article  PubMed  CAS  Google Scholar 

  • de Koning-Ward TF, Gilson PR, Boddey JA, Rug M, Smith BJ, Papenfuss AT et al (2009) A newly discovered protein export machine in malaria parasites. Nature 459:945–949

    Article  PubMed  CAS  Google Scholar 

  • Dey A, Cederbaum AI (2006) Geldanamycin, an inhibitor of Hsp90, potentiates cytochrome P4502E1-mediated toxicity in HepG2 cells. J Pharmacol Experimen Therapeut 317:1391–1399

    Article  CAS  Google Scholar 

  • Dey A. Cederbaum AI (2007) Geldanamycin, an inhibitor of Hsp90 increases cytochrome P450 2E1 mediated toxicity in HepG2 cells through sustained activation of the p38MAPK pathway. Arch Biochem Biophy 461:275–286

    Article  CAS  Google Scholar 

  • Dollins DE, Warren JJ, Immormino RM, Gewirth DT (2007) Structures of GRP94-nucleotide complexes reveal mechanistic differences between the hsp90 chaperones. Mol Cell 28:41–56

    Article  PubMed  CAS  Google Scholar 

  • El Bakkouri M, Pow A, Mulichak A, Cheung KL, Artz JD, Amani M et al (2010) The Clp chaperones and proteases of the human malaria parasite Plasmodium falciparum. J Mol Biol 404:456–477

    Article  PubMed  CAS  Google Scholar 

  • El Bakkouri M, Rathore S, Calmettes C, Wernimont AK, Liu K, Sinha D et al (2013) Structural insights into the inactive subunit of the apicoplast-localized caseinolytic protease complex of Plasmodium falciparum. J Biol Chem 288:1022–1031

    Article  PubMed  CAS  Google Scholar 

  • Foth BJ, Ralph SA, Tonkin CJ, Struck NS, Fraunholz M, Roos DS et al (2003) Dissecting apicoplast targeting in the malaria parasite Plasmodium falciparum. Science 299:705–708

    Article  PubMed  CAS  Google Scholar 

  • Gantt SM, Myung JM, Briones MR, Li WD, Corey EJ, Omura S et al (1998) Proteasome inhibitors block development of Plasmodium spp. Antimicrob Agents Chemother 42:2731–2738

    PubMed  CAS  Google Scholar 

  • Gitau GW, Mandal P, Blatch GL, Przyborski J, Shonhai A (2012) Characterisation of the Plasmodium falciparum Hsp70-Hsp90 organising protein (PfHop). Cell Stress Chaperones 17:191–202

    Article  PubMed  CAS  Google Scholar 

  • Gough J, Karplus K, Hughey R, Chothia C (2001) Assignment of homology to genome sequences using a library of hidden Markov models that represent all proteins of known structure. J Mol Biol 313:903–919

    Article  PubMed  CAS  Google Scholar 

  • Grover M, Chaubey S, Ranade S, Tatu U (2013) Identification of an exported heat shock protein 70 in Plasmodium falciparum. Parasite 20:2

    Article  PubMed  Google Scholar 

  • Hainzl O, Lapina MC, Buchner J, Richter K (2009) The charged linker region is an important regulator of Hsp90 function. J Biol Chem 284:22559–22567

    Article  PubMed  CAS  Google Scholar 

  • Hartl FU, Hayer-Hartl M (2002) Molecular chaperones in the cytosol: from nascent chain to folded protein. Science 295:1852–1858

    Article  PubMed  CAS  Google Scholar 

  • Hartl FU, Bracher A, Hayer-Hartl M (2011) Molecular chaperones in protein folding and proteostasis. Nature 475:324–332

    Article  PubMed  CAS  Google Scholar 

  • Hatabu T, Takada T, Taguchi N, Suzuki M, Sato K, Kano S (2005) Potent plasmodicidal activity of a heat-induced reformulation of deoxycholate-amphotericin B (Fungizone) against Plasmodium falciparum. Antimicro Agents Chemother 49:493–496

    Article  CAS  Google Scholar 

  • Herbst R, Schafer U, Seckler R (1997) Equilibrium intermediates in the reversible unfolding of firefly (Photinus pyralis) luciferase. J Biol Chem 272:7099–7105

    Article  PubMed  CAS  Google Scholar 

  • Holloway SP, Min W, Inselburg JW (1994) Isolation and characterization of a chaperonin-60 gene of the human malaria parasite Plasmodium falciparum. Mol Biochem Parasitol 64:25–32

    Article  PubMed  CAS  Google Scholar 

  • Joshi B, Biswas S, Sharma YD (1992) Effect of heat-shock on Plasmodium falciparum viability, growth and expression of the heat-shock protein ‘PFHSP70-I’ gene. FEBS Lett 312:91–94

    Article  PubMed  CAS  Google Scholar 

  • Kappes B, Suetterlin BW, Hofer-Warbinek R, Humar R, Franklin RM (1993) Two major phosphoproteins of Plasmodium falciparum are heat shock proteins. Mol Biochem Parasitol 59:83–94

    Article  PubMed  CAS  Google Scholar 

  • Kessel M, Wu W, Gottesman S, Kocsis E, Steven AC, Maurizi MR (1996) Six-fold rotational symmetry of ClpQ, the E. coli homolog of the 20S proteasome, and its ATP-dependent activator, ClpY. FEBS Lett 398:274–278

    Article  PubMed  CAS  Google Scholar 

  • Kitson RR, Chang CH, Xiong R, Williams HE, Davis AL, Lewis W et al (2013) Synthesis of 19-substituted geldanamycins with altered conformations and their binding to heat shock protein Hsp90. Nat Chem 5:307–314

    Article  PubMed  CAS  Google Scholar 

  • Koumoto Y, Shimada T, Kondo M, Takao T, Shimonishi Y, Hara-Nishimura I et al (1999) Chloroplast Cpn20 forms a tetrameric structure in Arabidopsis thaliana. Plant J 17:467–477

    Article  PubMed  CAS  Google Scholar 

  • Kubelka J, Hofrichter J, Eaton WA (2004) The protein folding ‘speed limit’. Curr Opin Struct Biol 14:76–88

    Google Scholar 

  • Kulzer S, Rug M, Brinkmann K, Cannon P, Cowman A, Lingelbach K et al (2010) Parasite-encoded Hsp40 proteins define novel mobile structures in the cytosol of the P. falciparum-infected erythrocyte. Cell Microbiol 12:1398–1420

    Article  PubMed  CAS  Google Scholar 

  • Külzer S, Charnaud S, Dagan T, Riedel J, Mandal P, Pesce ER et al (2012) Plasmodium falciparum-encoded exported hsp70/hsp40 chaperone/co-chaperone complexes within the host erythrocyte. Cell Microbiol 14:1784–1795

    Article  PubMed  CAS  Google Scholar 

  • Kumar N, Koski G, Harada M, Aikawa M, Zheng H (1991) Induction and localization of Plasmodium falciparum stress proteins related to the heat shock protein 70 family. Mol Biochem Parasitol 48:47–58

    Article  PubMed  CAS  Google Scholar 

  • Kumar N, Zheng H (1992) Nucleotide sequence of a Plasmodium falciparum stress protein with similarity to mammalian 78-kDa glucose-regulated protein. Mol Biochem Parasitol 56:353–356

    Article  PubMed  CAS  Google Scholar 

  • Kumar A, Tanveer A, Biswas S, Ram EV, Gupta A, Kumar B et al (2010) Nuclear-encoded DnaJ homologue of Plasmodium falciparum interacts with replication ori of the apicoplast genome. Mol Microbiol 75:942–956

    Article  PubMed  CAS  Google Scholar 

  • LaCount DJ, Vignali M, Chettier R, Phansalkar A, Bell R, Hesselberth JR et al (2005) A protein interaction network of the malaria parasite Plasmodium falciparum. Nature 438:103–107

    Article  PubMed  CAS  Google Scholar 

  • Landry SJ, Zeilstra-Ryalls J, Fayet O, Georgopoulos C, Gierasch LM (1993) Characterization of a functionally important mobile domain of GroES. Nature 364:255–258

    Article  PubMed  CAS  Google Scholar 

  • Lanzer M, Wickert H, Krohne G, Vincensini L, Braun Breton C (2006) Maurer’s clefts: a novel multi-functional organelle in the cytoplasm of Plasmodium falciparum-infected erythrocytes. Int J Parasitol 36:23–36

    Article  PubMed  CAS  Google Scholar 

  • Lindenthal C, Weich N, Chia YS, Heussler V, Klinkert MQ (2005) The proteasome inhibitor MLN-273 blocks exoerythrocytic and erythrocytic development of Plasmodium parasites. Parasitology 131:37–44

    Article  PubMed  CAS  Google Scholar 

  • Lopes Ferreira N, Alix JH (2002) The DnaK Chaperone Is Necessary for -Complementation of -Galactosidase in Escherichia coli. J Bacteriol 184:7047–7054

    Article  PubMed  CAS  Google Scholar 

  • Matambo TS, Odunuga OO, Boshoff A, Blatch GL (2004) Overproduction, purification, and characterization of the Plasmodium falciparum heat shock protein 70. Protein Expr Purif 33:214–222

    Article  PubMed  CAS  Google Scholar 

  • Meyer P, Prodromou C, Hu B, Vaughan C, Roe SM, Panaretou B et al (2003) Structural and functional analysis of the middle segment of hsp90: implications for ATP hydrolysis and client protein and cochaperone interactions. Mol Cell 11:647–658

    Article  PubMed  CAS  Google Scholar 

  • Minami Y, Kimura Y, Kawasaki H, Suzuki K, Yahara I (1994) The carboxy-terminal region of mammalian HSP90 is required for its dimerization and function in vivo. Mol Cell Biol 14:1459–1464

    PubMed  CAS  Google Scholar 

  • Misra G, Ramachandran R (2009) Hsp70-1 from Plasmodium falciparum: protein stability, domain analysis and chaperone activity. Biophys Chem 142:55–64

    Article  PubMed  CAS  Google Scholar 

  • Misra G, Ramachandran R (2010) Exploring the positional importance of aromatic residues and lysine in the interactions of peptides with the Plasmodium falciparum Hsp70-1. Biochim Biophys Acta 1804:2146–2152

    Google Scholar 

  • Morahan BJ, Strobel C, Hasan U, Czesny B, Mantel PY, Marti M et al (2011) Functional analysis of the exported type IV HSP40 protein PfGECO in Plasmodium falciparum gametocytes. Eukaryot Cell 10:1492–1503

    Article  PubMed  CAS  Google Scholar 

  • Mordmuller B, Fendel R, Kreidenweiss A, Gille C, Hurwitz R, Metzger WG et al (2006) Plasmodia express two threonine-peptidase complexes during asexual development. Mol Biochem Parasitol 148:79–85

    Article  PubMed  CAS  Google Scholar 

  • Nicolet CM, Craig EA (1989) Isolation and characterization of STI1, a stress-inducible gene from Saccharomyces cerevisiae. Mol Cell Biol 9:3638–3646

    PubMed  CAS  Google Scholar 

  • Nicoll WS, Botha M, McNamara C, Schlange M, Pesce ER, Boshoff A et al (2007) Cytosolic and ER J-domains of mammalian and parasitic origin can functionally interact with DnaK. Int J Biochem Cell Biol 39:736–751

    Article  PubMed  CAS  Google Scholar 

  • Pallavi R, Acharya P, Chandran S, Daily JP, Tatu U (2010a) Chaperone expression profiles correlate with distinct physiological states of Plasmodium falciparum in malaria patients. Malar J 9:236

    Article  CAS  Google Scholar 

  • Pallavi R, Roy N, Nageshan RK, Talukdar P, Pavithra SR, Reddy R et al (2010b) Heat shock protein 90 as a drug target against protozoan infections: biochemical characterization of HSP90 from Plasmodium falciparum and Trypanosoma evansi and evaluation of its inhibitor as a candidate drug. J Biol Chem 285:37964–37975

    Article  CAS  Google Scholar 

  • Paugam A, Bulteau AL, Dupouy-Camet J, Creuzet C, Friguet B (2003) Characterization and role of protozoan parasite proteasomes. Trends Parasitol 19:55–59

    Article  PubMed  CAS  Google Scholar 

  • Pavithra SR, Banumathy G, Joy O, Singh V, Tatu U (2004) Recurrent fever promotes Plasmodium falciparum development in human erythrocytes. J Biol Chem 279:46692–46699

    Article  PubMed  CAS  Google Scholar 

  • Pelham HR (1989) Heat shock and the sorting of luminal ER proteins. EMBO J 8:3171–3176

    PubMed  CAS  Google Scholar 

  • Peltier JB, Ripoll DR, Friso G, Rudella A, Cai Y, Ytterberg J et al (2004) Clp protease complexes from photosynthetic and non-photosynthetic plastids and mitochondria of plants, their predicted three-dimensional structures, and functional implications. J Biol Chem 279:4768–4781

    Article  PubMed  CAS  Google Scholar 

  • Pesce ER, Acharya P, Tatu U, Nicoll WS, Shonhai A, Hoppe HC et al (2008) The Plasmodium falciparum heat shock protein 40, Pfj4, associates with heat shock protein 70 and shows similar heat induction and localisation patterns. International J Biochem Cell Biol 40:2914–2926

    Article  CAS  Google Scholar 

  • Pesce ER, Blatch GL (2009) The Hsp40-Hsp70 chaperone machinery of Plasmodium falciparum. African J Biochem Res 3:154–163

    CAS  Google Scholar 

  • Pfund C, Lopez-Hoyo N, Ziegelhoffer T, Schilke BA, Lopez-Buesa P, Walter WA et al (1998) The molecular chaperone Ssb from Saccharomyces cerevisiae is a component of the ribosome-nascent chain complex. EMBO J 17:3981–3989

    Article  PubMed  CAS  Google Scholar 

  • Pickart CM, Cohen RE (2004) Proteasomes and their kin: proteases in the machine age. Nat Rev Mol Cell Biol 5:177–187

    Article  PubMed  CAS  Google Scholar 

  • Ramasamy G, Gupta D, Mohmmed A, Chauhan VS (2007) Characterization and localization of Plasmodium falciparum homolog of prokaryotic ClpQ/HslV protease. Mol Biochem Parasitol 152:139–148

    Article  PubMed  CAS  Google Scholar 

  • Rathore S, Sinha D, Asad M, Bottcher T, Afrin F, Chauhan VS et al (2010) A cyanobacterial serine protease of Plasmodium falciparum is targeted to the apicoplast and plays an important role in its growth and development. Mol Microbiol 77:873–890

    CAS  Google Scholar 

  • Rathore S, Jain S, Sinha D, Gupta M, Asad M, Srivastava A et al (2011) Disruption of a mitochondrial protease machinery in Plasmodium falciparum is an intrinsic signal for parasite cell death. Cell Death Dis 2:e231

    Article  PubMed  CAS  Google Scholar 

  • Ritossa FM (1964) Experimental Activation of Specific Loci in Polytene Chromosomes of Drosophila. Exp Cell Res 35:601–607

    Article  PubMed  CAS  Google Scholar 

  • Rudella A, Friso G, Alonso JM, Ecker JR, Wijk KJ van (2006) Downregulation of ClpR2 leads to reduced accumulation of the ClpPRS protease complex and defects in chloroplast biogenesis in Arabidopsis. Plant Cell 18:1704–1721

    Article  PubMed  CAS  Google Scholar 

  • Ryan MT, Pfanner N (2002) Hsp70 proteins in protein translocation. Protein Fold Cell 59:223–242

    Article  CAS  Google Scholar 

  • Sam-Yellowe TY (2009) The role of the Maurer’s clefts in protein transport in Plasmodium falciparum. Trends Parasitol 25:277–284

    Article  PubMed  CAS  Google Scholar 

  • Sanchez GI, Carucci DJ, Sacci J Jr, Resau JH, Rogers WO, Kumar N et al (1999) Plasmodium yoelii: cloning and characterization of the gene encoding for the mitochondrial heat shock protein 60. Exp Parasitol 93:181–190

    Article  PubMed  CAS  Google Scholar 

  • Sargeant TJ, Marti M, Caler E, Carlton JM, Simpson K, Speed TP et al (2006) Lineage-specific expansion of proteins exported to erythrocytes in malaria parasites. Genome Biol 7:R12

    Google Scholar 

  • Sato S, Rangachari K, Wilson RJ (2003) Targeting GFP to the malarial mitochondrion. Mol Biochem Parasitol 130:155–158

    Article  PubMed  CAS  Google Scholar 

  • Sato S, Wilson RJM (2004) The use of DsRED in single- and dual-color fluorescence labeling of mitochondrial and plastid organelles in Plasmodium falciparum. Mol Biochem Parasitol 134:175–179

    Article  PubMed  CAS  Google Scholar 

  • Sato S, Wilson RJ (2005) Organelle-specific cochaperonins in apicomplexan parasites. Mol Biochem Parasitol 141:133–143

    Article  PubMed  CAS  Google Scholar 

  • Scheibel T, Siegmund HI, Jaenicke R, Ganz P, Lilie H, Buchner J (1999) The charged region of Hsp90 modulates the function of the N-terminal domain. Proc Natl Acad Sci U S A 96:1297–1302

    Article  PubMed  CAS  Google Scholar 

  • Schoof S, Pradel G, Aminake MN, Ellinger B, Baumann S, Potowski M et al (2010) Antiplasmodial thiostrepton derivatives: proteasome inhibitors with a dual mode of action. Angew Chem Int Ed Engl 49:3317–3321

    Google Scholar 

  • Sessler N, Krug K, Nordheim A, Mordmuller B, Macek B (2012) Analysis of the Plasmodium falciparum proteasome using Blue Native PAGE and label-free quantitative mass spectrometry. Amino Acids 43:1119–1129

    Article  PubMed  CAS  Google Scholar 

  • Shahinas D, Liang M, Datti A, Pillai DR (2010) A repurposing strategy identifies novel synergistic inhibitors of Plasmodium falciparum heat shock protein 90. J Med Chem 53:3552–3557

    Article  PubMed  CAS  Google Scholar 

  • Shahinas D, Macmullin G, Benedict C, Crandall I, Pillai DR (2012) Harmine is a potent antimalarial targeting Hsp90 and synergizes with chloroquine and artemisinin. Antimicrob Agents Chemother 56:4207–4213

    Article  PubMed  CAS  Google Scholar 

  • Shiau AK, Harris SF, Southworth DR, Agard DA (2006) Structural Analysis of E. coli hsp90 reveals dramatic nucleotide-dependent conformational rearrangements. Cell 127:329–340

    Article  PubMed  CAS  Google Scholar 

  • Shonhai A, Boshoff A, Blatch GL (2005) Plasmodium falciparum heat shock protein 70 is able to suppress the thermosensitivity of an Escherichia coli DnaK mutant strain. Mol Genet Genomics 274:70–78

    Article  PubMed  CAS  Google Scholar 

  • Shonhai A, Boshoff A, Blatch GL (2007) The structural and functional diversity of Hsp70 proteins from Plasmodium falciparum. Protein Sci 16:1803–1818

    Article  PubMed  CAS  Google Scholar 

  • Slapeta J, Keithly JS (2004) Cryptosporidium parvum mitochondrial-type HSP70 targets homologous and heterologous mitochondria. Eukaryot Cell 3:483–494

    Article  PubMed  CAS  Google Scholar 

  • Su XZ, Wellems TE (1994) Sequence, transcript characterization and polymorphisms of a Plasmodium falciparum gene belonging to the heat-shock protein (HSP) 90 family. Gene 151:225–230

    Article  PubMed  CAS  Google Scholar 

  • Subramaniam S, Mohmmed A, Gupta D (2009) Molecular modeling studies of the interaction between Plasmodium falciparum HslU and HslV subunits. J Biomol Struct Dy 26:473–479

    Article  CAS  Google Scholar 

  • Syin C, Goldman ND (1996) Cloning of a Plasmodium falciparum gene related to the human 60-kDa heat shock protein. Mol Biochem Parasitol 79:13–19

    Article  PubMed  CAS  Google Scholar 

  • Tschan S, Kreidenweiss A, Stierhof YD, Sessler N, Fendel R, Mordmuller B (2010) Mitochondrial localization of the threonine peptidase PfHslV, a ClpQ ortholog in Plasmodium falciparum. Int J Parasitol 40:1517–1523

    Article  PubMed  CAS  Google Scholar 

  • Tsutsumi S, Mollapour M, Graf C, Lee CT, Scroggins BT, Xu W et al (2009) Hsp90 charged-linker truncation reverses the functional consequences of weakened hydrophobic contacts in the N domain. Nat Struct Mol Biol 16:1141–1147

    Article  PubMed  CAS  Google Scholar 

  • Vincensini L, Richert S, Blisnick T, Van Dorsselaer A, Leize-Wagner E, Rabilloud T et al (2005) Proteomic analysis identifies novel proteins of the Maurer’s clefts, a secretory compartment delivering Plasmodium falciparum proteins to the surface of its host cell. Mol Cell Proteomics 4:582–593

    Article  PubMed  CAS  Google Scholar 

  • Walton PA, Wendland M, Subramani S, Rachubinski RA, Welch WJ (1994) Involvement of 70-kD heat-shock proteins in peroxisomal import. J Cell Biol 125:1037–1046

    Article  PubMed  CAS  Google Scholar 

  • Wang J, Hartling JA, Flanagan JM (1997) The Structure of ClpP at 2.3 Å Resolution Suggests a Model for ATP-Dependent Proteolysis. Cell 91:447–456

    Article  PubMed  CAS  Google Scholar 

  • Watanabe J (1997) Cloning and characterization of heat shock protein DnaJ homologues from Plasmodium falciparum and comparison with ring infected erythrocyte surface antigen. Mol Biochem Parasitol 88:253–258

    Article  PubMed  CAS  Google Scholar 

  • Wu Y, Wang X, Liu X, Wang Y (2003) Data-mining approaches reveal hidden families of proteases in the genome of malaria parasite. Genome Res 13:601–616

    Article  PubMed  CAS  Google Scholar 

  • Wu Y, Li J, Jin Z, Fu Z, Sha B (2005) The crystal structure of the C-terminal fragment of yeast Hsp40 Ydj1 reveals novel dimerization motif for Hsp40. J Mol Biol 346:1005–1011

    Article  PubMed  CAS  Google Scholar 

  • Xu Z, Horwich AL, Sigler PB (1997) The crystal structure of the asymmetric GroEL-GroES-(ADP)7 chaperonin complex. Nature 388:741–750

    Article  PubMed  CAS  Google Scholar 

  • Yan W, Craig EA (1999) The glycine-phenylalanine-rich region determines the specificity of the yeast Hsp40 Sis1. Mol Cell Biol 19:7751–7758

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Kaiyin Liu is the recipient of the Ontario Graduate Scholarship. This work was supported by a grant from the Natural Sciences and Engineering Research Council of Canada (RGPIN 238282-2013) to WAH.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Walid A. Houry .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Liu, K., Houry, W. (2014). Chaperones and Proteases of Plasmodium falciparum . In: Shonhai, A., Blatch, G. (eds) Heat Shock Proteins of Malaria. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7438-4_9

Download citation

Publish with us

Policies and ethics