Skip to main content

Configurational Mechanics

  • Chapter
  • First Online:
Continuum Mechanics Through the Twentieth Century

Part of the book series: Solid Mechanics and Its Applications ((SMIA,volume 196))

  • 2615 Accesses

Abstract

Starting with pioneering works by Peach, Koehler and Eshelby, an original branch of continuum physics has developed in the period 1950—2010 that consists in providing means of evaluating the evolution of particular material zones of bodies under the action of external loadings. These zones are essentially more or less localized regions of the bodies in which irreversible changes of properties occur through a reorganization of material components of which fracture is the most drastic form. This is interpreted as changes of local configuration in the accepted view of the continuum mechanics of deformable solids. The present conspectus reviews the formidable progress achieved in this “configurational mechanics” from an historical and somewhat personal perspective. In this general view phenomena such as fracture, phase transformations, the presence of material heterogeneities, and more generally the expansion of structural defects of different types find a natural unified frame work. Here the emphasis is placed on the original works, the various breakthroughs and their contributors, the connection with the notion of “material” force, the modern —but often unfamiliar —concept of mechanics on the material manifold, a strategy of post-processing to evaluate driving forces or to improve numerical schemes, and a methodology imported from mathematical physics. Unavoidable ingredients are those of Eshelby stress tensor, material momentum in dynamics, and material forces of inhomogeneity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abeyaratne R, Knowles JK (1990) Driving traction acting on a surface of strain discontinuity in a continuum. J Mech Phys Solids 38:345–360

    Article  MathSciNet  MATH  Google Scholar 

  • Abeyaratne R, Knowles JK (2001) Evolution of phase transitions. Cambridge University Press, UK

    Google Scholar 

  • Atkinson C, Leppington FG (1974) Some calculations of the energy-release rate G for cracks in micropolar and couple-stress elastic media. Int J Fract 10:599–602

    Article  Google Scholar 

  • Berezovski A, Engelbrecht J, Maugin GA (2008) Numerical simulations of wave propagation in inhomogeneous bodies. World Scientific, Singapore

    Google Scholar 

  • Bilby BA, Gardner LRT, Stroh AN (1957) Continuous distributions of dislocations and the theory of plasticity, Actes du Xième Congrès International de Mécanique Appliquée (Bruxelles 1956), vol. VIII, pp 35–44. Université de Bruxelles, Belgique

    Google Scholar 

  • Braun M (1997) Configurational forces induced by finite-element discretization. Proc Est Acad Sci Math Phys 46:24–31

    MATH  Google Scholar 

  • Brenig W (1955) Bessitzen Schallwellen einen Impulz. Zeit Phys 143:168–172

    Article  Google Scholar 

  • Budiansky B, Rice JR (1973) Conservation laws and energy release rates. ASME J Appl Mech 40:201–203

    Google Scholar 

  • Buggisch H, Gross D, Krüger K-H (1981) Erhaltungssätze der Kontinuumsmechanik Ingenieur Archiv 50, 103–111

    Google Scholar 

  • Bui HD (1973) Dualité entre les intégrales indépendantes du contour dans la théorie des corps fissurés. C R Acad Sci Paris 276A:1425–1428

    Google Scholar 

  • Bui HD (1978) Mécanique de la rupture fragile. Masson, Paris

    Google Scholar 

  • Burton CV (1891) Theory concerning the constitution of matter. Phil Mag 33(201):191–204

    Google Scholar 

  • Le K Ch (1999) Thermodynamically based constitutive equations for single crystals. In: Maugin GA (ed) Geometry, Continua and Microstructure. Collection Mathématique “Travaux en cours”, Hermann Editeurs, Paris

    Google Scholar 

  • Cherepanov GP (1967) Crack propagation in continuous media. PMM Appl Math Mech 31:467–488 (Translation from the Russian)

    Google Scholar 

  • Cherepanov GP (1987) Mechanics of failure/fracture in rock materials in (Machine-tooling and) drilling processes. Niedra, Moscow in Russian

    Google Scholar 

  • Cherepanov GP (1998) Fracture: a topical encyclopaedia of current knowledge dedicated to Alan Arnold Griffith. Krieger, Melboune

    Google Scholar 

  • Cherkahoui M, Berveiller M (2000) Moving inelastic discontinuities and applications to martensitic phase transformation. Arch Appl Mech 70:159–181

    Article  Google Scholar 

  • Christov CI, Maugin GA (1995) An implicit difference scheme for the long-time evolution of localized solutions of a generalized Boussinesq system. J Comput Phys 116:39–51

    Article  MathSciNet  MATH  Google Scholar 

  • Ciarletta P, Maugin GA (2011) Elements of a finite strain-gradient thermomechanical theory for material growth and remodeling. Int J Non-linear Mech 46(10):1341–1346

    Article  Google Scholar 

  • Dascalu C, Maugin GA (1993) Forces matérielles et taux de restitution de l’énergie dans les corps élastiques homogènes avec défauts. C R Acad Sci Paris II-317:1135–1140

    Google Scholar 

  • Dascalu C, Maugin GA (1994a) Energy-release rates and path-independent integrals in electroelastic crack propagation. Int J Engng Sci 32:755–765

    Article  MathSciNet  MATH  Google Scholar 

  • Dascalu C, Maugin GA (1994b) The energy of elastic defects: a distributional approach. Proc Roy Soc Lond A445:23–37

    Google Scholar 

  • Dragon-Luiset M (2001) On a predictive macroscopic contact-sliding wear model based on micromechanical considerations. Int J Solids Struct 38(9):1625–1639

    Article  Google Scholar 

  • Duhem P (1909) Un précurseur français de Copernic: Nicole Oresme (1377). Revue générale des Sciences, Paris, No.15 Nov 1909 (also: Le système du monde, vol 7 and 8: La physique parisienne au 14ème siècle, Paris : Hermann; published posthumously; also article ≪ Nicole Oresme ≫. In: The Catholic Encyclopedia. NewYork, R. Appleton Co. 1911)

    Google Scholar 

  • Eischen JW, Herrmann G (1987) Energy-release rates and related balance laws in linear defect mechanics. Trans ASME J Appl Mech 54:388–394

    Article  MATH  Google Scholar 

  • Epstein M, Maugin GA (1990a) Sur le tenseur d’Eshelby en élasticité non linéaire. C R Acad Sci Paris II-310:675–678

    Google Scholar 

  • Epstein M, Maugin GA (1990b) The energy-momentum tensor and material uniformity in finite elasticity. Acta Mech 83:127–133

    Article  MathSciNet  MATH  Google Scholar 

  • Epstein M, Maugin GA (1995a) Thermoelastic material forces: definition and geometric aspects. C R Acad Sci Paris II-320:63–68

    Google Scholar 

  • Epstein M, Maugin GA (1995b) On the geometrical material structure of anelasticity. Acta Mech 115:119–131

    Article  MathSciNet  Google Scholar 

  • Epstein M, Maugin GA (1997) Notions of material uniformity and homogeneity (Opening Lecture of MS1, ICTAM, Kyoto, 1996). In: Tatsumi T, Watanabe E, Kambe T (eds) Theoretical and applied mechanics. Elsevier, Amsterdam, pp 201–215

    Google Scholar 

  • Epstein M, Maugin GA (2000) Thermomechanics of volumetric growth in uniform bodies. Intern J Plasticity 16:951–978

    Article  MATH  Google Scholar 

  • Eshelby JD (1951) Force on an elastic singularity. Phil Tran Roy Soc Lond A244:87–112

    Article  MathSciNet  Google Scholar 

  • Eshelby JD (1956) Continuum theory of lattice defects. In:Seitz F, Turnbull D (eds) Progress in Solid State Physics, vol 3, p 79. Academic Press, New York

    Google Scholar 

  • Eshelby JD (1970) Energy relations and the energy-momentum tensor in continuum mechanics. In: Kanninen MF, Adler WF, Rosenfeld AR, Jaffe RI (eds) Inelastic behavior of solids, pp 77–114. McGraw Hill, New York

    Google Scholar 

  • Fletcher DC (1976) Conservation laws in linear elastodynamics. Arch Rat Mech Anal 60:329–353

    Article  MathSciNet  MATH  Google Scholar 

  • Fomethe A, Maugin GA (1998) On the crack mechanics of hard ferromagnets. Int J Non-linear Mech 33:85–95

    Article  MathSciNet  MATH  Google Scholar 

  • Forest S (2006) Milieux continus généralisés et matériaux hétérogènes. Paris, Presses de l’Ecole des Mines

    Google Scholar 

  • Freund LB (1972) Energy flux into the tip of an extending crack in an elastic body. J Elasticity 2:341–349

    Article  Google Scholar 

  • Gołebiewska-Herrmann A (1981) On conservation laws of continuum mechanics. Int J Solids Struct 17:1–9

    Article  Google Scholar 

  • Gołebiewska-Herrmann A (1982) Material momentum tensor and path-independent integrals of fracture mechanics. Int J Solids Struct 18:319–326

    Article  MATH  Google Scholar 

  • Günther W (1962) Uber einige Randintegrale der Elastodynamik. Abh Braunschw Wiss Ges 14:54–72

    Google Scholar 

  • Gurtin ME (1979a) Energy-release rate in quasi-static crack propagation. J Elast 9:187–195

    Article  MathSciNet  MATH  Google Scholar 

  • Gurtin ME (1979b) Thermodynamics and the Griffith criterion for brittle fracture. Int J Solids Struct 15:553–560

    Article  MathSciNet  MATH  Google Scholar 

  • Gurtin ME (1993) Dynamics of solid–solid phase transitions.I. Coherent interfaces. Arch Rat Mech Anal 123:305–335

    Article  MathSciNet  MATH  Google Scholar 

  • Gurtin ME (1995) On the nature of configurational forces. Arch Rat Mech Anal 131:67–100

    Article  MathSciNet  MATH  Google Scholar 

  • Gurtin ME (1999) Configurational forces as basic concepts of continuum physics. Springer, New York

    Google Scholar 

  • Herrmann G, Kienzler R (1999) Mechanics in material space. Springer, New York

    Google Scholar 

  • Jaric J (1978) Conservation laws of J-integral type in micropolar elastostatics. Int JEngng Sci 16:967–984

    Article  MathSciNet  MATH  Google Scholar 

  • Kienzler R, Herrmann G (1986) Material forces in elementary beam theory. Trans ASME J Appl Mech 53:561–564

    Article  Google Scholar 

  • Knowles JK, Sternberg E (1972) Class of conservation laws in linearized and finite elastostatics. Arch Rat Mech Anal 44:187–211

    Article  MathSciNet  MATH  Google Scholar 

  • Kröner E (1958) Kontinuumstheorie der Versetzungen und Eigenspannungen. In: Erg Angew Math, vol 5, pp 1–179. Springer, Berlin

    Google Scholar 

  • Lee EH (1969) Elastic-plastic deformation at finite strain. ASME Trans J Appl Mech 36:1–6

    Article  MATH  Google Scholar 

  • Lubarda VA, Markenscoff X (2000) Conservation integrals in couple stress elasticity. J Mech Phys Solids 48:553–564

    Article  MathSciNet  MATH  Google Scholar 

  • Mandel J (1971) Plasticité classique et viscoplasticité (CISM Lecture notes). Springer, Vienna

    Google Scholar 

  • Mandel J (1973) Equations constitutives et directeurs dans les milieux plastiques et viscoplastiques. Int J Solids Struct 9:725–740

    Article  MATH  Google Scholar 

  • Maugin GA (1992a) Pseudo-momentum in solitonic elastic systems. J Mech Phys Solids 40:1543–1558

    Article  MathSciNet  MATH  Google Scholar 

  • Maugin GA (1992b) The thermomechanics of plasticity and fracture. Cambridge University Press, UK (Volume in CUP series of Textbooks in Applied Mathematics)

    Google Scholar 

  • Maugin GA (1993) Material inhomogeneities in elasticity. Chapman and Hall, London

    MATH  Google Scholar 

  • Maugin GA (1994) Eshelby stress in elastoplasticity and ductile fracture. Int J Plast 10:393–408

    Article  MATH  Google Scholar 

  • Maugin GA (1995) Material forces: concepts and applications. ASME Appl Mech Rev 48:213–243

    Article  MathSciNet  Google Scholar 

  • Maugin GA (1997) Thermomechanics of inhomogeneous-heterogeneous systems: applications to the irreversible progress of two and three-dimensional defects. ARI 50:41–56

    Google Scholar 

  • Maugin GA (1998a) On shock waves and phase-transition fronts in continua. ARI 50:141–150

    Article  Google Scholar 

  • Maugin GA (1998b) Thermomechanics of forces driving singular point sets (Anniversary Volume of H.Z orski). Arch Mech (Poland) 50:477–487

    Google Scholar 

  • Maugin GA (1998c) On the structure of the theory of polar elasticity. Phil Trans Roy Soc Lond A356:1367–1395

    MathSciNet  Google Scholar 

  • Maugin GA (1999a) Thermomechanics of nonlinear irreversible behaviors. World Scientific, Singapore

    MATH  Google Scholar 

  • Maugin GA (1999b) Nonlinear waves in elastic crystals. Oxford University Press, UK

    MATH  Google Scholar 

  • Maugin GA (2000) Geometry of material space: its consequences in modern numerical means. Technische Mechanik (Magdeburg) 20:95–104

    Google Scholar 

  • Maugin GA (2002) Remarks on the Eshelbian thermomechanics of materials. Mech Res Commun 29:537–542

    Google Scholar 

  • Maugin GA (2003) Pseudo-plasticity and pseudo-inhomogeneity effects in materials Mechanics. J Elast 71:81–103

    Article  MathSciNet  MATH  Google Scholar 

  • Maugin GA (2006) On canonical equations of continuum thermomechanics. Mech Res Commun 33:705–710

    Article  MathSciNet  MATH  Google Scholar 

  • Maugin GA (2007) Nonlinear kinematic-wave mechanics of elastic solids. Wave Motion 44(6):472–481 (Special issue)

    Article  MathSciNet  MATH  Google Scholar 

  • Maugin GA (2011) Configurational forces: Thermomechanics, Physics, Mathematics and Numerics. CRC/Chapman and Hall/Taylor and Francis, Boca Raton

    MATH  Google Scholar 

  • Maugin GA, Christov CI (2002) Nonlinear waves and conservation laws (Nonlinear duality between elastic waves and quasi-particles). In: Christov CI, Guran A (eds) Topics in nonlinear wave mechanics phenomena. Birkhäuser, Boston, pp 117–160

    Chapter  Google Scholar 

  • Maugin GA, Epstein M (1991) The electroelastic energy-momentum tensor. Proc Roy Soc Lond A433:299–312

    MathSciNet  Google Scholar 

  • Maugin GA, Rousseau M (2012) Grains of SAWs: associating quasi-particles to surface acoustic waves. Int J Engng Sci 59:156–167 (special issue in honour of VL Berdichevsky)

    Google Scholar 

  • Maugin GA, Trimarco C (1992) Pseudo-momentum and material forces in nonlinear elasticity: variational formulations and application to brittle fracture. Acta Mech 94:1–28

    Article  MathSciNet  MATH  Google Scholar 

  • Mićunović M (1974) A geometrical treatment of thermoelasticity of simple inhomogeneous bodies: I–geometric and kinematic relations. Bull Acad Pol Sci Sér Sci Techn 22:579–588; II. (Constitutive equations), and III. (Approximations) 22:633–641, 23:89–97 (1975)

    Google Scholar 

  • Mueller R, Maugin GA (2002) On material forces and finite element discretizations. Comput Mech 29:52–60

    Article  MathSciNet  MATH  Google Scholar 

  • Noether E. (1918) Invariante Variations problem. Klg-Ges Wiss Nach Göttingen Math Phys Kl.2:235–257

    Google Scholar 

  • Noll W (1967) Materially uniform simple bodies with inhomogeneities. Arch Rat Mech Anal 27:1–32

    Article  MathSciNet  Google Scholar 

  • Pak YE, Herrmann G (1986a) Conservation laws and the material momentum tensor for the elastic dielectric. Int J Engng Sci 24:1365–1374

    Article  MathSciNet  MATH  Google Scholar 

  • Pak YE, Herrmann G (1986b) Crack extension force in elastic dielectrics. Int J Engng Sci 24:1375–1388

    Article  MathSciNet  MATH  Google Scholar 

  • Peach MO, Koehler JS (1950) Force exerted on dislocations and the stress produced by them. Phys Rev II-80:436–439

    Google Scholar 

  • Rice JR (1968) Path-independent integral and the approximate analysis of strain concentrations by notches and cracks. Trans ASME J Appl Mech 33:379–385

    Article  Google Scholar 

  • Rogula D (1977) Forces in material space. Arch Mech (Poland) 29:705–715

    MathSciNet  MATH  Google Scholar 

  • Rousseau M, Maugin GA (2011) Rayleigh surface waves and their canonically associated quasi-particles. Proc Royal Soc Lond A467:495–507

    Article  MathSciNet  Google Scholar 

  • Sabir M, Maugin GA (1996) On the fracture of paramagnets and soft ferromagnets. Int J Non-linear Mechan 31:425–440

    Google Scholar 

  • Schmidt I, Gross D (1997) The equilibrium shape of an elastically inhomogeneous inclusion. J Mech Phys Sol 45:1521–1549

    Article  MathSciNet  MATH  Google Scholar 

  • Sidoroff F (1975) Variables internes en viscoélasticité II. Milieux avec configuration intermédiaire. J Mécanique 14:545–566

    MathSciNet  MATH  Google Scholar 

  • Steinmann P (2000) Application of material forces to hyperelastostatic fracture mechanics, Part I: continuum mechanics setting. Int J Solids Struct 37:7371–7391

    Article  MathSciNet  MATH  Google Scholar 

  • Steinmann P (2002a) On spatial and material settings in hyperelastodynamics. Acta Mech 156:193–218

    Article  MATH  Google Scholar 

  • Steinmann P (2002b) On spatial and material settings of thermo-hyperelastodynamics. J Elast 66:109–157

    Article  MathSciNet  MATH  Google Scholar 

  • Steinmann P, Ackermann D, Barth FJ (2001) Application of material forces to hyperelastostatic fracture mechanics, Part II: computational setting. Int J Solids Struct 38:5509–5526

    Article  MATH  Google Scholar 

  • Stolz C (1994) Sur le problème d’évolution thermomécanique des solides à changement brutal des caractéristique. CR Acad Sci Paris, II-318:1425–1428

    Google Scholar 

  • Suo Z, Kuo C-M, Barnett DM, Willis JR (1992) Fracture mechanics for Piezo-electric ceramics. J Mech Phys Solids 40:739–765

    Article  MathSciNet  MATH  Google Scholar 

  • Taschow U (2003) Nicole Oresme und der Frühling der Modern. Avox-Medien, Halle

    Google Scholar 

  • Truesdell CA, Noll W (1965) Nonlinear field theories of mechanics. In: Flügge S (ed) Handbuch der Physik Bd.III/3. Springer, Berlin

    Google Scholar 

  • Truesdell CA, Toupin RA (1960) The classical theory of fields. In: Flügge S (ed) Handbuch der Physik, Bd.III/1. Springer, Berlin

    Google Scholar 

  • Truskinovsky LM (1994) About the “Normal Growth” approximation in the Dynamical Theory of phase transitions. Cont Mech Thermodyn 6:185–208

    Article  MathSciNet  MATH  Google Scholar 

  • Wang CC (1967) On the geometric structure of simple bodies, or mathematical foundation for the theory of continuous distributions of dislocations. Arch Rat Mech Anal 27:33–94

    Google Scholar 

  • Whitham GB (1974) Linear and nonlinear waves. Wiley-Interscience, New York

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gérard A. Maugin .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Maugin, G.A. (2013). Configurational Mechanics. In: Continuum Mechanics Through the Twentieth Century. Solid Mechanics and Its Applications, vol 196. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6353-1_14

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-6353-1_14

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-007-6352-4

  • Online ISBN: 978-94-007-6353-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics