Skip to main content

Advertisement

Log in

Sporulation genes in members of the low G+C Gram-type-positive phylogenetic branch (Firmicutes)

  • Original Paper
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

Endospore formation is a specific property found within bacteria belonging to the Gram-type-positive low G+C mol% branch (Firmicutes) of a phylogenetic tree based on 16S rRNA genes. Within the Gram-type-positive bacteria, endospore-formers and species without observed spore formation are widely intermingled. In the present study, a previously reported experimental method (PCR and Southern hybridization assays) and analysis of genome sequences from 52 bacteria and archaea representing sporulating, non-spore-forming, and asporogenic species were used to distinguish non-spore-forming (void of the majority of sporulation-specific genes) from asporogenic (contain the majority of sporulation-specific genes) bacteria. Several sporulating species lacked sequences similar to those of Bacillus subtilis sporulation genes. For some of the genes thought to be sporulation specific, sequences with weak similarity were identified in non-spore-forming bacteria outside of the Gram-type-positive phylogenetic branch and in archaea, rendering these genes unsuitable for the intended classification into sporulating, asporogenic, and non-spore-forming species. The obtained results raise questions regarding the evolution of sporulation among the Firmicutes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Angert ER, Brooks AE, Pace NR (1996) Phylogenetic analysis of Metabacterium polyspora: clues to the evolutionary origin of daughter cell production in Epulopiscium species, the largest bacteria. J Bacteriol 178:1451–1456

    CAS  PubMed  Google Scholar 

  • Ash C, Farrow JAE, Wallbanks S, Collins MD (1991) Phylogenetic heterogeneity of the genus Bacillus revealed by comparative analysis of small subunit RNA sequences. Lett Appl Microbiol 13:202–206

    CAS  Google Scholar 

  • Bentley SD, Chater KF, Cerdeno-Tarraga AM, Challis GL, Thomson NR, James KD, Harris DE, Quail MA, Kieser H, Harper D, Bateman A, Brown S, Chandra G, Chen CW, Collins M, Cronin A, Fraser A, Goble A, Hidalgo J, Hornsby T, Howarth S, Huang CH, Kieser T, Larke L, Murphy L, Oliver K, O’Neil S, Rabbinowitsch E, Rajandream MA, Rutherford K, Rutter S, Seeger K, Saunders D, Sharp S, Squares R, Squares S, Taylor K, Warren T, Wietzorrek A, Woodward J, Barrell BG, Parkhill J, Hopwood DA (2002) Complete genome sequence of the model actinomycete Streptomyces coelicolor A3(2). Nature 417:141–147

    Article  PubMed  Google Scholar 

  • Brill JA, Wiegel J (1997) Differentiation between sporeforming and asporogenic bacteria using a PCR and Southern hybridization based method. J Microbiol Methods 31:29–36

    Article  CAS  Google Scholar 

  • Collins MD, Lawson PA, Willems A, Cordoba JJ, Fernandez-Garayzabal J, Garcia P, Cai J, Hippe H, Farrow JA (1994) The phylogeny of the genus Clostridium: proposal of five new genera and eleven new species combinations. Int J Syst Bacteriol 44:812–826

    CAS  PubMed  Google Scholar 

  • Errington J (1993) Bacillus subtilis sporulation: regulation of gene expression and control of morphogenesis. Microbiol Rev 57:1–33

    CAS  PubMed  Google Scholar 

  • Engle M, Li Y, Rainey F, DeBlois S, Mai V, Reichert A, Mayer F, Messner P, Wiegel J (1996) Thermobrachium celere gen nov, sp nov, a rapidly growing thermophilic, alkalitolerant, and proteolytic obligate anaerobe. Int J Syst Bacteriol 46:1025–1033

    CAS  PubMed  Google Scholar 

  • Farrow JA, Lawson PA, Hippe H, Gauglitz U, Collins MD (1995) Phylogenetic evidence that the gram-negative nonsporulating bacterium Tissierella (Bacteroides) praeacuta is a member of the Clostridium subphylum of the gram-positive bacteria and description of Tissierella creatinini sp. nov. Int J Syst Bacteriol 45:436-440

    CAS  PubMed  Google Scholar 

  • Garrity GM, Holt JG (2001) Taxonomic outline of the Archaea and Bacteria. In: Boone DR, Castenholz RW (eds) Bergey’s manual of systematic bacteriology, vol 1, 2nd edn. Springer, Berlin Heidelberg New York, pp 119–166

    Google Scholar 

  • Garrity GM, Bell JA, Lilburn TG (2003) Taxonomic outline of the prokaryotes. In: Bergey’s manual of systematic bacteriology, 2nd edn release 4.0 DOI 10.1007/bergeysoutline200310

  • Gerhardt P, Marquis RE (1989) Spore thermoresistance mechanisms. In: Smith I, Slepecky RA, Setlow P (eds) Regulation of prokaryotic development. American Society for Microbiology, Washington, DC, pp 43–63

    Google Scholar 

  • Gibbons NE, Murray RGE (1978) Proposals concerning the higher taxa of the bacteria. Int J Syst Bacteriol 28:1–6

    Google Scholar 

  • Gould GW (1984) Mechanisms of resistance and dormancy. In: Hurst A, Gould GW (eds) The bacterial spore, vol 2. Academic, London, pp 173–209

    Google Scholar 

  • Grossman AD (1995) Genetic networks controlling the initiation of sporulation and the development of genetic competence in Bacillus subtilis. Ann Rev Gen 29:477–508

    Article  CAS  Google Scholar 

  • Hippe H, Andreesen JR, Gottschalk G (1992) The genus Clostridium nonmedical. In: Balows A (ed) The prokaryotes, vol 2. Springer, Berlin Heidelberg New York, pp 1800–1866

    Google Scholar 

  • Ireton K, Grossman A (1994) DNA-related conditions controlling the initiation of sporulation in Bacillus subtilis. Cell Mol Biol Res 40:193–198

    Google Scholar 

  • Morse R, O’Hanlon K, Collins MD (2002) Phylogenetic, amino acid content and indel analyses of the beta subunit of DNA-dependent RNA polymerase of Gram-positive and Gram-negative bacteria. Int J Syst Evol Microbiol 52:1477–1488

    Article  CAS  PubMed  Google Scholar 

  • Nakamura K, Hashizume E, Shibata T, Nakamura Y, Mala S, Yamane K (1995) Small cytoplasmic RNA (scRNA) gene from Clostridium perfringens can replace the gene for the Bacillus subtilis scRNA in both growth and sporulation. Microbiology 141:2965–2975

    CAS  PubMed  Google Scholar 

  • Nicholson WL, Munakata N, Horneck G, Melosh HJ, Setlow P (2000) Resistance of Bacillus endospores to extreme terrestrial and extraterrestrial environments. Microbiol Mol Biol Rev 64:548–572

    Article  CAS  PubMed  Google Scholar 

  • Paidhungat M, Ragkousi K, Setlow P (2001) Genetic requirements for induction of germination of spores of Bacillus subtilis by Ca(2+)-dipicolinate. J Bacteriol 183:4886–4893

    Article  CAS  PubMed  Google Scholar 

  • Sauer U, Treuner A, Buchholz M, Santangelo JD, Dürre P (1994) Sporulation and primary sigma factor homologous genes in Clostridium acetobutylicum. J Bacteriol 176:6572–6582

    Google Scholar 

  • Sauer U, Santangelo JD, Treuner A, Buchholz M, Dürre P (1995) Sigma-factor and sporulation genes in Clostridium. FEMS Microbiol Rev 17:331–340

    Article  CAS  PubMed  Google Scholar 

  • Setlow P (1995) Mechanisms for the prevention of damage to DNA in spores of Bacillus species. Annu Rev Microbiol 49:29–54

    Article  CAS  PubMed  Google Scholar 

  • Setlow P (2001) Resistance of spores of Bacillus species to ultraviolet light. Environ Mol Mutagen 38:97–104

    Article  CAS  PubMed  Google Scholar 

  • Siunov AV, Nikitin DV, Suzina NE, Dmitriev VV, Kuzmin NP, Duda VI (1999) Phylogenetic status of Anaerobacter polyendosporus, an anaerobic, polysporogenic bacterium. Int J Syst Bacteriol 49:1119–1124

    CAS  PubMed  Google Scholar 

  • Slepecky RA, Hemphill HE (1992) The genus Bacillus—nonmedical. In: Balows A (ed) The prokaryotes, vol 2. Springer, Berlin Heidelberg New York, pp 1663–1698

    Google Scholar 

  • Sneath PHA (1984) Endospore-forming Gram-positive rods and cocci. In: Sneath PHA (ed) Bergey’s manual of systematic bacteriology, vol 2. Williams & Wilkins, Baltimore, pp 1104–1207

    Google Scholar 

  • Stragier P (2002) A gene odyssey: exploring the genomes of endospore-forming bacteria. In: Sonenshein AL (ed) Bacillus subtilis and its closest relatives: from genes to cells. ASM, Washington DC, pp 519–525

    Google Scholar 

  • Stragier P, Losick R (1996) Molecular genetics of sporulation in Bacillus subtilis. Annu Rev Genet 30:297–341

    Article  CAS  PubMed  Google Scholar 

  • Wiegel J (1981) Distinction between the Gram reaction and the Gram-type of bacteria. Int J Syst Bacteriol 31:88

    Google Scholar 

  • Wiegel J (1992) The anaerobic thermophilic bacteria. In: Kristjansson JK (ed) Thermophilic bacteria. CRC, Boca Raton, pp 105–184

    Google Scholar 

  • Wiegel J, Quandt L (1982) Determination of the Gram-type using the reaction between polymyxin B and lipopolysaccharides of the outer cell wall of whole bacteria. J Gen Microbiol 128:2261–2270

    CAS  PubMed  Google Scholar 

  • Wiegel J, Tanner R, Rainey FA (2004) In: Dworkin M (ed) The prokaryotes: an evolving electronic resource for the microbiological community, 3rd edn. Springer, New York, http://www.springeronline.com

  • Woese CR (1987) Bacterial evolution. Microbiol Rev 51:221–271

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Mary Ann Moran, for the universal eubacterial primers, and Phil Youngman for help with the spo0A primers. We are indebted to Phyllis Pienta from the ATCC for support of the early stages of this research and P. Stragier for providing us with a copy of his manuscript. We thank Ross Overbeek for the access to sequences in ERGO, and Erko Stackebrandt for sharing with us his unpublished results on our assay.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juergen Wiegel.

Additional information

This paper is dedicated to Prof. H.G. Schlegel in honor of his 80th birthday.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Onyenwoke, R.U., Brill, J.A., Farahi, K. et al. Sporulation genes in members of the low G+C Gram-type-positive phylogenetic branch (Firmicutes). Arch Microbiol 182, 182–192 (2004). https://doi.org/10.1007/s00203-004-0696-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00203-004-0696-y

Keywords

Navigation