Skip to main content

Novel Hypothesis on Telomere Length: Heterogenic Targets as Genomic/Somatic Diverse Value in Breast Cancer and Brain Tumor

  • Chapter
  • First Online:
Telomere Territory and Cancer
  • 906 Accesses

Abstract

Telomere territory is a promising destination and network in cancer research, hosting unmasked facts and insights. Cancer, as a genetic disease is strongly related to the aging and environmental factors. Specifically, breast cancer and brain tumors are noticeable neoplasm’s and seem to be reliable candidates for the future personalized cancer medicine with translational impact. In both tumors, well clarified and appropriate strategy for providing predisposing, early detection, and preventive package is desperately required. Telomere length assay is a reliable choice to characterize the manner of telomeric behavior at genomic- and somatic level which could pave the way towards an early definition, not in the patients, but in their relatives through different generations of their pedigree. This chapter provides evidences supporting a novel hypothesis of telomere length in human breast cancer and brain tumor. The findings rely on the heterogenic patterns at genomic and somatic levels, its interaction with the protein expression involved in cell cycle and proliferation index, by highlighting cellular/molecular evolution and diversity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agrawal A, Dang S, Gabrani R (2011) Recent patents on anti-telomerase cancer therapy. Recent Pat Anticancer Drug Discov 7:102–117

    Article  Google Scholar 

  • Allsopp RC, Harley CB (1995) Evidence for a critical telomere length in senescent human fibroblasts. Exp Cell Res 219:130–136

    Article  PubMed  CAS  Google Scholar 

  • Andersson U, Melin BS, Bondy ML, Houlston RS (2010) Survey of familial glioma and role of germline p16INK4A/p14ARF and p53 mutation. Fam Cancer 9:413–421

    Article  PubMed  CAS  Google Scholar 

  • Atri M, Mehdipour P, Javidroozi M, Hosseini-asl SS, Jafarimojarrad E (2002) Linking histopathology and family history in breast cancer. Asian Pacific J Cancer Prev 3:33–39

    Google Scholar 

  • Atri M, Jafarimojarrad E, Javidroozi M, Mehdipour P (2003) Lack of association between early onset of breast cancer and numbers of affected relatives in an Iranian population. Fam Cancer 2:117–118

    Article  PubMed  CAS  Google Scholar 

  • Armitage P, Doll R (1954) The age distribution of cancer and a multi-stage theory of carcinogenesis. Br J Cancer 8:1–12

    Article  PubMed  CAS  Google Scholar 

  • Armanios M (2009) Syndromes of telomere shortening. Annu Rev Genomics Hum Genet 10:45–61

    Article  PubMed  CAS  Google Scholar 

  • Artandi SE, DePinho RA (2010) Telomeres and telomerase in cancer. Carcinogenesis 31:9–18

    Article  PubMed  CAS  Google Scholar 

  • Baerlocher G, Lansdorp PM (2003) Telomere length measurements in leukocyte subsets by automated multicolor flow FISH. Cytometry A 55:1–6

    Article  PubMed  CAS  Google Scholar 

  • Baumann P, Price C (2010) Pot1 and telomere maintenance. FEBS Lett 584:3779–3784

    Article  PubMed  CAS  Google Scholar 

  • Bechter OE, Eisterer W, Pall G, Hilbe W, Kühr T, Thaler J (1998) Telomere length and telomerase activity predict survival in patients with B cell chronic lymphocytic leukemia. Cancer Res 58:4918–4922

    PubMed  CAS  Google Scholar 

  • Bisoffi M, Heaphy CM, Griffith JK (2006) Telomeres: prognostic markers for solid tumors. Int J Cancer 119:2255–2260

    Article  PubMed  CAS  Google Scholar 

  • Broeks A, Urbanus JHM, Floore AN, Dahler EC, Klijn JGM, Rutgers EJ, Devilee P, Russell NS, van Leeuwen FE, van ’t Veer LJ (2000) ATM-heterozygous germline mutations contribute to breast cancer–susceptibility. Am J Hum Genet 66:494–500

    Article  PubMed  CAS  Google Scholar 

  • Blackburn EH, Gall JG (1978) A tandemly repeated sequence at the termini of the extrachromosomal ribosomal RNA genes in Tetrahymena. J Mol Biol 120:33–53

    Article  PubMed  CAS  Google Scholar 

  • Blackburn EH (2000)Telomere states and cell fates. Nature 408:53–56

    Article  PubMed  CAS  Google Scholar 

  • Blackburn EH (2011) Walking the walk from genes through telomere maintenance to cancer risk. Cancer Prev Res (Phila) 4:473–475

    Article  CAS  Google Scholar 

  • Blasco MA, Lee HW, Hande MP, Samper E, Lansdorp PM, DePinho RA, Greider CW (1997) Telomere shortening and tumor formation by mouse cells lacking telomerase RNA. Cell 91(1):25–34

    Google Scholar 

  • Boukamp P (2001) Ageing mechanisms: the role of telomere loss. Clin Ex Dermatol 26:562–565

    Article  CAS  Google Scholar 

  • Burnette WN (1981) Western Blotting: electrophoretic transfer of proteins from sodium dodecyl sulfate-polyacrylamide gels to unmodified nitrocellulose and radiographic detection with antibody and radioiodinated protein A. Analytica Biochem 112:195–203

    Article  CAS  Google Scholar 

  • Campbell LL, Polyak K (2007) Breast tumor heterogeneity: cancer stem cells or clonal evolution? Cell Cycle 6:2332–2338

    Article  PubMed  CAS  Google Scholar 

  • Casci T (2011) Human disease: a short story of breast cancer risk. Nature Rev Genetics 12:588

    Article  CAS  Google Scholar 

  • Chin L, Artandi SE, Shen Q, Tam A, Lee SL, Gottlieb GJ, Greider CW, DePinho RA (1999) p53 deficiency rescues the adverse effects of telomere loss and cooperates with telomere dysfunction to accelerate carcinogenesis. Cell 97:527–538

    Article  PubMed  CAS  Google Scholar 

  • d’Adda di Fagagna F, Reaper PM, Clay-Farrace L, Fiegler H, Carr P, Von Zglinicki T, Saretzki G, Carter NP, Jackson SP (2003) A DNA damage checkpoint response in telomere-initiated senescence. Nature 426:194–198

    Article  PubMed  CAS  Google Scholar 

  • de Baryshe PG, Pardue ML (2011) Differential maintenance of DNA sequences in telomeric and centromeric heterochromatin. Genetics 187:51–60

    Article  CAS  Google Scholar 

  • deGregori J (2011) Evolved tumor suppression: why are we so good at not getting cancer? Cancer Res 71:3739

    Article  PubMed  CAS  Google Scholar 

  • de Grouchy J, de Nava C, Cantu JM, Bilski-Pasquier G, Bousser J (1966) Models for clonal evolutions: a study of chronic myelogenous leukemia. Am J Hum Genet 18:485–503

    PubMed  CAS  Google Scholar 

  • de Grouchy J (1973) Cancer and the evolution of species: a ransom. Biomedicine 18:6–8

    PubMed  CAS  Google Scholar 

  • de Grouchy J, de Nava C (1968) “A chromosomal theory of carcinogenesis.” Ann Intern Med 69:381–391

    PubMed  CAS  Google Scholar 

  • de-Lange T, Shiue L, Myers RM, Cox DR, Naylor SL, Killery AM, Varmus HE (1990) Structure and variability of human chromosome ends. Mol Cell Biol 10:518–527

    PubMed  CAS  Google Scholar 

  • de Lange T (2002) Protection of mammalian telomeres.Oncogene 21:532–540

    Article  PubMed  CAS  Google Scholar 

  • de Lange T (2005) Shelterin: the protein complex that shapes and safeguards human telomeres.Genes Dev 19:2100–2110

    Article  PubMed  CAS  Google Scholar 

  • de Lange T (2009) How telomeres solve the end-protection problem. Science 326:948–952

    Article  PubMed  CAS  Google Scholar 

  • Dick JE (2008) Stem cell concepts renew cancer research. Blood 112:4793–4807

    Article  PubMed  CAS  Google Scholar 

  • Dobricić J, Branković-Magić M, Filipović S, Radulović S (2010) Novel BRCA1/2 mutations in Serbian breast and breast-ovarian cancer patients with hereditary predisposition. Cancer Genet Cytogenet 202:27–32

    Article  PubMed  CAS  Google Scholar 

  • Downs KP, Shen Y, Pasquali A, Beldorth I, Savage M, Gallier K, Garcia T, Booth RE, Walter RB (2012) Characterization of telomeres and telomerase expression in Xiphophorus. Comp Biochem Physiol C Toxicol Pharmacol 155:89–94

    Article  PubMed  CAS  Google Scholar 

  • Easton D, Peto J (1990) The contribution of inherited predisposition to cancer incidence. Cancer Surv 9:395–416

    PubMed  CAS  Google Scholar 

  • Eng C, Ponder BAJ (1993) The role of gene mutations in the genesis of familial cancers. FASEB J 7:910–919

    PubMed  CAS  Google Scholar 

  • Fidler IJ, Hart IR (1982) Biological diversity in metastatic neoplasms-origins and implications. Science 217:998–1003

    Article  PubMed  CAS  Google Scholar 

  • Folini M, Venturini L, Cimino-Reale G, Zaffaroni N (2011) Telomeres as targets for anticancer therapies. Expert Opin Ther Targets 5:579–593

    Google Scholar 

  • Ford CE, Clarke CM (1963) Cytogenetic evidence of clonal proliferation in primary reticular neoplasms. Proc Can Cancer Conf 5:129–146

    PubMed  CAS  Google Scholar 

  • Frenck RW, Blackburn EH, Shannon KM (1998) The rate of telomere sequence loss in Human leukocytes varies with age. Proc Natl Acad Sci U S A 95:5607–5610

    Article  PubMed  CAS  Google Scholar 

  • Grach AA (2011) Mechanisms of alternative lengthening of telomeres. Tristol Genet 45:69–81

    CAS  Google Scholar 

  • Griffith JD, Comeau L, Rosenfield S, Stansel RM, Bianchi A, Moss H de Lange T (1999) Mammalian telomeres end in a large duplex loop. Cell 97:503–514

    Article  PubMed  CAS  Google Scholar 

  • Hanahan D, Weinberg R (2000) The hallmarks of cancer. Cell 100:57–70

    Article  PubMed  CAS  Google Scholar 

  • Harley CB, Futcher AB, Greider CW (1990) Telomeres shorten during ageing of human fibroblasts. Nature 345:458–460

    Article  PubMed  CAS  Google Scholar 

  • Hastie ND, Dempster M, Dunlop MG, Thompson AM, Green DK, Allshire RC (1990) Telomere reduction in human colorectal carcinoma and with ageing. Nature 345:866–888

    Article  Google Scholar 

  • Hauschka TS (1961) The chromosomes in ontogeny and oncogeny. Cancer Res 21:957–974

    PubMed  CAS  Google Scholar 

  • Heaphy CM, Baumgartner KB, Bisoffi M, Baumgartner RN, Griffith JK (2007) Telomere DNA content predicts breast cancer-free survival interval. Clin Cancer Res 13:7037–7043

    Article  PubMed  CAS  Google Scholar 

  • Hemminki K, Li X (2003a) Familial risk of cancer by site and histopathology. Int J Cancer 103:105–109

    Article  CAS  Google Scholar 

  • Hemminki K, Li X (2003b) Familial risks in nervous system tumors. Cancer Epidemiol Biomarkers Prev 12:1137–1142

    Google Scholar 

  • Hemminki K, Rawal R, Chen B, Bermejo JL (2004a) Genetic epidemiology of cancer:from families to heritable genes. Int J Cancer 111:944–950

    Article  CAS  Google Scholar 

  • Hemminki K, Li X, Czene K (2004b) Familial risk of cancer: data for clinical counseling and cancer genetics. Int J Cancer 108:109–114

    Article  CAS  Google Scholar 

  • Hemminki K, Ji J, Sundquist J, Shu X (2011) Familial risks in cancer of unknown primary: tracking the primary sites. J Clin Oncol 29:435–440

    Article  PubMed  Google Scholar 

  • Henson JD, Neumann AA, Yeager TR, Reddel RR (2002) Alternative lengthening of telomeres in mammalian cells. Oncogene 21:598–610

    Article  PubMed  CAS  Google Scholar 

  • Heppner GH (1984) Tumor heterogeneity. Cancer Res 44:2259–2265

    PubMed  CAS  Google Scholar 

  • Hemann MT, Strong, M, Hao LY, Greider CW (2001) The shortest telomere, not average telomere length, is critical for cell viability and chromosome stability. Cell 107:67–77

    Article  PubMed  CAS  Google Scholar 

  • Knudson AG (1971) Mutation and cancer: statistical study of retinoblastoma. Proc Natl Acad Sci U S A 68:820–823

    Article  PubMed  Google Scholar 

  • Kheirollahi M, Mehhrazin M, Kamalian N, Mehdipour P (2011a) Alterations of telomere length in human brain tumors. Med Oncol 28:864–870

    Article  Google Scholar 

  • Kheirollahi M, Mehhrazin M, Kamalian N, Mehdipour P (2011b) Expression of cyclin D2, P53, Rb, and ATM cell cycle genes in human brain tumors. Med Oncol 28:7–14

    Article  CAS  Google Scholar 

  • Kimura M, Cherkas LF, Kato BS, Demissie S, Hjelmborg JB, Brimacombe M, Cupples A, Hunkin JL, Gardner JP, Lu X et al (2008) Offspring’s leukocyte telomere length, paternal age, and telomere elongation in sperm. PLoS Genet 4:e37

    Article  CAS  Google Scholar 

  • Lansdorp PM, Verwoerd NP, van de Rijke FM, Dragowska V, Little MT, Dirks RW, Raap AK, Tanke HJ (1996) Heterogeneity in telomere length of human chromosomes. Hum Mol Genet 5:685–691

    Article  PubMed  CAS  Google Scholar 

  • Levan A, Biesele JJ (1958) Role of chromosomes in cancerogenesis, as studied in serial tissue culture of mammalian cells. Ann N Y Acad Sci 71:1022–1053

    Article  PubMed  CAS  Google Scholar 

  • Lingner J (2007) New telomere discovery could help explain why cancer cells never stop dividing. Ecole Polytechnique Fédérale de Lausanne. Science Daily. http://www.sciencedaily.com/releases/2007/10/071004143131.htm. Retrieved 24 August 2011

    Google Scholar 

  • Liu D, O’Connor M S, Qin J, Songyang Z (2004) Telosome, a mammalian telomere associated complex formed by multiple telomeric proteins. J Biol Chem 279:51338–51342

    Article  PubMed  CAS  Google Scholar 

  • Manchester KL (1995) Theodor Boveri and the origin of malignant tumors. Trends Cell Biol 5:384–387

    Article  PubMed  CAS  Google Scholar 

  • Makino S (1956) Further evidence favoring the concept of the stem cell in ascites tumors of rats. Ann N Y Acad Sci 63:818–830

    Article  PubMed  CAS  Google Scholar 

  • Malmer B, Adatto P, Armstrong G, Barnholtz-Sloan J, Bernstein JL, Claus E, Davis F, Houlston R, Il’yasova D, Jenkins R, Johansen C, Lai R, Lau C, McCarthy B, Nielsen H, Olson SH, Sadetzki S et al (2007) GLIOGENE an International Consortium to Understand Familial Glioma. Cancer Epidemiol Biomarkers Prev 16:1730–1734

    Article  PubMed  CAS  Google Scholar 

  • McClintock B (1941) The stability of Broken ends of chromosomes in Zea Mays. Genetics 26:234–282

    Google Scholar 

  • McKusick V (1990) Mendelian inheritance in man catalogs of autosomal dominant, autosomal recessive, and X-linked phenotypes, 9th edn. Johns Hopkins University Press, Baltimore

    Google Scholar 

  • Meeker AK, Argani P (2004) Telomere shortening occurs early during breast tumorigenesis: a cause of chromosome destabilization underlying malignant transformation? J Mammary Gland Biol Neoplasia 9:285–296

    Article  PubMed  Google Scholar 

  • Meeker A, Platz E, De Marzo A (2012) How aggressive is the cancer? Study of telomeres may lead to new test. The Brady Urological Institute, John Hopkins Medicine 8, winter 2012, Baltimore

    Google Scholar 

  • Merlo M, Pepper J, Reid B, Maley CC (2006) Cancer as an evolutionary and ecological process. Nature Rev Cancer 6:924–935

    Article  CAS  Google Scholar 

  • Mehdipour P, Atri M, Jafarimojarrad E, Hosseini-asl SS, Javidroozi M (2003) laddering through pedigrees: family history of malignancies in primary breast cancer patients. Asian Pacific J Cancer Prev 4:185–192

    CAS  Google Scholar 

  • Mehdipour P, Habibi L, Mohammadi-Asl J, Kamalian N, Mehr Azin M (2008) Three- hit hypothesis in astrocytoma: tracing the polymorphism D1853N in ATM genethrough a pedigree of the proband affected with primary brain tumor. J Cancer Res Clin Oncol 134:1173–1180

    Article  PubMed  CAS  Google Scholar 

  • Mehdipour P, Pirouzpanah S, Sarafnejad A, Atri M, Shahrestani ST, Haidari M (2009) Prognostic implication of CDC25A and cyclin E expression on primary breast cancer patients. Cell Biol Int 33:1050–1056

    Article  PubMed  CAS  Google Scholar 

  • Mehdipour P, Mahdavi M, Mohammadi-Asl J, Atri M (2010) Importance of ATM gene as a susceptible trait: predisposition role of D1853N polymorphism in breast cancer. Medical Oncol 28:733–737

    Article  CAS  Google Scholar 

  • Mehdipour P, Kheirollahi M, Mehrazin M, Kamalian N, Atri M (2011) Evolutionary hypothesis of telomere length in primary breast cancer and brain tumor patients: a tracer for genomic- tumor heterogeneity and instability. Cell Biol Int 35:915–925

    Article  PubMed  Google Scholar 

  • Mehdipour P (2011) The final words: the cyclic bridging programme for the cancer clinic. In: Mehdipour P (ed) Bridging cell biology and genetics to the cancer clinics. Transworld network, India

    Google Scholar 

  • Meyne J, Ratliff RL, Moyzis RK (1989) Conservation of the human telomere sequence (TTAGGG)n among vertebrates. Proc Natl Acad Sci U S A 86:7049–7053

    Article  PubMed  CAS  Google Scholar 

  • Michelson, S, Ito K, Tran HT, Leith JT (1989) Stochastic models for subpopulation emergence in heterogeneous tumors. Bull Math Biol 51:731–747

    PubMed  CAS  Google Scholar 

  • Muller HY (1938) The re-making of chromosomes. Collecting Net 13:181–195

    Google Scholar 

  • Munoz-Jordan JL, Cross GA, de Lange T, Griffith D (2001) t-loops at trypanosome telomeres. EMBO 20:579–588

    Article  CAS  Google Scholar 

  • Murnane JP (2010) Telomere loss as a mechanism for chromosome instability in human cancer. Cancer Res 70:4255–4259

    Article  PubMed  CAS  Google Scholar 

  • Nguyen HN, Sevin BU, Averette HE, Ramos R, Ganjei P, Perras J (1993) Evidence of tumor heterogeneity in cervical cancers and lymph node metastases as determined by flow cytometry. Cancer 71:2543–2550

    Article  PubMed  CAS  Google Scholar 

  • Nordling CO (1953). A New Theory on the Cancer-inducing Mechanism. The British Journal of Cancer 7:68–72

    Google Scholar 

  • Nowell PC, Hungerford DA (1960) Chromosome studies on normal and leukemic human leukocytes. J Natl Cancer Inst 25:85–109

    PubMed  CAS  Google Scholar 

  • Nowell PC (1976) The clonal evolution of tumor cell populations. Science 194:23–28

    Article  PubMed  CAS  Google Scholar 

  • Odagiri E, Kanada N, Jibiki K, Demura R, Aikawa E, Demura H (1994) Reduction of telomeric length and c-erbB-2 gene amplification in human breast cancer, fibroadenoma, and gynecomastia, relationship to histologic grade and clinical parameters. Cancer 73:2978–2984

    Article  PubMed  CAS  Google Scholar 

  • Oikawa S, Kawanishi S (1999) Site-specific DNA damage at GGG sequence by oxidative stress may accelerate telomere shortening. FEBS Lett 453:365–368

    Article  PubMed  CAS  Google Scholar 

  • Ourliac-Garnier I, Londoño-Vallejo A (2011) Telomere strand-specific length analysis by fluorescent in situ hybridization (Q-CO-FISH). In: Songyang Zhou (ed.) Telomeres and telomerase: methods and protocols, Methods in molecular biology, vol. 735. Springer Science+Business Media, LLC 2011, Heidelberg. doi:10.1007/978–1-61779–092-8_4

    Google Scholar 

  • Pendino F, Tarkanyi I, Dudognon C, Hillion J, Lanotte M, Aradi J, Segal-Bendirdijian E (2006) Telomeres and telomerase: pharmacological targets for new anticancer strategies? Curr Cancer Drug Targets 6:147–180

    Article  PubMed  CAS  Google Scholar 

  • Pietschmann A, Mehdipour P, Atri M, Hofmann W, Hosseini-Asl SS, Scherneck S, Peters H (2005) Mutation analysis of the BRCA1 and BRCA2 genes in Iranian high risk breast cancer families. J Cancer Res Clin Oncol 131:552–568

    Article  PubMed  CAS  Google Scholar 

  • Price CM, Kara A Boltz, Chaiken MF, Stewart JA, Beilstein MA, Shippen DE ( 2010) Evolution of CST function in telomere maintenance. Cell Cycle 9:3157–3165

    Article  PubMed  CAS  Google Scholar 

  • Pyo CW, Guethlein LA, Vu Q, Wang R, Abi-Rached L, Norman PJ, Marsh SGE, Miller JS, Parham P, Geraghty DE (2010) Different patterns of evolution in the centromeric and telomeric regions of Group A and B haplotypes of the human killer cell Ig-like receptor locus. PLoS ONE 5:e15115. doi:10.1371/journal.pone.0015115

    Article  CAS  Google Scholar 

  • Rha SY, Park KH, Kim TS (1999) Changes of telomerase and telomere lengths in paired normal and cancer tissues of breast. Int J Oncol 15:839–845

    PubMed  CAS  Google Scholar 

  • Rampazzo E, Bertorelle R, Serra L, Terrin L, Candiotto C, Pucciarelli S, Del Bianco P, Nitti D, De Rossi A (2010) Relationship between telomere shortening, genetic instability, and site of tumour origin in colorectal cancers. Br J Cancer 102:1300–1305

    Article  PubMed  CAS  Google Scholar 

  • Richter T, Zglinicki T (2007) A continuous correlation between oxidative stress and telomere shortening in fibroblasts. Exp Gerontol 42:1039–1042

    Article  PubMed  CAS  Google Scholar 

  • Riemenschneider MJ, Jeuken JW, Wesseling P, Reifenberger G (2010) Molecular diagnostics of gliomas: state of the art. Acta Neuropathol 120:567–584

    Article  PubMed  CAS  Google Scholar 

  • Robertson LB, Armstrong GN, Olver BD, Lloyd AL, Shete SLC, Claus EB, Barnholtz-Sloan J , Lai R, Il'yasova D, Schildkraut J, Bernstein JL, Olson SH, Rynearson AL,et al (2010) Survey of familial glioma and role of germline p16INK4A/p14ARF and p53 mutation. Fam Cancer 9:413‱421

    Google Scholar 

  • Rowley JD (1973) Identificaton of a translocation with quinacrine fluorescence in a patient with acute leukemia. Ann Genet 16:109–112

    PubMed  CAS  Google Scholar 

  • Ryser HJ (1971) Chemical carcinogenesis. N Eng J Med 285:721–734

    Article  CAS  Google Scholar 

  • Shibata D (2006) Clonal diversity in tumor progression. Nature Genetics 38:402–403

    Article  PubMed  CAS  Google Scholar 

  • Samper E, Flores JM, Blasco MA (2001) Restoration of telomerase activity rescues chromosomal instability and premature aging in Terc-/-mice with short telomeres. EMBO Rep 2:800–807

    Article  PubMed  CAS  Google Scholar 

  • Savage SA, Stewart BJ, Eckert A, Kiley M, Liao JS, Chanock SJ (2005) Genetic variation, nucleotide diversity, and linkage disequilibrium in seven telomere stability genes suggest that these genes may be under constraint. Human Mutation 26:343–350

    Article  PubMed  CAS  Google Scholar 

  • Shay JW, Wright WE (2005) Senescence and immortalization: role of telomeres and telomerase. J Carcinogen 26:867–874

    CAS  Google Scholar 

  • Schiffman JD, Chun N, Fisher PG, Dahl GV, Ford JM, Eggerding FA (2008) Identification of a novel p53 in-frame deletion in a Li-Fraumeni-like family. Pediatr Blood Cancer 50:914–916

    Article  PubMed  Google Scholar 

  • Southern EM (1975) Detection of specific sequences among DNA fragments separated by gel electrophoresis. J Mol Biol 98:503–517

    Article  PubMed  CAS  Google Scholar 

  • Starling JA, Maule J, Hastie ND, Allshire RC (1990) Extensive telomere repeat arrays in mouse are hypervariable. Nucleic Acids Res 18:6881–6888

    Google Scholar 

  • Stewart JA, Chaiken MF, Wang F, Price CM (2011) Maintaining the end: roles of telomere proteins in end-protection, telomere replication and length regulation. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis (in press). doi:10.1016/j.mrfmmm.2011.08.011

    Google Scholar 

  • Svenson U, Nordfjäll K, Stegmayr B, Manjer J, Nilsson P, Tavelin B, Henriksson R, Lenner P, Roos G (2008) Breast cancer survival is associated with telomere length in peripheral blood cells. Cancer Res 68:3618–3623

    Article  PubMed  CAS  Google Scholar 

  • Takai H, Smogorzewska A, de Lange T (2003) DNA damage foci at dysfunctional telomeres. J Curr Biol 13:1549–1556

    Article  CAS  Google Scholar 

  • Terasaki Y, Okumura H, Ohtake S, Nakao S (2002) Accelerated telomere length shortening in granulocytes: a diagnostic marker for myeloproliferative diseases. Exp Hematol 30:1399–1404

    Article  PubMed  CAS  Google Scholar 

  • Thompson D, Duedal S, Kirner J, McGuffog L, Last J, Reiman A, Byrd P, Taylor M, Easton DF (2005) Cancer risks and mortality in heterozygous ATM mutation carriers. J Natl Cancer Inst 97:813–822

    Article  PubMed  CAS  Google Scholar 

  • Toledano H, Goldberg Y, Kedar-Barnes I, Baris H, Porat RM, Shochat C, Bercovich D, Pikarsk E, Lerer I, Yaniv I, Abeliovich D, Peretz T (2009). Homozygosity of MSH2 c.1906G–3922C germline mutation is associated with childhood colon cancer, astrocytoma and signs of Neurofibromatosis type I. Fam Cancer 8:187–194

    Article  PubMed  CAS  Google Scholar 

  • Vaziri H (1997) Critical telomere shortening regulated by the ataxia-telangiectasia gene acts as a DNA damage signal leading to activation of p53 protein and limited life- span of human diploid fibroblasts. A review. Biochem (Mosc) 62:1306–1310

    CAS  Google Scholar 

  • Vaziri H, Benchimol S (1999) Alternative pathways for the extension of cellular life span: inactivation of p53/pRb and expression of telomerase. Oncogene 18:7676–7680

    Article  PubMed  CAS  Google Scholar 

  • Von Figura G, Hartmann D, Song Z, Rudolph KL (2009) Role of telomere dysfunction in aging and its detection by biomarkers. J Mol Med 87:1165–1171

    Article  Google Scholar 

  • Von Zglinicki T, MartinRuiz C M (2005) Telomeres as biomarkers for ageing and agerelated diseases. Curr Mol Med 5:197–203

    Article  PubMed  CAS  Google Scholar 

  • Von Zglinicki T, Martin-Ruiz CM, Saretzki G (2005) Telomeres, cell senescence and human ageing. Signal Transduct 5:103–114

    Article  CAS  Google Scholar 

  • Watanabe T, Vital A, Nobusawa S, Kleihues P, Ohgaki H (2009) Selective acquisition of IDH1 R132 C mutations in astrocytomas associated with Li- Fraumeni syndrome. Acta Neuropathol 117:653–666

    Article  PubMed  CAS  Google Scholar 

  • Watts G (2009) Nobel medicine prize is won by scientists for work on chromosomal telomeres. BMJ 6:339

    Google Scholar 

  • Watson JD (1972) Origin of concatemeric T7 DNA. Nat New Biol 239:197–201

    Article  PubMed  CAS  Google Scholar 

  • Weinstein BS, Ciszek D (2002) The reserve-capacity hypothesis: evolutionary origins and modern implications of the trade-off between tumor-suppression and tissue-repair. Exp Gerontol 37:615–627

    Article  PubMed  CAS  Google Scholar 

  • Wolman SR (1986) Cytogenetic heterogeneity: its role in tumor evolution. Cancer Genet Cytogenet 19:129–140

    Article  PubMed  CAS  Google Scholar 

  • Xin H, Liu D Songyang Z (2008) The telosome/shelterin complex and its functions. Genome Bio 9:232

    Article  CAS  Google Scholar 

  • Yang D, Xiong Y, Kim H, He Q, Li Y, Chen R, Songyang Z (2011) Human Telomeric proteins occupy selective interstitial sites. Cell Res 21:1013–1027

    Article  PubMed  CAS  Google Scholar 

  • Ye CJ, Liu G, Bremer SW, (2007) The dynamics of cancer chromosomes and genomes. Cytogenet Genome Res 118:237–246

    Google Scholar 

  • Yosida TH (1966) Relation between chromosomal alteration and development of tumors. Japan J Genet 41:439–451

    Article  Google Scholar 

  • Yuille MA, Coignet LJ (1998) The ataxia telangiectasia gene in familial and sporadic cancer. Cancer Res 154:156–173

    CAS  Google Scholar 

  • Zvereva MI, Shcherbakova DM, Dontsova OA (2010) Telomerase: structure, functions, and activity regulation. Biochem Biokhimiia 75:1563–1583

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Mehdipour .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Mehdipour, P. (2013). Novel Hypothesis on Telomere Length: Heterogenic Targets as Genomic/Somatic Diverse Value in Breast Cancer and Brain Tumor. In: Mehdipour, P. (eds) Telomere Territory and Cancer. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4632-9_5

Download citation

Publish with us

Policies and ethics