Skip to main content
Log in

Analysis of the Plasmodium falciparum proteasome using Blue Native PAGE and label-free quantitative mass spectrometry

  • Invited Review
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

Detailed knowledge of the composition of protein complexes is crucial for the understanding of their structure and function; however, appropriate techniques for compositional analyses of complexes largely rely on elaborate tagging, immunoprecipitation, cross-linking and purification strategies. The proteasome is a prototypical protein complex and therefore an excellent model to assess new methods for protein complex characterisation. Here we evaluated the applicability of Blue Native (BN) PAGE in combination with label-free protein quantification and protein correlation profiling (PCP) for the investigation of proteasome complexes directly from biological samples. Using the purified human 20S proteasome we showed that the approach can accurately detect members of a complex by clustering their gel migration profiles. We applied the approach to address proteasome composition in the schizont stage of the malaria parasite Plasmodium falciparum. The analysis, performed in the background of the whole protein extract, revealed that all subunits comigrated and formed a tight cluster with a single maximum, demonstrating presence of a single form of the 20S proteasome. This study shows that BN PAGE in combination with label-free quantification and PCP is applicable to the analysis of multiprotein complexes directly from complex protein mixtures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

BN PAGE:

Blue native polyacrylamide gel electrophoresis

MS:

Mass spectrometry

PCP:

Protein correlation profiling

PAI:

Protein abundance index

AUC:

Area under the curve

iBAQ:

Intensity-based absolute quantification

References

  • Andersen JS, Wilkinson CJ, Mayor T, Mortensen P, Nigg EA, Mann M (2003) Proteomic characterization of the human centrosome by protein correlation profiling. Nature 426(6966):570–574. doi:10.1038/nature02166

    Article  PubMed  CAS  Google Scholar 

  • Aurrecoechea C, Brestelli J, Brunk BP, Dommer J, Fischer S, Gajria B, Gao X, Gingle A, Grant G, Harb OS, Heiges M, Innamorato F, Iodice J, Kissinger JC, Kraemer E, Li W, Miller JA, Nayak V, Pennington C, Pinney DF, Roos DS, Ross C, Stoeckert CJ Jr., Treatman C, Wang H (2009) Plasmodb: a functional genomic database for malaria parasites. Nucleic Acids Res 37 (Database issue):D539–543. doi:10.1093/nar/gkn814

  • Binh VQ, Luty AJ, Kremsner PG (1997) Differential effects of human serum and cells on the growth of Plasmodium falciparum adapted to serum-free in vitro culture conditions. Am J Trop Med Hyg 57(5):594–600

    PubMed  CAS  Google Scholar 

  • Bochtler M, Ditzel L, Groll M, Hartmann C, Huber R (1999) The proteasome. Annu Rev Biophys Biomol Struct 28:295–317. doi:10.1146/annurev.biophys.28.1.295

    Article  PubMed  CAS  Google Scholar 

  • Borchert N, Dieterich C, Krug K, Schütz W, Jung S, Nordheim A, Sommer RJ, Macek B (2010) Proteogenomics of Pristionchus pacificus reveals distinct proteome structure of nematode models. Genome Res 20(6):837–846. doi:10.1101/gr.103119.109

    Article  PubMed  CAS  Google Scholar 

  • Camacho-Carvajal MM, Wollscheid B, Aebersold R, Steimle V, Schamel WW (2004) Two-dimensional blue native/SDS gel electrophoresis of multi-protein complexes from whole cellular lysates: a proteomics approach. Mol Cell Proteomics 3(2):176–182. doi:10.1074/mcp.T300010-MCP200

    PubMed  CAS  Google Scholar 

  • Cox J, Mann M (2008) Maxquant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat Biotechnol 26(12):1367–1372. doi:10.1038/nbt.1511

    Article  PubMed  CAS  Google Scholar 

  • Cox J, Matic I, Hilger M, Nagaraj N, Selbach M, Olsen JV, Mann M (2009) A practical guide to the maxquant computational platform for SILAC-based quantitative proteomics. Nat Protoc 4(5):698–705. doi:10.1038/nprot.2009.36

    Article  PubMed  CAS  Google Scholar 

  • Elias JE, Gygi SP (2007) Target‐decoy search strategy for increased confidence in large-scale protein identifications by mass spectrometry. Nat Methods 4(3):207–214.doi:10.1038/nmeth1019

    Article  PubMed  CAS  Google Scholar 

  • Eubel H, Jänsch L, Braun HP (2003) New insights into the respiratory chain of plant mitochondria. Supercomplexes and a unique composition of complex ii. Plant Physiol 133(1):274–286

    Article  PubMed  CAS  Google Scholar 

  • Fandino AS, Rais I, Vollmer M, Elgass H, Schägger H, Karas M (2005) LC-nanospray-MS/MS analysis of hydrophobic proteins from membrane protein complexes isolated by blue-native electrophoresis. J Mass Spectrom 40(9):1223–1231. doi:10.1002/jms.903

    Article  PubMed  CAS  Google Scholar 

  • Foster LJ, de Hoog CL, Zhang Y, Xie X, Mootha VK, Mann M (2006) A mammalian organelle map by protein correlation profiling. Cell 125(1):187–199. doi:10.1016/j.cell.2006.03.022

    Article  PubMed  CAS  Google Scholar 

  • Fry M, Beesley JE (1991) Mitochondria of mammalian Plasmodium spp. Parasitology 102(Pt 1):17–26

    Article  PubMed  Google Scholar 

  • Gardner MJ, Hall N, Fung E, White O, Berriman M, Hyman RW, Carlton JM, Pain A, Nelson KE, Bowman S, Paulsen IT, James K, Eisen JA, Rutherford K, Salzberg SL, Craig A, Kyes S, Chan MS, Nene V, Shallom SJ, Suh B, Peterson J, Angiuoli S, Pertea M, Allen J, Selengut J, Haft D, Mather MW, Vaidya AB, Martin DM, Fairlamb AH, Fraunholz MJ, Roos DS, Ralph SA, McFadden GI, Cummings LM, Subramanian GM, Mungall C, Venter JC, Carucci DJ, Hoffman SL, Newbold C, Davis RW, Fraser CM, Barrell B (2002) Genome sequence of the human malaria parasite Plasmodium falciparum. Nature 419(6906):498–511. doi:10.1038/nature01097

    Article  PubMed  CAS  Google Scholar 

  • Gavin AC, Bosche M, Krause R, Grandi P, Marzioch M, Bauer A, Schultz J, Rick JM, Michon AM, Cruciat CM, Remor M, Hofert C, Schelder M, Brajenovic M, Ruffner H, Merino A, Klein K, Hudak M, Dickson D, Rudi T, Gnau V, Bauch A, Bastuck S, Huhse B, Leutwein C, Heurtier MA, Copley RR, Edelmann A, Querfurth E, Rybin V, Drewes G, Raida M, Bouwmeester T, Bork P, Seraphin B, Kuster B, Neubauer G, Superti-Furga G (2002) Functional organization of the yeast proteome by systematic analysis of protein complexes. Nature 415(6868):141–147. doi:10.1038/415141a

    Article  PubMed  CAS  Google Scholar 

  • Gille C, Goede A, Schloetelburg C, Preissner R, Kloetzel PM, Gobel UB, Frommel C (2003) A comprehensive view on proteasomal sequences: Implications for the evolution of the proteasome. J Mol Biol 326 (5):1437–1448. pii:S0022283602014705

    Google Scholar 

  • Gingras AC, Gstaiger M, Raught B, Aebersold R (2007) Analysis of protein complexes using mass spectrometry. Nat Rev Mol Cell Biol 8(8):645–654. doi:10.1038/nrm2208

    Article  PubMed  CAS  Google Scholar 

  • Glickman MH, Ciechanover A (2002) The ubiquitin-proteasome proteolytic pathway: destruction for the sake of construction. Physiol Rev 82(2):373–428. doi:10.1152/physrev.00027.2001

    PubMed  CAS  Google Scholar 

  • Groll M, Ditzel L, Lowe J, Stock D, Bochtler M, Bartunik HD, Huber R (1997) Structure of 20S proteasome from yeast at 2.4 A resolution. Nature 386(6624):463–471. doi:10.1038/386463a0

    Article  PubMed  CAS  Google Scholar 

  • Hershko A, Ciechanover A (1992) The ubiquitin system for protein degradation. Annu Rev Biochem 61:761–807. doi:10.1146/annurev.bi.61.070192.003553

    Article  PubMed  CAS  Google Scholar 

  • Ho Y, Gruhler A, Heilbut A, Bader GD, Moore L, Adams SL, Millar A, Taylor P, Bennett K, Boutilier K, Yang L, Wolting C, Donaldson I, Schandorff S, Shewnarane J, Vo M, Taggart J, Goudreault M, Muskat B, Alfarano C, Dewar D, Lin Z, Michalickova K, Willems AR, Sassi H, Nielsen PA, Rasmussen KJ, Andersen JR, Johansen LE, Hansen LH, Jespersen H, Podtelejnikov A, Nielsen E, Crawford J, Poulsen V, Sorensen BD, Matthiesen J, Hendrickson RC, Gleeson F, Pawson T, Moran MF, Durocher D, Mann M, Hogue CW, Figeys D, Tyers M (2002) Systematic identification of protein complexes in Saccharomyces cerevisiae by mass spectrometry. Nature 415(6868):180–183. doi:10.1038/415180a

    Article  PubMed  CAS  Google Scholar 

  • Hochuli E, Bannwarth W, Dobeli H, Gentz R, Stuber D (1988) Genetic approach to facilitate purification of recombinant proteins with a novel metal chelate adsorbent. Nat Biotech 6(11):1321–1325

    Article  CAS  Google Scholar 

  • Kreidenweiss A, Kremsner PG, Mordmüller B (2008) Comprehensive study of proteasome inhibitors against Plasmodium falciparum laboratory strains and field isolates from gabon. Malar J 7:187. doi:10.1186/1475-2875-7-187

    Article  PubMed  Google Scholar 

  • Leitner A, Walzthoeni T, Kahraman A, Herzog F, Rinner O, Beck M, Aebersold R (2010) Probing native protein structures by chemical cross-linking, mass spectrometry, and bioinformatics. Mol Cell Proteomics 9(8):1634–1649. doi:10.1074/mcp.R000001-MCP201

    Article  PubMed  CAS  Google Scholar 

  • Luber CA, Cox J, Lauterbach H, Fancke B, Selbach M, Tschopp J, Akira S, Wiegand M, Hochrein H, O’Keeffe M, Mann M (2010) Quantitative proteomics reveals subset-specific viral recognition in dendritic cells. Immunity 32(2):279–289. doi:10.1016/j.immuni.2010.01.013

    Article  PubMed  CAS  Google Scholar 

  • Maiolica A, Cittaro D, Borsotti D, Sennels L, Ciferri C, Tarricone C, Musacchio A, Rappsilber J (2007) Structural analysis of multiprotein complexes by cross-linking, mass spectrometry, and database searching. Mol Cell Proteomics 6(12):2200–2211. doi:10.1074/mcp.M700274-MCP200

    Article  PubMed  CAS  Google Scholar 

  • Monti S, Tamayo P, Mesirov J, Golub T (2003) Consensus clustering: a resampling-based method for class discovery and visualization of gene expression microarray data. Mach Learn 52(1–2):91–118

    Article  Google Scholar 

  • Mordmüller B, Kremsner PG (2006) Malarial parasites versus antimalarials: never-ending rumble in the jungle. Curr Mol Med 6(2):247–251

    Article  PubMed  Google Scholar 

  • Mordmüller B, Fendel R, Kreidenweiss A, Gille C, Hurwitz R, Metzger WG, Kun JF, Lamkemeyer T, Nordheim A, Kremsner PG (2006) Plasmodia express two threonine-peptidase complexes during asexual development. Mol Biochem Parasitol 148(1):79–85. doi:10.1016/j.molbiopara.2006.03.001

    Article  PubMed  Google Scholar 

  • Olsen JV, de Godoy LM, Li G, Macek B, Mortensen P, Pesch R, Makarov A, Lange O, Horning S, Mann M (2005) Parts per million mass accuracy on an orbitrap mass spectrometer via lock mass injection into a c-trap. Mol Cell Proteomics 4(12):2010–2021. doi:10.1074/mcp.T500030-MCP200

    Article  PubMed  CAS  Google Scholar 

  • Perkins DN, Pappin DJ, Creasy DM, Cottrell JS (1999) Probability-based protein identification by searching sequence databases using mass spectrometry data. Electrophoresis 20(18):3551–3567. doi:10.1002/(SICI)1522-2683(19991201)20:18<3551:AID-ELPS3551>3.0.CO;2-2

    Article  PubMed  CAS  Google Scholar 

  • Petrotchenko EV, Borchers CH (2010) Crosslinking combined with mass spectrometry for structural proteomics. Mass Spectrom Rev 29(6):862–876. doi:10.1002/mas.20293

    Article  PubMed  CAS  Google Scholar 

  • R Development Core Team (2011) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  • Rappsilber J, Ryder U, Lamond AI, Mann M (2002) Large-scale proteomic analysis of the human spliceosome. Genome Res 12(8):1231–1245. doi:10.1101/gr.473902

    Article  PubMed  CAS  Google Scholar 

  • Rappsilber J, Mann M, Ishihama Y (2007) Protocol for micro-purification, enrichment, pre-fractionation and storage of peptides for proteomics using stagetips. Nat Protoc 2(8):1896–1906. doi:10.1038/nprot.2007.261

    Article  PubMed  CAS  Google Scholar 

  • Sanders PR, Cantin GT, Greenbaum DC, Gilson PR, Nebl T, Moritz RL, Yates JR 3rd, Hodder AN, Crabb BS (2007) Identification of protein complexes in detergent-resistant membranes of Plasmodium falciparum Schizonts. Mol Biochem Parasitol 154(2):148–157. doi:10.1016/j.molbiopara.2007.04.013

    Article  PubMed  CAS  Google Scholar 

  • Schägger H, von Jagow G (1991) Blue native electrophoresis for isolation of membrane protein complexes in enzymatically active form. Anal Biochem 199(2):223–231

    Article  PubMed  Google Scholar 

  • Schwanhäusser B, Busse D, Li N, Dittmar G, Schuchhardt J, Wolf J, Chen W, Selbach M (2011) Global quantification of mammalian gene expression control. Nature 473(7347):337–342. doi:10.1038/nature10098

    Article  PubMed  Google Scholar 

  • Tschan S, Mordmüller B, Kun JF (2011) Threonine peptidases as drug targets against malaria. Expert Opin Ther Targets. doi:10.1517/14728222.2011.555399

    PubMed  Google Scholar 

  • Wessels HJ, Vogel RO, van den Heuvel L, Smeitink JA, Rodenburg RJ, Nijtmans LG, Farhoud MH (2009) LC-MS/MS as an alternative for SDS-PAGE in blue native analysis of protein complexes. Proteomics 9(17):4221–4228. doi:10.1002/pmic.200900157

    Article  PubMed  CAS  Google Scholar 

  • Wittig I, Schägger H (2008) Features and applications of blue-native and clear-native electrophoresis. Proteomics 8(19):3974–3990. doi:10.1002/pmic.200800017

    Article  PubMed  CAS  Google Scholar 

  • Wittig I, Braun HP, Schägger H (2006) Blue native page. Nat Protoc 1(1):418–428. doi:10.1038/nprot.2006.62

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to thank Dr. Tobias Lamkemeyer and Dr. Rolf Fendel for helpful discussions in the initial stages of the project. This study was supported by the Landesstiftung BW (Juniorprofessoren-Programm), DFG and PRIME-XS (to Boris Macek).

Conflict of interest

The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Boris Macek.

Electronic supplementary material

Below is the link to the electronic supplementary material.

726_2012_1296_MOESM1_ESM.pdf

Online Resource 1 The intensity profiles of the human proteasomal subunits. For the purified 20S proteasome a raw intensities and b adjusted intensities resulted in different profiles. For the 20S proteasome plus five spiked proteins the c raw intensities and d adjusted intensities resulted in profiles that are more similar. The profiles showed that normalisation worked better in a sample with higher complexity (PDF 534 kb)

726_2012_1296_MOESM2_ESM.xls

Online Resource 2 Overview of the identified protein groups in the experiments. The excel file summarises all identified protein groups of the two experiments with human 20S proteasome and the three experiments using the plasmodial proteasome (XLS 1561 kb)

726_2012_1296_MOESM3_ESM.xls

Online Resource 3 Overview of the identified proteins in the analysed slices of the BN gel. The excel file summarises the identification of the proteins according to the analysed BN gel slice. The number of identified peptides per protein and the corresponding intensity values are also included. Thereby, the number of identified peptides per proteins and slice represents redundant peptides (XLS 633 kb)

726_2012_1296_MOESM4_ESM.pdf

Online resource 4 Comparison of the adjusted intensity profiles of the plasmodial 20S proteasome and the contaminating human proteasome in the parasite lysate. In the plasmodial lysate, 13 subunits of the human proteasome were identified with a lower intensity (about 2 orders of magnitude) as the plasmodial ones. Their intensity profiles showed maxima in the same slices as the plasmodial profiles indicating a comigration of the two proteasomal complexes (PDF 251 kb)

726_2012_1296_MOESM5_ESM.pdf

Online Resource 5 Clustering of the adjusted intensities of all 314 quantified P. falciparum proteins in the experiment 2. All 14 proteasomal subunits are contained in cluster 5. The maximum cluster consensus value which represents the robustness of the cluster, was assigned to the same cluster (PDF 267 kb)

726_2012_1296_MOESM6_ESM.xls

Online Resource 6 Overview of the proteins quantified in the experiment 2 and used for the clustering analysis. The proteins in the excel file were classified after their membership to one of the six clusters (XLS 247 kb)

726_2012_1296_MOESM7_ESM.pdf

Online Resource 7 Three additional plasmodial protein complexes were detected in the dataset. The intensity profiles of these complexes showed a good correlation. a shows two members of the low molecular weight rhoptry (RAP) complex, ‘rhoptry-associated protein 1, RAP1′ (PlasmoDB gene ID PF14_0102) and ‘rhoptry-associated protein 2, RAP2′ (PFE0080c), b represents the high molecular weight rhoptry (RhopH) complex with the members ‘Cytoadherence linked asexual protein, 3.2′ (PFC0120w), ‘RhopH3′ (PFI0265c) and ‘High molecular weight rhoptry protein-2′ (PFI1445w) and (c) shows the mitochondrial signal peptide processing complex with the members ‘mitochondrial processing peptidase alpha subunit, putative’ (PFE1155c) and ‘organelle processing peptidase, putative’ (PFI1625c) (PDF 383 kb)

726_2012_1296_MOESM8_ESM.pdf

Online Resource 8 The intensities of the ten quantified subunits of the regulatory particle resulted in different profiles. Most of the profiles had more than one maximum, except (f), and the maxima were located in different slices. Some maxima are located in slice 4, slice 7/8 and/or slice 11/12, like (a), (c) and (h), suggesting that the antibody cross-reactivity is likely related to the regulatory particles. There was no correlation between these proteins visible at all (PDF 480 kb)

726_2012_1296_MOESM9_ESM.pdf

Online Resource 9 Three different label-free quantification methods were used to test the determination of stoichiometry of the plasmodial 20S proteasome. PAI, AUC and two versions of the iBAQ label-free quantification method were applied to Exp. 2 of the analysis of the P. falciparum proteasome to estimate the protein abundance of the subunits. The standard deviation is given in brakes in the legen (PDF 420 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sessler, N., Krug, K., Nordheim, A. et al. Analysis of the Plasmodium falciparum proteasome using Blue Native PAGE and label-free quantitative mass spectrometry. Amino Acids 43, 1119–1129 (2012). https://doi.org/10.1007/s00726-012-1296-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-012-1296-9

Keywords

Navigation