Skip to main content

Amorphous Inorganic Polysialates: Geopolymeric Composites and the Bioactivity of Hydroxyl Groups

  • Chapter
  • First Online:
Thermal analysis of Micro, Nano- and Non-Crystalline Materials

Abstract

Geopolymers, X-ray amorphous inorganic polysialates, are geopolymeric ‘cementitous’ composites that are commonly produced by idiosyncratic wet copolymerization (i.e., synthesis via solution) of the individual alumina and silica components. An important role is played by an alkaline activation process in which a powder material of an aluminosilicate nature, such as metakaolin or fly ash, is mixed with an alkaline activator to produce a paste that can set and harden in a short time. These materials, frequently termed alkaline inorganic polymers, geopolymers, hydroceramics, etc., constitute a new family of products that, among other interesting properties, are capable of producing qualities peculiar to cements with those of traditional ceramics and zeolites. Source raw material such as various minerals and industrial by-product materials may be defined as compounds or a mixture of more components that are able to enter in reaction process with water and especially with activator. The polysialates are compared with similar systems based on natural opals and polyphosphates. Hypocrystalline Materials and Their ‘Mers’ Framework is analyzed and Simple Calculation Concepts for Non-bridging Oxygen in Silica Glasses is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Davidovits J (1989) Geopolymers and geopolymeric materials. J Therm Anal 35:429–441; (1991) Geopolymers: inorganic polymeric materials. J Therm Anal 37:1633–1656

    Google Scholar 

  2. Davidovits J (2008) Geopolymer, chemistry and application. Geopolymer Institute, Saint-Quentin

    Google Scholar 

  3. Glukovsky VD (1959) Gruntosilikaty. Grosstrojizdat, Kiev (in Russian)

    Google Scholar 

  4. Brandštetr J (1984) Slag-alkaline concretes. Stavivo 64:110–114, in Czech

    Google Scholar 

  5. Douglas E, Biloodeau A, Brandštetr J, Malhota M (1991) Activated ground granulated blast-furnace slag: preliminary investigation. Cem Concr Res 21:101–108

    Article  CAS  Google Scholar 

  6. Douglas E, Bilodeau A, Malhotra VM (1992) Properties and durability of alkali-activated slag concrete. ACI Mater J 89:509–516

    CAS  Google Scholar 

  7. Xu H, Van Deventer JSJ (2000) The geopolymerization of alumino-silicate minerals. Int J Miner Process 59:247–266

    Article  CAS  Google Scholar 

  8. Šoukal F, Opravil T, Ptáček P, Foller B, Brandštetr J, Roubíček P (2009) Geopolymers: amorphous ceramics via solution. In: Šesták J, Holeček M, Málek J (eds) Some thermodynamic, structural and behavioral properties of materials accentuating noncrystalline states. OPS-ZČU Plzeň, Czech Republic, pp 556–584. (ISBN 978-80-87269-06-0, available on request at sestak@fzu.cz)

    Google Scholar 

  9. Fletcher RA, MacKenzie KJD, Nicholson CL (2005) The composition range of aluminosilicate geopolymers. J Eur Ceram Soc 25:1471–1477

    Article  CAS  Google Scholar 

  10. Shi C, Krivenko VP, Roy D (2006) Alkali-activated cements and concretes. Taylor & Francis, Bristol. ISBN 978-0-415-70004-7

    Book  Google Scholar 

  11. Duxson P, Fernandez-Jimenez A, Provis JL, Lukey GC, Palomo A, van Deventer JSJ (2007) Geopolymers: the current state of the art. J Mater Sci 42:2917–2933

    Article  CAS  Google Scholar 

  12. Škvára F (2007) Alkali activated materials or geopolymers? Ceram-Silikáty 51:173–178

    Google Scholar 

  13. Kriven WM (2010) Inorganic polysialates or geopolymers. Am Ceram Soc Bull 89:31–34

    CAS  Google Scholar 

  14. Rahier H, Simons W, VanMele B (1997) Low-temperature synthesized aluminosilicate glasses. 3: influence of the composition of the silicate solution on production, structure and properties. J Mater Sci 32:2237–2247

    Article  CAS  Google Scholar 

  15. Barbosa VFF, MacKenzie KJD (2003) Synthesis and thermal behaviour of potassium sialate geopolymers. Mater Lett 57:1477–1482

    Article  CAS  Google Scholar 

  16. Rahier H, Denayer JF, Van Mele B (2003) Low-temperature synthesized aluminosilicate glasses – part IV – modulated DSC study on the effect of particle size of metakaolinite on the production of inorganic polymer glasses. J Mater Sci 38:3131–3136

    Article  CAS  Google Scholar 

  17. Duxson P, Mallicoat SW, Lukey GC (2007) The effect of alkali and Si/Al ratio on the development of mechanical properties of metakaolin-based geopolymers. Colloids Surf A Physicochem Eng Aspects 292:8–20

    Article  CAS  Google Scholar 

  18. Peter D, Provis JL (2008) Designing precursors for geopolymer cements. J Am Ceram Soc 91:3864–3869

    Article  Google Scholar 

  19. Bel JL, Driemeyer PE, Kriven WM (2009) Formation of ceramics from metakaolin based geopolymers. J Am Ceram Soc 91:607–615

    Article  Google Scholar 

  20. Yip CK, Lukey GC, Provis JL (2008) Effect of calcium silicate sources on geopolymerization. Cem Concr Res 38:554–564

    Article  CAS  Google Scholar 

  21. Barbosa VFF, MacKenzie KJD (2010) Synthesis and thermal behaviour of potassium sialate geopolymers. Mater Lett 57:1477–1482

    Article  Google Scholar 

  22. Barbosa VFF, MacKenzie KJD, Thaumaturgo C (2000) Synthesis and characterization of materials based on inorganic polymers of alumina and silica: sodium polysialate polymers. Int J Inorg Mater 2:309–317

    Article  CAS  Google Scholar 

  23. O'Connor SJ, MacKenzie KJD (2010) Synthesis, characterization and thermal behavior of lithium aluminosilicate inorganic polymers. J Mater Sci 45:3707–3713

    Article  Google Scholar 

  24. Cui XM, Liu LP, Zheng GJ (2010) Characterization of chemosynthetic Al2O3–2SiO2 geopolymers. J Non-Cryst Solids 356:72–76

    Article  CAS  Google Scholar 

  25. Bernal SA, Rodriguez ED, de Gutierrez RM (2011) Mechanical and thermal characterization of geopolymers based on silicate-activated metakaolin/slag blends. J Mater Sci 46:5477–5486

    Article  CAS  Google Scholar 

  26. Barbosa VFF, MacKenzie KJD (2003) Thermal behavior of inorganic geopolymers and composites derived from sodium polysialate. Mater Res Bull 38:319–331

    Article  CAS  Google Scholar 

  27. Zaharaki D, Kommitsas K, Perdikatsis V (2010) Use of analytical techniques for identification of inorganic polymer gel com-position. J Mater Sci 45:2715–2724

    Article  CAS  Google Scholar 

  28. Lobbus M, Vogelsberger W, Sonnefield J, Seidel A (1998) Current considerations for the dissolution kinetics of solid oxides with silica. Langmuir 14:3023–3033

    Article  Google Scholar 

  29. Trish TT, Jansen API, van Santen RA (2006) Mechanism of oligomerization reactions of silica. J Phys Chem 110:23099–23106

    Article  Google Scholar 

  30. Hlae D, Chandhary R (2007) Mechanism of geopolymerization and factors influencing its development: a review. J Mater Sci 42:729–746

    Article  Google Scholar 

  31. Rahier H, Wastiels J, Biesemans M, Williem R, van Assche G, van Mele B (2007) Reaction mechanism, kinetics and high temperature transformation of geopolymers. J Mater Sci 42:2982–2996

    Article  CAS  Google Scholar 

  32. Provis JL, van Deventer JS (2007) Geopolymerisation kinetics. 2. Reaction kinetic modelling. Chem Eng Sci 62(9):2318–2329

    Article  CAS  Google Scholar 

  33. John L, Walls PA, van Deventer JS (2008) Geopolymerization kinetics. 3. Effects of Cs and Sr salts. Chem Eng Sci 63:4480–4489

    Article  Google Scholar 

  34. Khale D, Chaudhary R (2007) Mechanism of geopolymerization and factors influencing its development: a review. J Mater Sci 42:729–746

    Article  CAS  Google Scholar 

  35. De Silva P, Sagoe-Crenstil K, Sirivivatnanon V (2007) Kinetics of geopolymerization: role of Al2O3 and SiO2. Cem Concr Res 37:512–518

    Article  Google Scholar 

  36. Buchwald A, Vicent M, Kriegel R (2009) Geopolymeric binders with different fine fillers: phase transformations at high temperatures. Appl Clay Sci 46:190–195

    Article  CAS  Google Scholar 

  37. Lloyd RR, Provis JL, van Deventer JSJ (2010) Quantitative mechanistic modeling of silica solubility and precipitation during the initial period of zeolite synthesis. Cem Concr Res 40:1386–1392

    Article  CAS  Google Scholar 

  38. Tian H, Zhang C, Wu L, Chen XY (2010) Studies of mechanism of silica polymerization reactions in the combination of silica sol and potassium sodium waterglass via isothermal heat conduction microcalorimetry. J Therm Anal Calorim 101:959–964

    Article  CAS  Google Scholar 

  39. Mysen BO, Richet P (2005) Silicate glasses and melts: properties and structure, developments in geochemistry. Elsevier, Amsterdam

    Google Scholar 

  40. Virgo D, Mysen BO, Kushiro I (1979) Anionic constitution of silicate melts. Science 208:1371–1377

    Article  Google Scholar 

  41. Murduch JB, Stebinm JF, Carmicheal ISE (1985) Effect of network-modifying cations in silicate and alumino-silicate melts and glasses. Am Mineral 70:332–339

    Google Scholar 

  42. Těmkin M (1945) Mixtures of fused salts as ionic solutions. Acta Physicochem URSS 20:4511–4519

    Google Scholar 

  43. Macháček J, Gedeon O, Liška M (2006) Group connectivity in binary silicate glasses. J Non-Cryst Solids 352:2173–2179

    Article  Google Scholar 

  44. Liška M, Macháček J, Perichta P, Gedeon O, Pilát J (2008) Thermochemical modeling and molecular dynamics simulations of calcium aluminate glasses. Ceram-Silikáty 52:61–65

    Google Scholar 

  45. Greaves GN, Sen S (2007) Inorganic glasses, glass-forming liquids and amorphizing solids: a review. Adv Phys 56:1–166

    Article  CAS  Google Scholar 

  46. Šesták J, Koga N, Strnad Z (2009) Nonbridging oxygen in silica biocompatible glassceramics and magnetic properties of Fe2O3 added borates. In: Šesták J, Holeček M, Málek J (eds) Some thermodynamic, structural and behavioral properties of materials accentuating noncrystalline states. OPS-ZČU Plzeň, Czech Republic, pp 354–386. (ISBN 978-80-87269-06-0, available on request at sestak@fzu.cz)

    Google Scholar 

  47. Nishida T, Oku H (2002) Local structure and chemical durability of FeOOH-fixed sodium silicate glass prepared from water glass. J Radioanal Nucl Chem 253:303–306

    Article  CAS  Google Scholar 

  48. Tsai MS, Huang PY, Yang CH (2006) Formation mechanism of colloidal silica via sodium silicates. J Nanopart Res 8:943949

    Article  Google Scholar 

  49. Gianopoulosu I, Pantas D (2011) Hydrolitic stability of sodium silicite gels in the presence of aluminium. J Mater Sci 45:5370–5377

    Article  Google Scholar 

  50. Hench LL (1997) Glasses and genes: a forecast for the future. Glastech Ber Glass Sci Technol 70:439–448; (1996) Life and death: the ultimate phase transformation. Thermochim Acta 280/281: 1–14

    Google Scholar 

  51. Hench LL (2011) Glass and glass-ceramics technologies to transform the world. Int J Appl Glass Sci 2:162–176

    Article  CAS  Google Scholar 

  52. Strnad Z, Šesták J (1999) Biocompatible glass-ceramics. In: Invited lecture at the 2nd international conference on intelligent processing and manufacturing of materials, Honolulu, p 123–129

    Google Scholar 

  53. Koga N, Strnad Z, Šesták J (2003) Thermodynamics of non-bridging oxygen in silica bio-compatible glass-ceramics for bone tissue substitution. J Therm Anal Calorim 71:927–941

    Article  CAS  Google Scholar 

  54. Šesták J, Strnad Z, Strnad J, Holeček M, Koga N (2008) Biomedical thermodynamics and implantology aspects of biocompatible glass-ceramics and otherwise modified inorganic materials and surfaces. Adv Mater Res 39/40:329–342

    Article  Google Scholar 

  55. Strnad Z, Strnad J (2009) Physicochemical properties, healing capacity of inorganic endosteal biomaterials used for mimetic bone substitution in implantology. In: Šesták J, Holeček M, Málek J (eds) Some thermodynamic, structural and behavioral properties of materials accentuating noncrystalline states. OPS-ZČU Plzeň, Czech Republic, pp 538–584. (ISBN 978-80-87269-06-0, available on request at sestak@fzu.cz)

    Google Scholar 

  56. MacKenzie KJD, Rahner N, Smith ME, Wong A (2010) Calcium-containing inorganic polymers as potential bioactive materials. J Mater Sci 45:999–1007

    Article  CAS  Google Scholar 

  57. Granizo ML, Alonso S, Blanco-Varela MT, Martinaz-Ramirez S (2007) Alkali activation of metakaolin: parameters affecting mechanical, structural and microstructural properties. J Mater Sci 42:2934–2943

    Article  CAS  Google Scholar 

  58. Duxson P, Provis JL, Lukey GC, Seaprovic P, van Deventer JSJ (2005) Si-NMR study of structural ordering in aluminosilicate geo-polymer gels. Langmuir 21:3028–3037

    Article  CAS  Google Scholar 

  59. Cho H, Felmy AR, Craciun R, Keenum JP, Shah N, Dixon DA (2006) NMR analysis to characterize an isotopically enriched sodium silicate solution. J Am Chem Soc 128:2324–2335; Knight CTG, Balec RJ, Kinrade SD (2007) The structure of silicate anions in aqueous alkaline solutions. Angew Chem Int Ed 46:8148–8152

    Google Scholar 

  60. Strnad Z (1992) Role of the glassy phase in bioactive ceramics. Bioceramics 13:317

    CAS  Google Scholar 

  61. Hench LL (1990) Handbook of bioactive ceramics, vol 1. CRC Press, Boca Raton, p 7

    Google Scholar 

  62. Strnad J, Strnad Z, Šesták J, Urban K, Povýšil C (2007) Bio-activated titanium surface utilizable for mimetic bone implantation in dentistry: surface characteristics and bone-implant contact formation. J Phys Chem Solids 68:841

    Article  CAS  Google Scholar 

  63. Strnad J, Strnad Z, Šesták J (2007) Physico-chemical properties and healing capacity of potentially bioactive titanium surface. J Therm Anal Calorim 8:775

    Article  Google Scholar 

  64. Steevels IM (1960) Philips Technol Rundschau 9/10:337

    Google Scholar 

  65. Strnad Z (1984) Glass-ceramic materials: liquid separation, nucleation and crystallization. Elsevier, Amsterdam

    Google Scholar 

  66. Masson CR (1965) Ionic distribution in liquid silicates. Proc R Soc A 287:201; (1968) Ionic equilibria in liquid silicates. J Am Ceram Soc 51:34

    Google Scholar 

  67. Kim HM, Miyaji F, Kokubo T, Ohtsuki C, Nakamura T (1995) Bioactivity of Na2O–CaO–SiO2 glasses. J Am Ceram Soc 8:2405

    Article  Google Scholar 

  68. Hench LL (1988) Biomaterials: materials characteristics versus in vivo behavior. In: Ducheyne P, Lemons J (eds) Bioceramics, vol 523. Ann NY Acad Sci, New York, p 54

    Google Scholar 

  69. Wagh AS, Jeong SY (2003) Chemically bonded phosphate ceramics: dissolution model of formation. J Am Ceram Soc 86:1838–1844

    Article  CAS  Google Scholar 

  70. Wagh AS (2004) Chemically bonded phosphate ceramics: 21st century materials with diverse application. Elsevier, Amsterdam. ISBN 0-08-044505-5

    Google Scholar 

  71. Wagh AS (2011) Phosphate geopolymeric materials. In: Proceedings of the 35th international conference on advanced ceramics and composites of the American ceramic. Society, Dayton, OH

    Google Scholar 

  72. Gomes KC, Lima GST, Torres SM (2010) Iron distribution in geopolymers with ferromagnetic rich precursor in functional and structural materials, book series. Mater Sci Forum 643:131–138

    Article  CAS  Google Scholar 

  73. Granizo ML, Alonso S, Blanco-Varela MT, Martinaz-Ramirez S (2002) Alkaline activation of metakaolin: effect of calcium hydroxide in the products of reaction. J Am Ceram Soc 85:225–231

    Article  CAS  Google Scholar 

  74. Poděbradská J, Černý J, Drchalová J, Rovnaníková P, Šesták J (2004) Analysis of glass fiber reinforced cement composites re-garding their thermal and hygric/moist material parameters. J Therm Anal Calorim 77:85–97

    Article  Google Scholar 

  75. Foller B (2011) Systematic classification of pultrusion technology. In: Proceedings of the polymer composites 2011, JECMAGAZINE, ZČU Plzeň, pp 22–26

    Google Scholar 

  76. Deak T, Czigany T, Marsalkova M, Militký J (2010) Manufacturing and testing of long basalt fiber reinforcing thermoplastic matrix composites. Polym Eng Sci 50:2448–2456; Militký J, Kovačič V, Křemenáková D. Basalt filaments – properties and applications. In: Šesták J, Holeček M, Málek J (eds) Some thermodynamic, structural and behavioral properties of materials accentuating noncrystalline states. OPS-ZČU Plzeň, Czech Republic, pp 499–520

    Google Scholar 

  77. Foller B, Šesták J (2012) Composite geopolymers and their research study at NTC laboratory for rheological and thermal re-search. In: Dubaj T, Cibulková Z (eds) Proceedings of the 3rd joint Czech–Hungarian–Polish–Slovak thermoanalytical conference – TERMANAL 2011. Slovak Chemical Society, Bratislava, p SL7; Šesták J, Foller B (2012) Some aspects of composite inorganic polysialates. J Thermal Anal Calorim 108:511–517 doi: 10.1007/s10973-011-2037-0

    Google Scholar 

  78. Šesták J (1996) Use of phenomenological enthalpy versus temperature diagram (and its derivative-DTA) for a better under-standing of transition phenomena in glasses. Thermochim Acta 280/281:175–190

    Article  Google Scholar 

  79. Wunderlich B (2007) Glass transition as a key to identifying solid phases. J Appl Polym Sci 105:49–59

    Article  CAS  Google Scholar 

  80. Wunderlich B (2001) The three reversible crystallization and melting processes of semicrystalline macromolecules. Thermochim Acta 396:33–41; (2011) Influence of the liquid-to-solid transitions on the changes of macromolecules from disorder to order. Thermochim Acta 522:2–13

    Google Scholar 

  81. Queiroz C, Šesták J (2010) Aspects of the non-crystalline state. Phys Chem Glass Eur J Glass Sci Technol B 51:165–172

    CAS  Google Scholar 

  82. Hutchinson JM (2009) Determination of the glass transition temperature: methods correlation and structural heterogeneity. J Therm Anal Calorim 98:579–589

    Article  CAS  Google Scholar 

  83. Šesták J, Kozmidis-Petrovic A, Živkovič Ž (2011) Crystallization kinetics accountability and the correspondingly developed glass-forming criteria. J Min Metall Sect B-Metall:229–239; Kozmidis-Petrovic A, Šesták J (2012) Forty years of the Hrubý glass-forming coefficient via DTA figures regarding glass-forming ability and glass stability. J Thermal Anal Calorim. doi: 10.1007/s10973-011-1926-60 (in print)

  84. Duxson P, Provis JL, Lukey GC (2005) Understanding the relationship between geopolymer composition, microstructure and mechanical properties. Colloid Surf Phys Chem Eng Aspects 269:47–58

    Article  CAS  Google Scholar 

  85. Provis JL, Duxson P, van Deventer JSJ (2005) The role of mathematical modeling and gel chemistry in advancing geopolymer technology. Chem Eng Res Des 83:853–860

    Article  CAS  Google Scholar 

  86. Duxson P, Provis JL, Lukey GC (2005) Understanding the relationship between geopolymer composition, microstructure and mechanical properties. Colloid Surf Physicochem Eng Aspects 269:47–58

    Article  CAS  Google Scholar 

  87. Conrad CF, Icopini GA, Yasubara H, Nandstra JZ, Brantly SL (2007) Modeling of kinetics of nanocolloid formation and precipitation of silica in geologically relevant aqueous solutions. Geochem Cosmochim Acta 71:531–542

    Article  CAS  Google Scholar 

  88. White CE, Provis JL, Proffen T (2011) Quantitative mechanistic modeling of silica solubility and precipitation during the initial period of zeolite synthesis. J Phys Chem C 115:9879–9888

    Article  CAS  Google Scholar 

  89. Foller B (2011) Dynamic mechanical analysis of composites with a defined magnetic permeability. In: Proceedings of the polymer composites 2011. JECMAGAZINE, ZČU Plzeň, pp 7–10

    Google Scholar 

  90. Feng D, Tan H, Van Deventer JSJ (2004) Ultrasound enhanced geopolymerisation. J Mater Sci 39:571–580

    Article  CAS  Google Scholar 

  91. Iler RK (1979) The chemistry of silica, solubility, polymerization, colloid and surface properties, and biochemistry. Wiley, New York

    Google Scholar 

  92. Devison B (2004) The origin of precious opal: a new model. Aust Gemmol 22:50–58

    Google Scholar 

  93. Williams LA, Crerar DA (1985) Silica diagenesis. I. Solubility controls. J Sedim Petrol 55:301–311; II. General mechanisms. J Sedim Petrol 55:312–321

    Google Scholar 

  94. Thomas P, Heide K, Šesták J (2009) Properties of some natural glasses: Australian opals and Czech tektite Moldavites. In: Šesták J, Holeček M, Málek J (eds) Some thermodynamic, structural and behavioral properties of materials accentuating noncrystalline states. OPS-ZČU Plzeň, Czech Republic, pp 200248 (ISBN 978-80-87269-06-0, available on request at sestak@fzu.cz)

    Google Scholar 

  95. Thomas P, Šesták J, Heide K, Füeglein E, Šimon P (2010) Thermal properties of Australian sedimentary opals and Czech Moldavites. J Therm Anal Calorim 99:861–867

    Article  CAS  Google Scholar 

  96. (2005) I: Sol-gel processing. In: Kozuka H (ed) Handbook of Sol-gel science and technology. Springer, Berlin (ISBN 978-1-4020-7969-6); (2005) II: Characterization of Sol-gel materials and products. In: Almeida RM (ed) Handbook of Sol-gel science and technology. Springer, Berlin (ISBN 978-1-4020-7969-6); (2005) III: Applications of Sol–gel technology. In: Sakka S (ed) Handbook of Sol-gel science and technology. Springer, Berlin 2005 (ISBN 978-1-4020-7969-6)

    Google Scholar 

  97. Perry CC, Keeling TT (2000) Biosolidification: the role of the organic matrix in structure control. J Biol Inorg Chem 5:537–550

    Article  CAS  Google Scholar 

  98. Kim D, Petrisor IG, Yen TFY (2004) Geopolymerizartion of biopolymers: a preliminary inquiry. Carbohydr Polym 56:213–217

    Article  CAS  Google Scholar 

  99. Kim D, Lai H-T, Chilingar GV, Yen TFY (2006) Geopolymer formation and its unique properties. Environ Geol 51:103111

    Article  Google Scholar 

  100. Coradin T, Livage J (2007) Aqueous silicates in biological sol-gel applications: new perspective of old precursors. Acta Chem Res 40:819–826

    Article  CAS  Google Scholar 

  101. Kim D, Lai H-T, Chilingar GV, Yen TF (2006) Geopolymer formation and its unique properties. Environ Geol 51:103–111

    Article  CAS  Google Scholar 

  102. Granja PL, Barbosa MA, Pouysegu L, de Joso B, Rouvais F, Baquey C (2011) Cellulose phosphates and biomaterials, mineralization of chemically modified regenerated cellulose hydrogels. J Mater Sci 36:2163–2172

    Article  Google Scholar 

  103. Zámečník J, Bilavčík A, Faltus M, Šesták J (2003) Water state in plants at low and ultra-low temperatures. CryoLetters 24:412--416

    Google Scholar 

  104. Šesták J, Zámečník J (2007) Can clustering of liquid water and thermal analysis be of assistance for better understanding of biological glasses exposed to ultra-low temperatures. J Therm Anal Calorim 88:411–416

    Article  Google Scholar 

  105. Zámečník J, Šesták J (2009) Biological glasses and their formation during overwintering and cryopreservation of plants. In: Šesták J, Holeček M, Málek J (eds) Some thermodynamic, structural and behavioral properties of materials accentuating noncrystalline states. OPS-ZČU Plzeň, Czech Republic, pp 176–198. (ISBN 978-80-87269-06-0, available on request at sestak@fzu.cz)

    Google Scholar 

  106. Šesták J, Mareš JJ, Hubik P (eds) (2011) Glassy, amorphous and nano-crystalline materials I: thermal physics, analysis, structure and properties. Springer, Berlin

    Google Scholar 

  107. Chvoj Z, Šesták J, Tříska A (1991) Kinetic phase diagrams: nonequilibrium phase transitions. Elsevier, Amsterdam

    Google Scholar 

  108. Zhang J, Provis JL, Feng D, Van Jannie JSJ (2008) Geopolymers for immobilization of heavy metals. J Hazard Mater 157:587–598

    Article  CAS  Google Scholar 

  109. Provis JL, Lukey GC, van Deventer JSJ (2005) Do geopolymers actually contain nanocrystalline zeolites? Chem Mater 17:3075–3085

    Article  CAS  Google Scholar 

  110. Roduner E, Cronin L (2007) Nanoscopic materials: size-dependent phenomena. RSC, Cambridge 2006. (IBSN 978-1-84755-763-6)

    Google Scholar 

  111. Zhang Z, Li JC, Jiang Q (2000) Modelling for size-dependent and dimension-dependent melting of nanocrystals. J Phys D: Appl Phys 33:2653–2656

    Article  CAS  Google Scholar 

  112. Baletto F, Ferrando R (2005) Structural properties of nanoclusters: energetic, thermodynamic and kinetic effects. Rev Mod Phys 77:371–423

    Article  CAS  Google Scholar 

  113. Vanithakumari SC, Nanda KK (2008) Universal relation for the cohesive energy of nanoparticles. Phys Lett A 372:6930–6934

    Article  CAS  Google Scholar 

  114. Guisbiers G, Buchaillot L (2009) Universal size/shape-dependent law for characteristic temperatures. Phys Lett A 374:305–308

    Article  CAS  Google Scholar 

  115. Jiang Q, Li S (2008) Thermodynamic considerations on solid structural transition temperatures of nanocrystals. J Comput Theor Nanosci 5:2346–2364

    Article  CAS  Google Scholar 

  116. Barnard AS (2010) Modelling of nanoparticles: approaches to morphology and evolution: a review. Rep Prog Phys 73:6502–6554

    Article  Google Scholar 

  117. Mayoral A, Barron H, Salas RE, Duran AV, Yacamán MJ (2010) Nanoparticle stability from the nano to the meso interval. Nanoscale 2:335–342

    Article  CAS  Google Scholar 

  118. Leitner J (2011) Temperature of nanoparticles melting. Chem Listy 105:174–185 (in Czech)

    CAS  Google Scholar 

Download references

Acknowledgments

This work has been carried out by NTC ZCU Pilsen under the support of the projects N° FR-TI 1/335 “Geopolymeric composites with high technical parameters” and N° TA 030 111 64 “New method for the preparation of inorganic materials based on alkali-activated aluminosialates” provided by the Ministry of Industry and Business of the Czech Republic as well as within the CENTEM project, reg. no. CZ.1.05/2.1.00/03.0088 that is co-funded from the ERDF within the OP RDI program of the Ministry of Education, Youth and Sports. The text was also completed under the support of the Taiwan National Science Council, during the visit at the Taiwan National University in Taipei, September 2012.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jaroslav Šesták .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Šesták, J., Koga, N., Šimon, P., Foller, B., Roubíček, P., Wu, NL.N. (2012). Amorphous Inorganic Polysialates: Geopolymeric Composites and the Bioactivity of Hydroxyl Groups. In: Šesták, J., Šimon, P. (eds) Thermal analysis of Micro, Nano- and Non-Crystalline Materials. Hot Topics in Thermal Analysis and Calorimetry, vol 9. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-3150-1_21

Download citation

Publish with us

Policies and ethics