Skip to main content

Nonlinear Duality Between Elastic Waves and Quasi-particles

  • Chapter
Selected Topics in Nonlinear Wave Mechanics

Abstract

Some systems governed by a set of partial differential equations present the necessary ingredients (nonlinearity and dispersion) in appropriate doses so as to become the arena of the propagation and interactions of solitary waves. In general such systems are not exactly integrable in the sense of soliton theory. But some of their nearly solitonic solutions can nonetheless be apprehended as quasi-particles in a certain dynamics that depends on the original system. The present chapter considers this reductive representation of nonlinear dynamical solutions for physical systems issued from solid mechanics, and more particularly elasticity with a microstructure of various origin. A whole collection of “point-mechanics” emerges thus, among which the simpler ones are Newton's and Lorentz-Einstein’s. This quasi-particle representation is intimately related to the existence of conservation laws for the system under study and the recent recognition of the essential role played by fully material balance laws in the continuum mechanics of inhomo-geneous and defective elastic bodies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. A. C. Eringen and G. A. Maugin, Electrodynamics of Continua Vol. I,Springer-Verlag, New York, 1990.

    Google Scholar 

  2. G. B. Whitham, Linear and Nonlinear Waves, Wiley-Interscience, NewYork, 1974.

    MATH  Google Scholar 

  3. A. C. Newell, Solitons in Mathematics and Physics, S.I.A.M., Philadelphia,1985.

    Google Scholar 

  4. P. G. Drazin and R. S. Johnson, Solitons: An Introduction, CambridgeUniversity Press, Cambridge, U.K., 1989.

    MATH  Google Scholar 

  5. C. Rebbi and G. Soliani (Eds), Solitons and Particles, World Scientific,Singapore, 1984.

    Google Scholar 

  6. P. H. Holland, The Quantum Theory of Motion (An Account of thede Broglie-Bohm Interpretation of QuantumMechanics), CambridgeUniversity Press, Cambridge, U.K., 1993.

    MATH  Google Scholar 

  7. G. A. Maugin, J. Phys. Mech. Solids, 40 (1992), 1543.

    Article  MathSciNet  MATH  Google Scholar 

  8. G. A. Maugin, Material Inhomogeneities in Elasticity, Chapman and Hall, London, 1993.

    MATH  Google Scholar 

  9. G. A. Maugin, in: Mathematical and Numerical Aspects of Wave Propagation, R. E. Kleinman, ed., 338, SIAM, Philadelphia, 1993.

    MATH  Google Scholar 

  10. G. A. Maugin, in: Nonlinear Waves in Solids, A. Jeffrey and Ju. Engel-brecht,eds., 109, Springer-Verlag,Vienna,1994.

    Google Scholar 

  11. G. A. Maugin, in: E.S. Suhubi and Continuum Mechanics, E. Inan, ed.,Bull. Techn. Univ. Istanbul, 47 (1994), 23.

    MathSciNet  MATH  Google Scholar 

  12. G. A. Maugin, in: Nonlinear Waves in Solids (IUTAM Symposium,Victoria, 1993), J. Wegner and F. Norwood,eds., 104, Vol. AMR No.137, A.S.M.E., New York, 1994.

    Google Scholar 

  13. G. A. Maugin, in: Computational Fluid Mechanics, Volume in the Hon-ourof K. Roesner, D. Leutloff and R. C. Srivastava, eds., 269, Springer-Verlag,Berlin, 1995.

    Google Scholar 

  14. R. Courant and K. O. Friedrichs, Supersonic Flows and Shock waves,Wiley-Interscience, New York, 1948.

    MATH  Google Scholar 

  15. E. Godlewski and P.-A. Raviart, Hyperbolic Systems of ConservationLaws, Springer-Verlag, Paris, 1989.

    Google Scholar 

  16. A. Jeffrey and T. Taniuti, Nonlinear Wave Propagation with Applications to Physics andMagnetohydrodynamics, Academic Press, NewYork, 1963.

    Google Scholar 

  17. J. Mandel and L. Brun (Eds), Mechanical Waves in Solids, Springer-Verlag,Vienna, 1975.

    Google Scholar 

  18. J. Bazer and W. B. Ericson, Arch. Rat Mech. Anal, 55 (1974), 124.

    Article  MathSciNet  MATH  Google Scholar 

  19. G. A. Maugin, Int. J. Engng. Sci, 19 (1981), 321.

    Article  MathSciNet  MATH  Google Scholar 

  20. G. A. Maugin, Continuum Mechanics of Electromagnetic Solids, North-Holland,Amsterdam, 1988.

    Google Scholar 

  21. W. Ani and G. A. Maugin, Zeit. Angew. Math. Phys., 39 (1988), 277.

    Article  MathSciNet  MATH  Google Scholar 

  22. G. A. Maugin, J. Pouget, R. Drouot and B. Collet, Nonlinear ElectromechanicalCouplings, J. Wiley, New York,1992.

    MATH  Google Scholar 

  23. P. D. Lax, Hyperbolic Systems of Conservation Laws and Mathematical Theory of Shock Waves, SIAM, Philadelphia, 1973.

    MATH  Google Scholar 

  24. W. D. Hayes, in: Nonlinear Waves, S. Leibovich and A. R. Seebass, eds.,1, Cornell University Press, Ithaca, N.Y., 1974.

    Google Scholar 

  25. G. A. Maugin, Nonlinear Electromechanical Effects and Applications, Aseries of Lectures, World Scientific,Singapore, 1985.

    Google Scholar 

  26. G. A. Maugin and C. Trimarco, Acta Mechanica, 94 (1992), 1.

    Article  MathSciNet  MATH  Google Scholar 

  27. D. E. Soper, Classical Field Theory, J. Wiley, New York, 1976.

    Google Scholar 

  28. J. Rzewuski, Field Theory, Vol. I, P.W.N., Warsaw, 1964.

    Google Scholar 

  29. W. Brenig, Zeit Phys., 143 (1955), 168.

    Article  Google Scholar 

  30. G. A. Maugin and C. Trimarco, Int. J. Engng. Sci, 33 (1995), 1663.

    Article  MathSciNet  MATH  Google Scholar 

  31. D. C. Fletcher, Arch. Rat. Mech. Anal, 60 (1976), 329.

    Article  MathSciNet  MATH  Google Scholar 

  32. E. S. Suhubi, Int. J. Engng. Sci., 27 (1989), 441.

    Article  MathSciNet  MATH  Google Scholar 

  33. V. L. Gurevich and A. Thellung, Phys. Rev., B42 (1990), 7345.

    Article  Google Scholar 

  34. N. Chien, T. Honein and G. Herrmann, Int. J. Solids Structures, 30(1993), 3321.

    Article  MathSciNet  MATH  Google Scholar 

  35. V. I. Erofeev and A. I. Potatpov, in: Nonlinear World, Proc. Phys.,Kiev, 1991, 1197.

    Google Scholar 

  36. V. I. Erofeev and A. I. Potapov, Int. J. Nonlinear Mech., 28 (1993),483.

    Article  MATH  Google Scholar 

  37. T. R. Kane and D. A. Levinson, Trans. ASME. J. Appl. Mech., 55(1988), 711.

    Article  MATH  Google Scholar 

  38. B. Tabarrok, C. Tezer and M. Styllianou, Acta Mechanica, 107 (1994),137.

    Article  MathSciNet  MATH  Google Scholar 

  39. G. A. Maugin, Proc. Estonian Acad. Sci., 44 (1995), 40.

    MathSciNet  MATH  Google Scholar 

  40. C. I. Christov and G. A. Maugin, in: Coherent Structures in Physics andBiology, M. Remoissenet and M.Peyrard, eds., 209, Springer-Verlag,Berlin, 1991.

    Google Scholar 

  41. C. I. Christov and G. A. Maugin, in: Advances in Nonlinear Acoustics,H. Hobaeck, ed., 457, World Scientific, Singapore, 1993, 457.

    Google Scholar 

  42. C. I. Christov and G. A. Maugin, in: Nonlinear Waves in Solids, J.Wegner and F. Norwood, eds., 374, Vol. AMR No. 137, A.S.M.E., NewYork, 1994.

    Google Scholar 

  43. J. S. Russell, in: Report of the 14th Meeting (1844) of the British Association for the Advancement of Science, 311, B.A.A.S., York, 1845.

    Google Scholar 

  44. J. V. Boussinesq, C. R. Acad. Sci. Paris, 72 (1871), 755.

    MATH  Google Scholar 

  45. D. J. Korteweg and G. de Vries, Phil Mag. Ser. 5., 39 (1895), 422.

    Article  MATH  Google Scholar 

  46. N. J. Zabuski and M. D. Kruskal, Phys. Rev. Lett, 15 (1965), 57.

    Google Scholar 

  47. M. Kruskal, in: Nonlinear Evolution Equations Solvable by the SpectralTransform, F. Calogero, ed., 1, Pitman, London, 1978.

    Google Scholar 

  48. V. E. Zakharov and K. Shabat, Sov. Phys. J.E.T.P., 37 (1973), 823.

    Google Scholar 

  49. F. Calogero and A. Degasperis, Spectral Transform and Solitons: Tools to Solve and Investigate Nonlinear Evolution Equations, Vol. I, North-Holland,Amsterdam, 1982.

    MATH  Google Scholar 

  50. M. J. Ablowitz and H. Segur, Solitons and the Inverse Scattering Transform,SIAM, Philadelphia, 1981.

    MATH  Google Scholar 

  51. A. S. Fokas, Lett. Math. Phys., 5 (1979), 467.

    Article  MathSciNet  Google Scholar 

  52. M. Jammer, The Philosophy of Quantum Mechanics, Wiley-Interscience,New York, 1974.

    Google Scholar 

  53. R. M. Miura, in: Nonlinear Waves, S. Leibovich and A. R. Seebass, eds.,212, Cornell University Press, Ithaca, N.Y., 1974.

    Google Scholar 

  54. P. L. Bathnagar, Nonlinear Waves in One-dimensional Systems, Oxford University Press, Oxford, U.K., 1979.

    Google Scholar 

  55. I. L. Bogolubsky, Comp. Phys. Commun., 13 (1977), 149.

    Article  Google Scholar 

  56. L. Iskander and P. C. Jain, Proc. Indian Acad. Sci., Math. Sci., 89 (1980), 171.

    Google Scholar 

  57. V. S. Manoranjan, T. Ortega and J. M. Sanz-Serna, J. Math. Phys., 29(1988), 1964.

    Article  MathSciNet  MATH  Google Scholar 

  58. J. M. Sanz-Serna and M. P. Calvo, Numerical Hamiltonian Problems,Chapman and Hall, London, 1994.

    MATH  Google Scholar 

  59. P. L. Christiansen and O. H. Olsen, Wave Motion, 4 (1982), 163.

    Article  MATH  Google Scholar 

  60. Z. Wesolowski, J. Engng. Math. 17 (1983), 315.

    Article  MathSciNet  MATH  Google Scholar 

  61. J. Frenkel and T. Kontorova, Phys. Sowjet Union, 13 (1938), 1.

    MATH  Google Scholar 

  62. F. Kh. Abdullaev and P. K. Khabibullaev, Dynamics of Solitons in In-homogeneous Condensed Matter, F.A.N., Tashkent, Uzb.S.S.R. (in Russian),1986.

    Google Scholar 

  63. Yu. S. Kivshar and B. A. Malomed, Rev. Mod. Phys., 61 (1989), 763.

    Article  Google Scholar 

  64. G. A. Maugin and H. Hadouaj, Phys. Rev., B44 (1991), 1266.

    Google Scholar 

  65. V. E. Zahkarov, Sov. Phys. J.E.T.P., 35 (1972), 908.

    Google Scholar 

  66. G. A. Maugin and A. Miled, Phys. Rev., B33, (1986) 4830.

    Article  Google Scholar 

  67. J. Pouget and G. A. Maugin, Phys. Rev., B30, (1984) 5304.

    Google Scholar 

  68. J. Pouget and G. A. Maugin, Phys. Rev., B31, (1985) 4633.

    Article  Google Scholar 

  69. G. A. Maugin and A. Miled, Int. J. Engng. Sci., 24 (1986), 1477.

    Article  MathSciNet  MATH  Google Scholar 

  70. J. Pouget and G. A. Maugin, J. Elasticity, 22 (1989), 135.

    Article  MathSciNet  MATH  Google Scholar 

  71. J. Pouget and G. A. Maugin, J .Elasticity, 22 (1989), 157.

    Article  MathSciNet  MATH  Google Scholar 

  72. B. A. Malomed, Physica, D15 (1985), 385.

    MathSciNet  MATH  Google Scholar 

  73. J. Pouget and G. A. Maugin, Phys.Lett., A109 (1985), 389.

    Article  Google Scholar 

  74. Yu. S. Kivshar and B. A. Malomed, Phys.Rev., B42, (1990) 8561.

    Article  Google Scholar 

  75. A. Fomethe and G. A. Maugin, Preprint, U.P.M.C, Paris, 1995.

    Google Scholar 

  76. G. A. Maugin, in: Nonclassical Continuum Mechanics: Abstract Techniques and Applications, R.Knops, ed.,272, Cambridge University Press, Cambridge, U.K., 1987.

    Google Scholar 

  77. J. Pouget, in: Physical Properties and Thermodynamical Behaviour of Minerals, E. K. Salje, ed., 359, Riedel,Dordrecht, 1988.

    Google Scholar 

  78. C. I. Christov, G. A. Maugin and M. G. Velarde, Phys.Rev., E 54(1996), 3621.

    Google Scholar 

  79. G. A. Maugin and S. Cadet, Int. J.Engng.Sci., 29 (1991), 243.

    Article  MathSciNet  MATH  Google Scholar 

  80. G. A. Maugin, Appl.Mech.Rev., 48 (1995), 213.

    Article  MathSciNet  Google Scholar 

  81. C. I. Christov and G. A. Maugin, J. Comp. Phys., 116 (1995), 39.

    Article  MathSciNet  MATH  Google Scholar 

  82. C. I. Christov and M. G. Velarde, Bifurcation and Chaos, 4 (1994),1095.

    Article  MATH  Google Scholar 

  83. T. Kawahara, J.Phys.Soc.Japan, 13 (1972), 260.

    Google Scholar 

  84. S. K. Turitsyn, Phys.Rev., E47 (1993), R769.

    Article  MathSciNet  Google Scholar 

  85. G. A. Maugin, H. Hadouaj and B. A. Malomed, Phys.Rev., B45 (1992),9688.

    Article  Google Scholar 

  86. H. Hadouaj, B. A. Malomed and G. A. Maugin, Phys.Rev., A44 (1991),3922.

    Google Scholar 

  87. H. Hadouaj, B. A. Malomed and G. A. Maugin, Phys.Rev., A44 (1991),3932.

    Article  MathSciNet  Google Scholar 

  88. H. Hadouaj and G. A. Maugin, Wave Motion, 16 (1992), 115.

    Article  MathSciNet  MATH  Google Scholar 

  89. G. A. Maugin, H. Hadouaj and B. A. Malomed, Le Matematiche, XLVI(1991), 253.

    Google Scholar 

  90. L. A. Ostrovskii and A. M. Suttin, P.M.M., 41 (1977), 543.

    Google Scholar 

  91. A. M. Samsonov, in: Frontiers of Nonlinear Acoustics, M. F. Hamiltonand D. T. Blackstock, eds., 583, Elsevier,London, 1990.

    Google Scholar 

  92. M. P. Soerensen, P. L. Christiansen and P. S. Lomdahl, J. Acoust. Soc.Amer., 76 (1984), 871.

    Article  MathSciNet  MATH  Google Scholar 

  93. P. A. Clarkson, J. J. LeVeque and R. Saxton, Stud. Appl. Math., 75(1986), 95.

    MathSciNet  MATH  Google Scholar 

  94. A. S. Kovalev and E. S. Syrkin, Surface Solitons in Nonlinear ElasticMedia, Surf. Sci., 346 (1995), 337-345.

    Article  Google Scholar 

  95. J. Pouget, M. Remoissenet and J. M. Tamga, Phys. Rev., B47 (1993).

    Google Scholar 

  96. G. A. Maugin, in: Trends in Applications of Pure Mathematics to Mechanics,E. Kroner and K. Kirchgassner, eds., 195, Springer-Verlag,Berlin, 1986.

    Google Scholar 

  97. R. D. Richtmayer and K. W. Morton, Difference Methods for Initial Value Problems, Second Edition,Interscience, New York, 1967.

    Google Scholar 

  98. C. Canuto, M. Y. Hussaini, A. Quarteroni, and T. A. Zang, Spectral Methods in Fluid Dynamics, Springer-Verlag, N.Y., 1987.

    Google Scholar 

  99. J. P. Boyd, Chebishev and Fourier Spectral Methods, Springer-Verlag,N.Y., 1989.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media New York

About this chapter

Cite this chapter

Maugin, G.A., Christov, C.I. (2002). Nonlinear Duality Between Elastic Waves and Quasi-particles. In: Christov, C.I., Guran, A. (eds) Selected Topics in Nonlinear Wave Mechanics. Birkhäuser, Boston, MA. https://doi.org/10.1007/978-1-4612-0095-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-0095-6_4

  • Publisher Name: Birkhäuser, Boston, MA

  • Print ISBN: 978-1-4612-6609-9

  • Online ISBN: 978-1-4612-0095-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics