Skip to main content

Survival Strategies of Halophilic Oligotrophic and Desiccation Resistant Prokaryotes

  • Chapter
  • First Online:
Polyextremophiles

Part of the book series: Cellular Origin, Life in Extreme Habitats and Astrobiology ((COLE,volume 27))

Abstract

Viable halophilic and halotolerant Archaea and Bacteria have been found in ancient salt deposits around the world. The first cultivations of halophilic microorganisms from Permian salt sediments (about 250 million years old) were reported in the 1960s (Reiser and Tasch, 1960; Dombrowski, 1963) and met with considerable skepticism. Some 30 years later, detailed taxonomic descriptions of halophilic Bacteria and Archaea (haloarchaea) obtained from ancient evaporites began to be published (Norton et al., 1993; Denner et al., 1994; Stan-Lotter et al., 2002; Mormile et al., 2003; Gruber et al., 2004; Vreeland et al., 2007). Sequences of small ribosomal RNA (16S rRNA) genes and other molecules allowed more meaningful comparisons of isolates with known strains than was possible before. In many cases, no exact matches of sequences from subsurface isolates with those of known strains from surface waters were found (McGenity et al., 2000). This does not necessarily mean that they do not exist in surface environments, merely that they have not been isolated yet from there. In one other case, three strains of Halococcus salifodinae with identical 16S rRNA sequences were found in three geographically separated subsurface regions, all of Permo-Triassic age: strain BIp from Permian Zechstein rock salt, mined at Bad Ischl, Austria; strain Br3 from solution-mined Triassic Northwich halite; and strain BG2/2 from a core of Permian Zechstein salt, Berchtesgaden, Germany (Stan-Lotter et al., 1999; McGenity et al., 2000). A detailed characterization of the three independently isolated halococci revealed that they were very similar and should be considered as strains of the same species (Stan-Lotter et al., 1999). During the Permian period, the large hypersaline Zechstein Sea covered an area of about 250,000 km2 over much of northern Europe. This sea would have provided a connection between the areas from which the three strains of Hcc. salifodinae were isolated (Stan-Lotter et al., 1999; McGenity et al., 2000; Radax et al., 2001). It is conceivable that Hcc. salifodinae was present in the Zechstein Sea and became trapped in the evaporating salts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adamski JC, Roberts JA, Goldstein RH (2006) Entrapment of bacteria in fluid inclusions in laboratory-grown halite. Astrobiology 6:552–562

    Article  PubMed  CAS  Google Scholar 

  • Alpert P (2005) The limits and frontiers of desiccation-tolerant life. Integr Comp Biol 45:685–695

    Article  PubMed  Google Scholar 

  • Angert ER (2005) Alternatives to binary fission in bacteria. Nat Rev Microbiol 3:214–224

    Article  PubMed  CAS  Google Scholar 

  • Barber DJ (1981) Matrix phyllosilicates and associated minerals in C2M carbonaceous chondrites. Geochim Cosmochim Acta 45:945–970

    Article  CAS  Google Scholar 

  • Billi D (2012) Anhydrobiotic rock-inhabiting cyanobacteria: potential for astrobiology and biotechnology. In: Stan-Lotter H, Fendrihan S (eds) Adaption of microbial life to environmental extremes. Novel research results and application. Springer, Wien, pp 119–132

    Chapter  Google Scholar 

  • Billi D, Potts M (2002) Life and death of dried prokaryotes. Res Microbiol 153:7–12

    Article  PubMed  CAS  Google Scholar 

  • Bolhuis H (2005) Walsby’s square archaeon; it’s hip to be square but even more hip to be culturable. In: Gunde-Cimerman N, Oren A, PlemenitaÅ¡ A (eds) Adaptation to life at high salt concentrations in archaea, bacteria, and eukarya. Springer, Dordrecht, pp 187–199

    Google Scholar 

  • Bolhuis H, Palm P, Wende A, Falb M, Rampp M, Rodriguez-Valera F, Pfeiffer F, Oesterhelt D (2006) The genome of the square archaeon Haloquadratum walsbyi: life at the limits of water activity. BMC Genomics 7:169

    Article  PubMed  Google Scholar 

  • Breuert S, Allers T, Spohn G, Soppa J (2006) Regulated polyploidy in halophilic archaea. PLoS One 1(1):e92

    Article  PubMed  Google Scholar 

  • Capes MD, DasSarma P, DasSarma S (2012) The core and unique proteins of haloarchaea. BMC Genomics 13:39

    Article  PubMed  CAS  Google Scholar 

  • Cline SW, Doolittle WF (1992) Transformation of members of the genus Haloarcula with shuttle vectors based on Halobacterium halobium and Haloferax volcanii plasmid replicons. J Bacteriol 174:1076–1080

    PubMed  CAS  Google Scholar 

  • Daly MJ, Gaidamakova EK, Matrosova VY, Vasilenko A, Zhai M, Leapman RD, Lai B, Ravel B, Li S-MW, Kemner KM, Fredrickson JK (2007) Protein oxidation implicated as the primary determinant of bacterial radioresistance. PLoS Biol 5:0769–0779

    Article  CAS  Google Scholar 

  • de Goffau MC, Maarten J, van Dijl JM, Harmsen HJM (2011) Microbial growth on the edge of desiccation. Environ Microbiol 13:2328–2335

    Article  PubMed  Google Scholar 

  • Denner EBM, McGenity TJ, Busse H-J, Wanner G, Grant WD, Stan-Lotter H (1994) Halococcus salifodinae sp.nov., an archaeal isolate from an Austrian salt mine. Int J Syst Bacteriol 44:774–780

    Article  Google Scholar 

  • Denner EBM, Vybiral D, Fischer UR, Velimirov B, Busse H-J (2002) Vibrio calviensis sp. nov., a halophilic, facultatively oligotrophic 0.2 μm-filterable marine bacterium. Int J Syst Evol Microbiol 52:549–553

    Article  PubMed  CAS  Google Scholar 

  • Dombrowski H (1963) Bacteria from Paleozoic salt deposits. Ann NY Acad Sci 108:453–460

    Article  PubMed  CAS  Google Scholar 

  • Dyall-Smith ML, Pfeiffer F, Klee K, Palm P, Gross K, Schuster SC, Rampp M, Oesterhelt D (2011) Haloquadratum walsbyi: limited diversity in a global pond. PLoS One 6:e20968

    Article  PubMed  CAS  Google Scholar 

  • Egli T (2010) How to live at very low substrate concentration. Water Res 44:4826–4837

    Article  PubMed  CAS  Google Scholar 

  • Fendrihan S, Stan-Lotter H (2004) Survival of halobacteria in fluid inclusions as a model of possible biotic survival in martian halite. In: Teodorescu HN, Griebel HS (eds) Mars and planetary science and technology. Performantica Press, Iasi, pp 9–18

    Google Scholar 

  • Fendrihan S, Legat A, Gruber C, Pfaffenhuemer M, Weidler G, Gerbl F, Stan-Lotter H (2006) Extremely halophilic archaea and the issue of long term microbial survival. Rev Environ Sci Biotechnol 5:1569–1605

    Article  Google Scholar 

  • Fendrihan S, Dornmayr-Pfaffenhuemer M, Gerbl FW, Holzinger A, Grösbacher M, Briza P, Erler A, Gruber C, Plätzer K, Stan-Lotter H (2012) Spherical particles of halophilic archaea correlate with exposure to low water activity – implications for microbial survival in fluid inclusions of ancient halite. Geobiology 10:424–433

    Article  PubMed  CAS  Google Scholar 

  • Fish SA, Shepherd TJ, McGenity TJ, Grant WD (2002) Recovery of 16S ribosomal RNA gene fragments from ancient halite. Nature 417:432–436

    Article  PubMed  CAS  Google Scholar 

  • Fredrickson JK, Li SM, Gaidamakova EK, Matrosova VY, Zhai M, Sulloway HM, Scholten JC, Brown MG, Balkwill DL, Daly MJ (2008) Protein oxidation: key to bacterial desiccation resistance? ISME J 2:393–403

    Article  PubMed  CAS  Google Scholar 

  • Galinski EA (1995) Osmoadaptation in bacteria. Adv Microb Physiol 37:273–328

    Article  CAS  Google Scholar 

  • Garcia AH (2011) Anhydrobiosis in bacteria: from physiology to applications. J Biosci 36:939–950

    Article  PubMed  CAS  Google Scholar 

  • Gorbushina AA (2007) Life on the rocks. Environ Microbiol 9:1613–1631

    Article  PubMed  CAS  Google Scholar 

  • Gramain A, Chong Díaz GC, Demergasso C, Lowenstein TK, McGenity TJ (2011) Archaeal diversity along a subterranean salt core from the Salar Grande (Chile). Environ Microbiol 13:2105–2121

    Article  PubMed  Google Scholar 

  • Grant WD (2004) Life at low water activity. Philos Trans R Soc Lond B 359:1249–1267

    Article  CAS  Google Scholar 

  • Grant WD, Gemmell RT, McGenity TJ (1998) Halobacteria: the evidence for longevity. Extremophiles 2:279–287

    Article  PubMed  CAS  Google Scholar 

  • Gruber C, Legat A, Pfaffenhuemer M, Radax C, Weidler G, Busse H-J, Stan-Lotter H (2004) Halobacterium noricense sp. nov., an archaeal isolate from a bore core of an alpine Permo-Triassic salt deposit, classification of Halobacterium sp. NRC-1 as a strain of Halobacterium salinarum and emended description of Halobacterium salinarum. Extremophiles 8:431–439

    Article  PubMed  CAS  Google Scholar 

  • Kell DB, Young M (2000) Bacterial dormancy and culturability: the role of autocrine growth factors. Curr Opin Microbiol 3:238–243

    Article  PubMed  CAS  Google Scholar 

  • Kjelleberg S, Humphrey BB, Marshall KC (1983) Initial phases of starvation and activity of bacteria at surfaces. Appl Environ Microbiol 46:978–984

    PubMed  CAS  Google Scholar 

  • Kottemann M, Kish A, Iloanusi C, Bjork S, DiRuggiero J (2005) Physiological responses of the halophilic archaeon Halobacterium sp. strain NRC-1 to desiccation and gamma irradiation. Extremophiles 9:219–227

    Article  PubMed  CAS  Google Scholar 

  • Leprince O, Buitink J (2010) Desiccation tolerance: from genomics to the field. Plant Sci 179:55564

    Article  Google Scholar 

  • McGenity TJ, Gemmell RT, Grant WD, Stan-Lotter H (2000) Origins of halophilic micro-organisms in ancient salt deposits (MiniReview). Environ Microbiol 2:243–250

    Article  PubMed  CAS  Google Scholar 

  • McKay DS, Gibson EK, Thomas-Keptra KL, Vali H, Romanek CS, Clemett SJ, Chillier XDF, Maechling CR, Zare RN (1996) Search for past life on Mars: possible relic biogenic activity in Martian meteorite ALH84001. Science 273:924–926

    Article  PubMed  CAS  Google Scholar 

  • Morita RY (1982) Starvation-survival of heterotrophs in the marine environment. Adv Microbiol Ecol 6:171–198

    Article  Google Scholar 

  • Mormile MR, Biesen MA, Gutierrez MC, Ventosa A, Pavlovich JB, Onstott TC, Fredrickson JK (2003) Isolation of Halobacterium salinarum retrieved directly from halite brine inclusions. Environ Microbiol 5:1094–1102

    Article  PubMed  Google Scholar 

  • Norton CF, Grant WD (1988) Survival of halobacteria within fluid inclusions in salt crystals. J Gen Microbiol 134:1365–1373

    Google Scholar 

  • Norton CF, McGenity TJ, Grant WD (1993) Archaeal halophiles (halobacteria) from two British salt mines. J Gen Microbiol 139:1077–1081

    Article  CAS  Google Scholar 

  • Nyström T (2004) Stationary-phase physiology. Annu Rev Microbiol 58:161–181

    Article  PubMed  Google Scholar 

  • Oliver JD, Stringer WF (1984) Lipid composition of a psychrophilic marine Vibrio sp. during starvation-induced morphogenesis. Appl Environ Microbiol 47:461–466

    PubMed  CAS  Google Scholar 

  • Onyenwoke RU, Brill JA, Farahi K, Wiegel J (2004) Sporulation genes in members of the low G+C Gram-type-positive phylogenetic branch (Firmicutes). Arch Microbiol 182:182–192

    Article  PubMed  CAS  Google Scholar 

  • Ophir T, Gutnick DL (1994) A role for exopolysaccharides in the protection of microorganisms from desiccation. Appl Environ Microbiol 60:740–745

    PubMed  CAS  Google Scholar 

  • Oren A (2002) Halophilic microorganisms and their environments. Kluwer Academic, Dordrecht

    Book  Google Scholar 

  • Parkes K, Walsby AE (1981) Ultrastructure of a gas-vacuolate square bacterium. J Gen Microbiol 126:503–506

    Google Scholar 

  • Postberg F, Kempf S, Schmidt J, Brilliantov N, Beinsen A, Abel B, Buck U, Srama R (2009) Sodium salts in E-ring ice grains from an ocean below the surface of Enceladus. Nature 459:1098–1101

    Article  PubMed  CAS  Google Scholar 

  • Potts M, Slaughter SM, Hunneke F-U, Garst JF, Helm RF (2005) Desiccation tolerance of prokaryotes: application of principles to human cells. Integr Comp Biol 45:800–809

    Article  PubMed  CAS  Google Scholar 

  • Radax C, Gruber C, Stan-Lotter H (2001) Novel haloarchaeal 16S rRNA gene sequences from Alpine Permo-Triassic rock salt. Extremophiles 5:221–228

    Article  PubMed  CAS  Google Scholar 

  • Reiser R, Tasch P (1960) Investigation of the viability of osmophile bacteria of great geological age. Trans Kans Acad Sci 63:31–34

    Article  PubMed  CAS  Google Scholar 

  • Rodriguez-Porrata B, Carmona-Gutierrez D, Reisenbichler A, Bauer M, Lopez G, Escoté X, Mas A, Madeo F, Cordero-Otero R (2012) Sip18 hydrophilin prevents yeast cell death during desiccation stress. J Appl Microbiol 112:512–525

    Article  PubMed  CAS  Google Scholar 

  • Roedder E (1984) The fluids in salt. Am Miner 69:413–439

    CAS  Google Scholar 

  • Rutz BA, Kieft TL (2004) Phylogenetic characterization of dwarf archaea and bacteria from a semi-arid soil. Soil Biol Biochem 36:825–833

    Article  CAS  Google Scholar 

  • Sakamoto T, Yoshida T, Arima H, Hatanaka Y, Takani Y, Yoshiyuki T (2009) Accumulation of trehalose in response to desiccation and salt stress in the terrestrial cyanobacterium Nostoc commune. Phycol Res 57:66–73

    Article  CAS  Google Scholar 

  • Sára M, Sleytr UB (2000) S-layer proteins. J Bacteriol 182:859–868

    Article  PubMed  Google Scholar 

  • Schubert BA, Lowenstein TK, Timofeeff MN (2009) Microscopic identification of prokaryotes in modern and ancient halite, Saline Valley and Death Valley, California. Astrobiology 9:467–482

    Article  PubMed  CAS  Google Scholar 

  • Schubert BA, Lowenstein TK, Timofeeff MN, Parker MA (2010) Halophilic archaea cultured from ancient halite, Death Valley, California. Environ Microbiol 12:44–454

    Article  Google Scholar 

  • Setlow P, Kornberg A (1970) Biochemical studies of bacterial sporulation and germination. XXII. Energy metabolism in early stages of germination of Bacillus megaterium spores. J Biol Chem 245:3637–3644

    PubMed  CAS  Google Scholar 

  • Squyres S, Knoll AH (2005) Sedimentary rocks at Meridiani Planum: origin, diagenesis, and implications for life on Mars. Earth Planet Sci Lett 240:1–10

    Article  CAS  Google Scholar 

  • Stan-Lotter H, McGenity TJ, Legat A, Denner EBM, Glaser K, Stetter KO, Wanner G (1999) Very similar strains of Halococcus salifodinae are found in geographically separated Permo-Triassic salt deposits. Microbiology 145:3565–3574

    PubMed  CAS  Google Scholar 

  • Stan-Lotter H, Pfaffenhuemer M, Legat A, Busse H-J, Radax C, Gruber C (2002) Halococcus dombrowskii sp. nov., an archaeal isolate from a Permo-Triassic alpine salt deposit. Int J Syst Evol Microbiol 52:1807–1814

    Article  PubMed  CAS  Google Scholar 

  • Steindler L, Schwalbach MS, Smith DP, Chan F, Giovannoni SJ (2011) Energy starved Candidatus Pelagibacter ubique substitutes light-mediated ATP production for endogenous carbon respiration. PLoS One 6(5):e19725

    Article  PubMed  CAS  Google Scholar 

  • Stollenwerk M, Fallgren C, Lundberg F, Tegenfeldt JO, Montelius L, Ljungh A (1998) Quantitation of bacterial adhesion to polymer surfaces by bioluminescence. Zentralbl Bakteriol 287:7–18

    Article  PubMed  CAS  Google Scholar 

  • Treiman AH, Gleason JD, Bogard DD (2000) The SNC meteorites are from Mars. Planet Space Sci 48:1213–1230

    Article  CAS  Google Scholar 

  • Vreeland RH, Jones J, Monson A, Rosenzweig WD, Lowenstein TK, Timofeeff M, Satterfield C, Cho BC, Park JS, Wallace A, Grant WD (2007) Isolation of live cretaceous (121–112 million years old) halophilic archaea from primary salt crystals. Geomicrobiol J 24:275–282

    Article  CAS  Google Scholar 

  • Webb KM, DiRuggiero J (2013) Radiation resistance in extremophiles: fending off multiple attacks. In: Seckbach J, Oren A, Stan-Lotter H (eds) Polyextremophiles – organisms living under multiple stress. Springer, Dordrecht, 27:249–267

    Google Scholar 

  • Yang W, Spencer RJ, Krouse HR, Lowenstein TK, Casas E (1995) Stable isotopes of lake and fluid inclusion brines, Dabusun Lake, Qaidam Basin, western China: hydrology and paleoclimatology in arid environments. Palaeogeogr Palaeoclimatol Palaeoecol 117:279–290

    Article  Google Scholar 

  • Zolensky ME, Bodnar RJ, Gibson EK, Nyquist LE, Reese Y, Shih CY, Wiesman H (1999) Asteroidal water within fluid inclusion-bearing halite in an H5 chondrite, Monahans (1998). Science 285:1377–1379

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Austrian Science Fund (FWF), projects P16260-B07 and P18256-B06. We thank Claudia Gruber and Anita Holzinger, both from the University of Salzburg, for expert technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Helga Stan-Lotter .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Stan-Lotter, H., Fendrihan, S. (2013). Survival Strategies of Halophilic Oligotrophic and Desiccation Resistant Prokaryotes. In: Seckbach, J., Oren, A., Stan-Lotter, H. (eds) Polyextremophiles. Cellular Origin, Life in Extreme Habitats and Astrobiology, vol 27. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6488-0_9

Download citation

Publish with us

Policies and ethics