Skip to main content
Log in

Plasmodium falciparum heat shock protein 70 is able to suppress the thermosensitivity of an Escherichia coli DnaK mutant strain

  • Original Paper
  • Published:
Molecular Genetics and Genomics Aims and scope Submit manuscript

Abstract

Heat shock protein 70 (Hsp70) and heat shock protein 40 (Hsp40) are molecular chaperones that ensure that the proteins of the cell are properly folded and functional under both normal and stressful conditions. The malaria parasite Plasmodium falciparum is known to overproduce a heat shock protein 70 (PfHsp70) in response to thermal stress; however, the in vivo function of this protein still needs to be explored. Using in vivo complementation assays, we found that PfHsp70 was able to suppress the thermosensitivity of an Escherichia coli dnaK756 strain, but not that of the corresponding deletion strain (ΔdnaK52) or dnaK103 strain, which produces a truncated DnaK. Constructs were generated that encoded the ATPase domain of PfHsp70 fused to the substrate-binding domain (SBD) of E. coli DnaK (referred to as PfK), and the ATPase domain of E. coli DnaK coupled to the SBD of PfHsp70 (KPf). PfK was unable to suppress the thermosensitivity of any of the E. coli strains. In contrast, KPf was able to suppress the thermosensitivity in the E. coli dnaK756 strain. We also identified two key amino acid residues (V401 and Q402) in the linker region between the ATPase domain and SBD that are essential for the in vivo function of PfHsp70. This is the first example of an Hsp70 from a eukaryotic parasite that can suppress thermosensitivity in a prokaryotic system. In addition, our results also suggest that interdomain communication is critical for the function of the PfHsp70 and PfHsp70-DnaK chimeras. We discuss the implications of these data for the mechanism of action of the Hsp70-Hsp40 chaperone machinery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Banecki B, Zylicz M, Bertoli E, Tanfani F (1992) Structural and functional relationships in DnaK and DnaK756 heat-shock proteins from Escherichia coli. J Biol Chem 267:25051–25058

    CAS  PubMed  Google Scholar 

  • Banumathy G, Singh V, Pavithra SR, Tatu U (2003) Heat shock protein 90 is essential for Plasmodium falciparum growth in human erythrocytes. J Biol Chem 278:18336–18345

    Article  CAS  PubMed  Google Scholar 

  • Biswas S, Sharma YD (1994) Enhanced expression of Plasmodium falciparum heat shock protein PFHSP70-1 at higher temperatures and parasite survival. FEMS Microbiol Lett 124:425–430

    Article  CAS  PubMed  Google Scholar 

  • Buchberger A, Gassler CS, Buttner M, McMacken R, Bukau B (1999) Functional defects of the DnaK756 mutant chaperone of Escherichia coli indicate distinct roles for amino- and carboxyl-terminal residues in substrate and co-chaperone interaction and interdomain communication. J Biol Chem 274:38017–38026

    Article  CAS  PubMed  Google Scholar 

  • Bukau B, Horwich AL (1998) The Hsp70 and Hsp60 chaperone machines. Cell 92:351–366

    Article  CAS  PubMed  Google Scholar 

  • Bukau B, Walker GC (1989) Cellular defects caused by deletion of the Escherichia coli dnaK gene indicate roles for heat shock protein in normal metabolism. J Bacteriol 171:2337–2346

    CAS  PubMed  Google Scholar 

  • Bukau B, Walker GC (1990) Mutations altering heat shock specific subunit of RNA polymerase suppress major cellular defects of E. coli mutants lacking the DnaK chaperone. EMBO J 9:4027–4036

    CAS  PubMed  Google Scholar 

  • Culvenor JG, Day KP, Anders RF (1991) Plasmodium falciparum ring-infected erythrocyte surface antigen is released from merozoite dense granules after erythrocyte invasion. Infect Immun 59:1183–1187

    CAS  PubMed  Google Scholar 

  • Dionisi HM, Checa SK, Krapp AR, Arakaki AK, Ceccarelli EA, Carrillo N, Viale AM (1998) Cooperation of the DnaK and GroE chaperone systems in the folding pathway of plant ferredoxin-NADP+ reductase expressed in Escherichia coli. Eur J Biochem 251:724–728

    Article  CAS  PubMed  Google Scholar 

  • Ellis JR (1996) Stress proteins as molecular chaperones. In: van Eden W, Young D (eds) Stress proteins in medicine. Marcel Dekker, New York, pp 1–26

    Google Scholar 

  • Ferreira NL, Alix J-H (2002) The DnaK chaperone is necessary for α-complementation of β-galactosidase in Escherichia coli. J Bacteriol 184:7047–7054

    Article  CAS  PubMed  Google Scholar 

  • Flaherty KM, DeLuca-Flaherty C, McKay DB (1990) Three dimensional structure of the ATPase fragment of a 70 kDa heat shock cognate protein. Nature 346:623–628

    Article  CAS  PubMed  Google Scholar 

  • Georgopoulos CP (1977) A new bacterial gene (groPC) which affects lambda DNA replication. Mol Gen Genet 151:35–39

    Article  CAS  PubMed  Google Scholar 

  • Georgopoulos CP, Lam B, Lundquist-Heil A, Rudolph CF, Yochem J, Feiss M (1979) Identification of the E. coli dnaK (groPC756) gene product. Mol Gen Genet 172:143–149

    Article  CAS  PubMed  Google Scholar 

  • Gething M-J, Sambrook J (1992) Protein folding in the cell. Nature 355:33–45

    Article  CAS  PubMed  Google Scholar 

  • Han W, Christen P (2001) Mutations in the interdomain linker region of DnaK abolish the chaperone action of the DnaK/DnaJ/GrpE system. FEBS Lett 497:55–58

    Article  CAS  PubMed  Google Scholar 

  • Harrison CJ, Hayer-Hartl M, Di Liberto M, Hartl FU, Kuriyan J (1997) Crystal structure of the nucleotide exchange factor GrpE bound to the ATPase domain of the molecular chaperone DnaK. Science 276:431–435

    Article  CAS  PubMed  Google Scholar 

  • Hartl FU (1996) Molecular chaperones in cellular protein folding. Nature 381:571–580

    Article  CAS  PubMed  Google Scholar 

  • Höhfeld J, Jentsch S (1997) GrpE-like regulation of the Hsc70 chaperone by the anti-apoptotic protein BAG-1. EMBO J 16:6209–6216

    Article  PubMed  Google Scholar 

  • James P, Pfund C, Craig EA (1997) Functional specificity among Hsp70 molecular chaperones. Science 275:387–389

    Article  CAS  PubMed  Google Scholar 

  • Joshi B, Biswas S, Sharma YD (1992) Effect of heat-shock on Plasmodium falciparum viability, growth and expression of the heat-shock protein “PFHSP70-1” gene. FEBS Lett 312:91–94

    Article  CAS  PubMed  Google Scholar 

  • Kabani M, McLellan C, Raynes DA, Guerriero V, Brodsky JL (2002) HspBP1, a homologue of the yeast Fes1 and Sls1 proteins, is an Hsc70 nucleotide exchange factor. FEBS Lett 531:339–342

    Article  CAS  PubMed  Google Scholar 

  • Kumar N, Zheng H (1998) Evidence for epitope-specific thymus-independent response against a repeat sequence in a protein antigen. Immunology 94:28–34

    Article  CAS  PubMed  Google Scholar 

  • Kumar N, Koski G, Harada M, Aikawa M, Zheng H (1991) Induction and localization of Plasmodium falciparum stress proteins related to the heat shock protein 70 family. Mol Biochem Parasitol 48:47–58

    Article  CAS  PubMed  Google Scholar 

  • Kumar R, Musiyenko A, Barik S (2003) The heat shock protein 90 of Plasmodium falciparum and antimalarial activity of its inhibitor, geldanamycin. Malar J 2:30

    Article  PubMed  Google Scholar 

  • Lindquist S, Craig EA (1988) The heat-shock proteins. Annu Rev Genet 22:631–677

    Article  CAS  PubMed  Google Scholar 

  • Lopez-Buesa P, Pfund C, Craig EA (1998) The biochemical properties of the ATPase activity of a 70-kDa heat shock protein (hsp70) are governed by the C-terminal domains. Proc Natl Acad Sci USA 95:15253–15258

    Article  CAS  PubMed  Google Scholar 

  • Matambo T, Odununga OO, Boshoff A, Blatch G (2004) Overproduction, purification, and characterization of the Plasmodium falciparum heat shock protein 70. Prot Expr Purif 33:214–222

    Article  CAS  Google Scholar 

  • Mayer MP, Schröder H, Rüdinger S, Paal K, Laufen T, Bukau B (2000) Multistep mechanism of substrate binding determines chaperone activity of Hsp70. Nat Struct Biol 7:586–593

    Article  CAS  PubMed  Google Scholar 

  • McCarty JS, Buchberger A, Reinstein J, Bukau B (1995) The role of ATP in the functional cycle of the DnaK chaperone system. J Mol Biol 249:126–137

    Article  CAS  PubMed  Google Scholar 

  • Mogk A, Bukau B, Lutz R, Schumann W (1999) Construction and analysis of hybrid Escherichia coli-Bacillus subtilis dnaK genes. J Bacteriol 181:1971–1974

    CAS  PubMed  Google Scholar 

  • Morimoto RI, Tissierès A, Georgopoulos C (1994) Progress and perspectives on biology of heat shock proteins and molecular chaperones. In: Morimoto RI, Tissieres A, Georgopoulos C (eds) The Biology of heat shock proteins and molecular chaperones. Cold Spring Habor Laboratory Press, Cold Spring Harbor, NY, pp 1–30

    Google Scholar 

  • Moro F, Fernández V, Muga A (2003) Interdomain interaction through helices A and B of the DnaK peptide binding domain. FEBS Lett 533:119–123

    Article  CAS  PubMed  Google Scholar 

  • Nimura K, Takahashi H, Yoshikawa H (2001) Characterization of the dnaK multigene family in the cyanobacterium Synechococcus sp. strain PCC7942. J Bactriol 183:1320–1328

    Article  CAS  Google Scholar 

  • Paek K-H, Walker GC (1987) Escherichia coli dnaK null mutants are inviable at high temperature. J Bacteriol 169:283–290

    CAS  PubMed  Google Scholar 

  • Ramya TNC, Surolia N, Surolia A (2002) Survival strategies of the malarial parasite Plasmodium falciparum. Current Sci 83:818–825

    CAS  Google Scholar 

  • Sharma YD (1992) Structure and possible function of heat-shock proteins in Plasmodium falciparum. Comp Biochem Physiol B 102:437–444

    Article  CAS  PubMed  Google Scholar 

  • Slepenkov SV, Witt SN (2003) Detection of a concerted conformational change in the ATPase domain of DnaK triggered by peptide binding. FEBS Lett 539:100–104

    Article  CAS  PubMed  Google Scholar 

  • Spence J, Cegielska A, Georgopoulos C (1990) Role of Escherichia coli heat shock proteins DnaK and HtpG (C62.5) in response to nutritional deprivation. J Bacteriol 172:7157–7166

    CAS  PubMed  Google Scholar 

  • Suh WC, Lu CZ, Gross CA (1999) Structural features required for the interaction of the Hsp70 molecular chaperone DnaK with its co-chaperone DnaJ. J Biol Chem 274:30534–30539

    Article  CAS  PubMed  Google Scholar 

  • Suppini J-P, Amor M, Alix J-H, Ladjimi MM (2004) Complementation of an Escherichia coli DnaK defect by Hsc70-DnaK chimeric proteins. J Bacteriol 186:6248–6253

    Article  CAS  PubMed  Google Scholar 

  • Takaya A, Tomoyasu T, Matsui H, Yamamoto T (2004) The DnaK/DnaJ chaperone machinery of Salmonella enterica serovar Typhimurium is essential for invasion of epithelial cells and survival within macrophages, leading to systemic infection. Infect Immun 72:1364–1373

    Article  CAS  PubMed  Google Scholar 

  • Tilly K, McKittrick N, Zylicz M, Georgopoulos C (1983) The DnaK protein modulates the heat-shock response of Escherichia coli. Cell 34:641–646

    Article  CAS  PubMed  Google Scholar 

  • Wang TF, Chang JH, Wang C (1993) Identification of the peptide binding domain of hsc70. 18-kDa fragment located immediately after ATPase domain is sufficient for high-affinity binding. J Biol Chem 268:26049–26051

    CAS  PubMed  Google Scholar 

  • Watanabe J (1997) Cloning and chacterization of heat shock protein DnaJ homologues from Plasmodium falciparum and comparison with ring infected erythrocyte surface antigen. Mol Biochem Parasitol 88:253–258

    Article  CAS  PubMed  Google Scholar 

  • Wu S-J, Wang C (1999) Binding of heptapeptides or unfolded proteins to the chimeric C-terminal domains of 70-kDa heat shock cognate protein. Eur J Biochem 259:449–455

    Article  CAS  PubMed  Google Scholar 

  • Young JC, Agashe VR, Siegers K, Hartl FU (2004) Pathways of chaperone-mediated protein folding in the cytosol. Nat Rev Mol Cell Biol 5:781–791

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was funded by a Wellcome Trust Grant (066705; UK), a National Research Foundation Grant (NRF; Gun No: 2053542, NRF, SA) and a Medical Research Council (MRC) Grant, all awarded to GLB. AS was awarded a NRF MSc. Grant-Holder Bursary and an MSc. Scholarship from the Cannon Collins Educational Trust of Southern Africa. We wish to acknowledge Drs. B Bukau and M Mayer (University of Heidelberg) for providing the E. coli dnaK103, ΔdnaK52 and dnaK756 strains and Dr. W Burkholder (Stanford University) who provided the pQE60 and pBB46 plasmids. This work has been carried out in compliance with the laws governing genetic experimentation in South Africa.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gregory L. Blatch.

Additional information

Communicated by W. Goebel

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shonhai, A., Boshoff, A. & Blatch, G.L. Plasmodium falciparum heat shock protein 70 is able to suppress the thermosensitivity of an Escherichia coli DnaK mutant strain. Mol Genet Genomics 274, 70–78 (2005). https://doi.org/10.1007/s00438-005-1150-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00438-005-1150-9

Keywords

Navigation