Skip to main content
Log in

Alterations of telomere length in human brain tumors

  • Original Paper
  • Published:
Medical Oncology Aims and scope Submit manuscript

Abstract

Telomeres at the ends of human chromosomes consist of tandem hexametric (TTAGGG)n repeats, which protect them from degradation. At each cycle of cell division, most normal somatic cells lose approximately 50–100 bp of the terminal telomeric repeat DNA. Precise prediction of growth and estimation of the malignant potential of brain tumors require additional markers. DNA extraction was performed from the 51 frozen tissues, and a non-radioactive chemiluminescent assay was used for Southern blotting. One sample t-test shows highly significant difference in telomere length in meningioma and astrocytoma with normal range. According to our results, higher grades of meningioma and astrocytoma tumors show more heterogeneity in telomere length, and also it seems shortening process of telomeres is an early event in brain tumors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Blackburn EH. Structure and function of telomeres. Nature. 1991;1350:569–73.

    Article  Google Scholar 

  2. Counter CM, Avilion AA, LeFeuvre CE. Telomerase shortening associated with chromosome instability is arrested in immortal cells which express telomerase activity. EMBO J. 1992;11:1921–9.

    PubMed  CAS  Google Scholar 

  3. Sandell LL, Zakian VA. Lost of a yeast telomere: arrest, recovery and chromosome loss. Cell. 1993;75:729–39.

    Article  PubMed  CAS  Google Scholar 

  4. Moyzis RK, Buckingham JM, Carm LS, Dani M, Deaven LL, Jones MD. A highly repetitive sequence (TTAGGG)n, present at the telomeres of human chromosomes. Proc Natl Acad Sci USA. 1988;85:6622–6.

    Article  PubMed  CAS  Google Scholar 

  5. Harley CB, Futcher AB, Greider CW. Telomeres shorten during ageing of human fibroblasts. Nature (Lond). 1990;345:458–60.

    Article  CAS  Google Scholar 

  6. Levy MZ, Allsopp RC, Futcher AB, Greider CW, Harley CB. Telomere end-duplication problem and cell aging. J Mol Biol. 1992;225:951–60.

    Article  PubMed  CAS  Google Scholar 

  7. Surralles J, Hande MP, Marcos R, Lansdorp PM. Accelerated telomere shortening in the human inactive X chromosome. Am J Hum Genet. 1999;65:1617–22.

    Article  PubMed  CAS  Google Scholar 

  8. Lansdorp PM, Verwoerd NP, Rijke FM, Dragowska V, Little MT, Dirks RW. Heterogeneity in telomere length of human chromosomes. Human Mol Genet. 1995;5(5):685–91.

    Article  Google Scholar 

  9. Greider CW. Telomerase activity, cell proliferation, and cancer. Proc Natl Acad Sci USA. 1998;95:90–2.

    Article  PubMed  CAS  Google Scholar 

  10. Harrington L, McPhail T, Mar V, Zhou W, Oulton R, Bass MB, et al. A mammalian telomerase-associated protein. Science. 1997;275:973–7.

    Article  PubMed  CAS  Google Scholar 

  11. Hayflick L, Moorhead PS. The serial cultivation of human diploid cell strains. Exp Cell Res. 1961;25:585–621.

    Article  Google Scholar 

  12. Kleihues P, Burger P, Scheithauer BW. Histological typing of tumours of the central nervous system (International histological classification of tumours). 2nd ed. Berlin: Springer; 1993.

    Google Scholar 

  13. Hiraga S, Ohnishi T, Izumoto S, Miyahara E, Kanemura Y, Matsumura H, et al. Telomerase activity and alterations in telomere length in human brain tumors. Cancer Res. 1998;58:2117–25.

    PubMed  CAS  Google Scholar 

  14. Kleihues P, Burger PC, Scheithauer BW. The new WHO classification of brain tumours. Brain Pathol. 1993;3(3):255–68.

    Article  PubMed  CAS  Google Scholar 

  15. Tatter SB, Wilson CB, Harsh GRIV. Neuroepithelial tumors of the adult brain. 4th ed. Philadelphia: W.B. Saunders Co; 1995.

    Google Scholar 

  16. Allsopp R, Chang E, Kashefi-Aazam M, Rogaev EI, Piatyszek MA, Shay JW, et al. Telomere shortening is associated with cell division in vitro and in vivo. Exp Cell Res. 1995;220:194–200.

    Article  PubMed  CAS  Google Scholar 

  17. Harley CB, Villeponteau B. Telomeres and telomerase in aging and cancer. Curr Opin Genet Dev. 1995;5:249–55.

    Article  PubMed  CAS  Google Scholar 

  18. Lange TD. Activation of telomerase in a human tumor. Proc Natl Acad Sci USA. 1994;91:2882–5.

    Article  PubMed  Google Scholar 

  19. Bisoffi M, Heaphy CM, Griffith JK. Telomeres: prognostic markers for solid tumors. Int J Cancer. 2006;119:2255–60.

    Article  PubMed  CAS  Google Scholar 

  20. Svenson U, Roos G. Telomere length as a biological marker in malignancy. Biochim Biophys Acta. 2009;1792:317–23.

    PubMed  CAS  Google Scholar 

  21. Griffith JK, Bryant JE, Fordyce CA, Gilliland FD, Joste NE, Moyzis RK. Reduced telomere DNA content is correlated with genomic instability and metastasis in invasive human breast carcinoma. Breast Cancer Res Treat. 1999;54:59–64.

    Article  PubMed  CAS  Google Scholar 

  22. Fordyce CA, Heaphy CM, Bisoffi M, Wyaco JL, Joste NE, Mangalik A, et al. Telomere content correlates with stage and prognosis in breast cancer. Breast Cancer Res Treat. 2006;99:193–202.

    Article  PubMed  Google Scholar 

  23. Heaphy CM, Baumgartner KB, Bisoffi M, Baumgartner RN, Griffith JK. Telomere DNA content predicts breast cancer-free survival interval. Clin Cancer Res. 2007;13:7037–43.

    Article  PubMed  CAS  Google Scholar 

  24. Donaldson L, Fordyce C, Gilliland F, Smith A, Feddersen R, Joste N, et al. Association between outcome and telomere DNA content in prostate cancer. J Urol. 1999;162:1788–92.

    Article  PubMed  CAS  Google Scholar 

  25. Fordyce CA, Heaphy CM, Joste NE, Smith AY, Hunt WC, Griffith JK. Association between cancer-free survival and telomere DNA content in prostate tumors. J Urol. 2005;173:610–4.

    Article  PubMed  CAS  Google Scholar 

  26. Avigad S, Naumov I, Ohali A, Jeison M, Berco GH, Mardoukh J, et al. Short telomeres: a novel potential predictor of relapse in Ewing sarcoma. Clin Cancer Res. 2007;13:5777–83.

    Article  PubMed  CAS  Google Scholar 

  27. Gertler R, Rosenberg R, Stricker D, Friederichs J, Hoos A, Werner M, et al. Telomere length and human telomerase reverse transcriptase expression as markers for progression and prognosis of colorectal carcinoma. J Clin Oncol. 2004;22:1807–14.

    Article  PubMed  CAS  Google Scholar 

  28. Oh BK, Kim H, Park YN, Yoo JE, Choi J, Kim KS, et al. High telomerase activity and long telomeres in advanced hepatocellular carcinomas with poor prognosis. Lab Invest. 2008;88:144–52.

    Article  PubMed  CAS  Google Scholar 

  29. Garcia-Aranda C, Juan CD, Diaz-Lopez A, Sanchez-Pernaute A, Torres AJ, Diaz-Rubio E, et al. Correlations of telomere length, telomerase activity, and telomeric-repeat binding factor 1 expression in colorectal carcinoma. Cancer Epidemiol Biomarkers Prev. 2006;106:541–51.

    CAS  Google Scholar 

  30. Gertler R, Doll D, Maak M, Feith M, Rosenberg R. Telomere length and telomerase subunits as diagnostic and prognostic biomarkers in Barrett carcinoma. Cancer Epidemiol Biomarkers Prev. 2008;112:2173–80.

    Google Scholar 

  31. Patel MM, Parekh LJ, Jha FP, Sainger RN, Patel JB, Patel DD, et al. Clinical usefulness of telomerase activation and telomere length in head and neck cancer. Head Neck. 2002;24:1060–7.

    Article  PubMed  Google Scholar 

  32. Wu X, Amos CI, Zhu Y, Zhao H, Grossman BH, Shay JW. Telomere dysfunction: a potential cancer predisposition factor. J Natl Cancer Inst. 2003;95(16):1211–8.

    Article  PubMed  CAS  Google Scholar 

  33. Ohali A, Avigad S, Ash S, Goshen Y, Luria D, Feinmesser M, et al. Telomere length is a prognostic factor in neuroblastoma. Cancer. 2006;107:1391–9.

    Article  PubMed  CAS  Google Scholar 

  34. Hiyama E, Hiyama K, Yokoyama T, Ichikawa T, Matsuura Y. Length of telomeric repeats in neuroblastoma: correlation with prognosis and other biological characteristics. Jpn J Cancer Res. 1992;83:159–64.

    PubMed  CAS  Google Scholar 

  35. Allsopp R, Vaziri H, Patterson C, Goldstein S, Younglai EV, Futcher AB, et al. Telomere length predicts replicative capacity of human fibroblasts. Proc Nati Acad Sci USA. 1992;88:10114–8.

    Article  Google Scholar 

  36. Maes L, Vanneste L, Vandamme K, Kalala JPO, Deridder L, Bekaert S, et al. Relation between telomerase activity, hTERT and telomere length for intracranial tumours. Oncol Rep. 2007;18:1571–6.

    PubMed  CAS  Google Scholar 

  37. Hakin-Smith V, Jellinek DA, Levy D, Carroll T, Teo M, Timperley WR, et al. Alternative lengthening of telomeres and survival in patients with glioblastoma multiforme. Lancet. 2003;361:836–8.

    Article  PubMed  CAS  Google Scholar 

  38. Jang JS, Choi YY, Lee WK, Choi JE, Cha SI, Kim YJ, et al. Telomere length and the risk of lung cancer. Cancer Sci. 2008;99(7):1385–9.

    Article  PubMed  CAS  Google Scholar 

  39. Meeker AK, Argani P. Telomere shortening occurs early during breast tumorigenesis: a cause of chromosome destabilization underlying malignant transformation? J Mammary Gland Biol Neoplasia. 2004;9:285–96.

    Article  PubMed  Google Scholar 

  40. Svenson U, Nordfjäll K, Stegmayr B, Manjer J, Nilsson P, Tavelin BR, et al. Breast cancer survival is associated with telomere length in peripheral blood cells. Cancer Res. 2008;68(10):3618–23.

    Article  PubMed  CAS  Google Scholar 

  41. Londono-Vallejo JA. Telomere instability and cancer. Biochimie. 2008;90:73–82.

    Article  PubMed  CAS  Google Scholar 

  42. Hackett JA, Greider CW. Balancing instability: dual roles for telomerase and telomere dysfunction in tumorigenesis. Oncogene. 2002;21:619–26.

    Article  PubMed  CAS  Google Scholar 

  43. Ju Z, Rudolph KL. Telomeres and telomerase in cancer stem cells. Eur J Cancer. 2006;42:1197–203.

    Article  PubMed  CAS  Google Scholar 

  44. O’Sullivan J, Risques RA, Mandelson MT, Chen L, Brentnall TA, Bronner MP, et al. Telomere length in the colon declines with age: a relation to colorectal cancer? Cancer Epidemiol Biomarkers Prev. 2006;15(3):573–7.

    Article  PubMed  Google Scholar 

  45. Chen HJ, Liang CL, Lu K, Lin JW, Cho CL. Implication of telomerase activity and alternations of telomere length in the histologic characteristics of intracranial meningiomas. Cancer. 2000;89:2092–8.

    Article  PubMed  CAS  Google Scholar 

  46. Morii K, Tanaka R, Onda K, Tsumanuma I, Yoshimura J. Expression of telomerase RNA, telomerase activity, and telomere length in human gliomas. Biochem Biophys Res Commun. 1997;239:830–4.

    Article  PubMed  CAS  Google Scholar 

  47. Chen HJ, Cho CL, Liang CL, Chen L, Chang HW, Lu K, et al. Differential telomerase expression and telomere length in primary intracranial tumors. Chang Gung Med J. 2001;24(6):352–60.

    PubMed  CAS  Google Scholar 

  48. Maes L, Kalala JP, Cornelissen R, Ridder LD. Telomerase activity and hTERT protein expression in meningiomas: an analysis in vivo versus in vitro. Anticancer Res. 2006;26(3):2295–300.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank Dr. Saeed Talebi, Mr. Abouzar Rejvani for performing the procedure by imaging system and X-ray and Mr. Mohammad Nasrollahi for helping to collect the samples.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Parvin Mehdipour.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kheirollahi, M., Mehrazin, M., Kamalian, N. et al. Alterations of telomere length in human brain tumors. Med Oncol 28, 864–870 (2011). https://doi.org/10.1007/s12032-010-9506-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12032-010-9506-3

Keywords

Navigation