Skip to main content
Log in

Determination of the glass transition temperature

Methods correlation and structural heterogeneity

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The definition of the glass transition temperature, T g, is recalled and its experimental determination by various techniques is reviewed. The diversity of values of T g obtained by the different methods is discussed, with particular attention being paid to Differential Scanning Calorimetry (DSC) and to dynamic techniques such as Dynamic Mechanical Thermal Analysis (DMTA) and Temperature Modulated DSC (TMDSC). This last technique, TMDSC, in particular, is considered in respect of ways in which the heterogeneity of the glass transformation process can be quantified.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Rehage G, Borchard W. The thermodynamics of the glassy state. In: Haward RN, editor. The physics of glassy polymers. Barking: Applied Science Publishers; 1973. p. 54–107.

    Google Scholar 

  2. McKinney JE, Simha R. Thermodynamics of the densification process for polymer glasses. J Res Nat Bur Std. 1977;81A:283–97.

    CAS  Google Scholar 

  3. Montserrat S. Vitrification and further structural relaxation in the isothermal curing of an epoxy resin. J Appl Polym Sci. 1992;44:545–54.

    Article  CAS  Google Scholar 

  4. ASTM D3418-08. Standard Test Method for Transition Temperatures and Enthalpies of Fusion and Crystallization of Polymers by Differential Scanning Calorimetry; 2008.

  5. Wunderlich B. The basis of thermal analysis. In: Turi EA, editor. Thermal characterization of polymeric materials. Orlando: Academic Press Inc; 1981. p. 91–234.

    Google Scholar 

  6. Kovacs AJ. Transition vitreuse dans les polymers amorphes. Etude phénoménologique. Fortschr Hochpolym Forsch. 1963;3:394–507.

    Article  Google Scholar 

  7. McCrum NG, Read BE, Williams G. Anelastic and dielectric effects in polymeric solids. New York: Wiley; 1963.

    Google Scholar 

  8. Hutchinson JM, Ingram MD, Robertson AHJ. The effects of pressure and densification on ionic conductivities in silver iodomolybdate glasses. Phil Mag B. 1992;66:449–61.

    Article  CAS  Google Scholar 

  9. Hutchinson JM, Kovacs AJ. Effects of thermal history on structural recovery of glasses during isobaric heating. Polym Eng Sci. 1984;24:1087–103.

    Article  CAS  Google Scholar 

  10. Hutchinson JM, Ruddy M. Thermal cycling of glasses. 2. Experimental evaluation of the structure (or non-linearity) parameter x. J Polym Sci Polym Phys. 1988;26:2341–66.

    Article  CAS  Google Scholar 

  11. Struik LCE. Physical aging in amorphous polymers and other materials. Amsterdam: Elsevier; 1978.

    Google Scholar 

  12. Hutchinson JM, Bucknall CB. Effects of thermal history on the density and mechanical properties of poly(methyl methacrylate). Polym Eng Sci. 1980;20:173–81.

    Article  CAS  Google Scholar 

  13. Hutchinson JM. Physical aging of polymers. Prog Polym Sci. 1995;20:703–60.

    Article  CAS  Google Scholar 

  14. Hensel A, Dobbertin J, Schawe JEK, Boller A, Schick C. Temperature modulated calorimetry and dielectric spectroscopy in the glass transition region of polymers. J Therm Anal. 1996;46:935–54.

    Article  CAS  Google Scholar 

  15. Schawe JEK. Investigations of the glass transitions of organic and inorganic substances: DSC and temperature-modulated DSC. J Therm Anal. 1996;47:475–84.

    Article  CAS  Google Scholar 

  16. Hensel A, Schick C. Relation between freezing-in due to linear cooling and the dynamic glass transition temperature by temperature-modulated DSC. J Non-Cryst Solids. 1998;235:510–6.

    Article  Google Scholar 

  17. Hutchinson JM, Montserrat S. The application of temperature-modulated DSC to the glass transition region II. Effect of a distribution of relaxation times. Thermochim Acta. 2001;377:63–84.

    Article  CAS  Google Scholar 

  18. Donth E. The glass transition. Relaxation dynamics in liquids and disordered materials. Berlin: Springer; 2001.

    Google Scholar 

  19. Montserrat S, Calventus Y, Hutchinson JM. Effect of cooling rate and frequency on the calorimetric measurement of the glass transition. Polymer. 2005;46:12181–9.

    Article  CAS  Google Scholar 

  20. Tool AQ. Relation between inelastic deformability and thermal expansion of glass in its annealing range. J Am Ceram Soc. 1946;29:240–53.

    Article  CAS  Google Scholar 

  21. Richardson MJ, Savill NG. Derivation of accurate glass-transition temperatures by differential scanning calorimetry. Polymer. 1975;16:753–7.

    Article  CAS  Google Scholar 

  22. Moynihan CT, Easteal AJ, DeBolt MA, Tucker J. Dependence of fictive temperature of glass on cooling rate. J Am Ceram Soc. 1976;59:12–6.

    Article  CAS  Google Scholar 

  23. Hodge IM. Enthalpy relaxation and recovery in amorphous materials. J Non-Cryst Solids. 1994;169:211–66.

    Article  CAS  Google Scholar 

  24. Narayanaswamy OS. Model of structural relaxation in glass. J Am Ceram Soc. 1971;54:491–8.

    Article  CAS  Google Scholar 

  25. Vogel H. Das Temperaturabhängigkeitsgesetz der Viscosität von Flüssigkeiten. Physik Z. 1921;22:645–6.

    CAS  Google Scholar 

  26. Fulcher GS. Analysis of recent measurements of the viscosity of glasses. J Am Ceram Soc. 1925;8:339–55.

    Article  CAS  Google Scholar 

  27. Tammann G, Hesse W. Die Abhängigkeit der Viscosität von der Temperatur bei unterkühlten Flüssigkeiten. Z anorg Allgem Chem. 1926;156:245–51.

    Article  Google Scholar 

  28. Angell CA. Strong and fragile liquids. In: Ngai KL, Wright GB, editors. Relaxations in complex systems. Springfield, VA: US Department of Commerce; 1984. p. 3–11.

    Google Scholar 

  29. Chryssikos GD, Duffy JA, Hutchinson JM, Ingram MD, Kamitsos EI, Pappin AJ. Lithium borate glasses: a quantitative study of strength and fragility. J Non-Cryst Solids. 1994;172:378–83.

    Article  Google Scholar 

  30. Sokolov AP, Novikov VN, Ding Y. Why many polymers are so fragile. J Phys Condens Matter 2007;19:Art. No. 205116 (8 pp).

  31. Hutchinson JM. Interpretation of glass transition phenomena in the light of the strength-fragility concept. Polym Int. 1998;47:56–64.

    Article  CAS  Google Scholar 

  32. Adam G, Gibbs JH. On the temperature dependence of cooperative relaxation properties in glass-forming liquids. J Chem Phys. 1965;43:139–46.

    Article  CAS  Google Scholar 

  33. Hutchinson JM, Montserrat S, Calventus Y, Cortés P. Application of the Adam-Gibbs equation to the non-equilibrium glassy state. Macromolecules. 2000;33:5252–62.

    Article  CAS  Google Scholar 

  34. Gibbs JH, DiMarzio EA. Nature of the glass transition and the glassy state. J Chem Phys. 1958;28:373–83.

    Article  CAS  Google Scholar 

  35. Doolittle AK. Studies in Newtonian flow. 2. The dependence of the viscosity of liquids on free space. J Appl Phys. 1951;22:1471–5.

    Article  CAS  Google Scholar 

  36. Kovacs AJ, Hutchinson JM, Aklonis JJ. Isobaric volume and enthalpy recovery of glasses. (I). A critical survey of recent phenomenological approaches. In: Gaskell PH, editor. The structure of non-crystalline materials. London: Taylor and Francis; 1977. p. 153–63.

    Google Scholar 

  37. Pappin AJ, Hutchinson JM, Ingram MD. Enthalpy relaxation in polymer glasses: evaluation and interpretation of the Tool–Narayanaswamy parameter x for poly(vinyl chloride). Macromolecules. 1992;25:1084.

    Article  CAS  Google Scholar 

  38. Montserrat S, Cortés P, Pappin AJ, Quah KH, Hutchinson JM. Structural relaxation in fully cured epoxy resins. J Non-Cryst Solids. 1994;172:1017–22.

    Article  Google Scholar 

  39. Hutchinson JM, Ruddy M, Wilson MR. Differential scanning calorimetry of polymer glasses: corrections for thermal lag. Polymer. 1988;29:152–9.

    Article  CAS  Google Scholar 

  40. Kovacs AJ. La contraction isotherme du volume des polymères amorphes. J Polym Sci. 1958;30:131–47.

    Article  CAS  Google Scholar 

  41. Slobodian P, Riha P, Rychwalski RW, Emri I, Saha P, Kubát J. The relation between relaxed enthalpy and volume during physical aging of amorphous polymers and selenium. Eur Polym J. 2006;42:2824–37.

    Article  CAS  Google Scholar 

  42. Hadac J, Slobodian P, Riha P, Saha P, Rychwalski RW, Emri I, et al. Effect of cooling rate on enthalpy and volume relaxation of polystyrene. J Non-Cryst Solids. 2007;353:2681–91.

    Article  CAS  Google Scholar 

  43. Malek J. Volume and enthalpy relaxation rate in glassy materials. Macromolecules. 1998;31:8312–22.

    Article  CAS  Google Scholar 

  44. Malek J, Mitsuhashi T. Comparison between volume and enthalpy relaxations in non-crystalline solids based on the fictive relaxation rate. J Therm Anal Calorim. 1999;57:707–16.

    Article  CAS  Google Scholar 

  45. Svoboda R, Pustkova P, Malek J. Volume relaxation of a-Se studied by mercury dilatometry. J Non-Cryst Solids. 2006;352:4793–9.

    Article  CAS  Google Scholar 

  46. Svoboda R, Pustkova P, Malek J. Structural relaxation of polyvinyl acetate (PVAc). Polymer. 2008;49:3176–85.

    Article  CAS  Google Scholar 

  47. Petrie SEB. Thermal behavior of annealed organic glasses. J Polym Sci Pt A2. 1972;10:1255–72.

    Article  CAS  Google Scholar 

  48. Sasabe H, Moynihan CT. Structural relaxation in polyvinyl acetate. J Polym Sci Polym Phys. 1978;16:1447–57.

    CAS  Google Scholar 

  49. Perez J, Cavaille JY, Calleja RD, Ribelles JLG, Pradas MM, Greus AR. Physical aging of amorphous polymers: theoretical analysis and experiments on poly(methyl methacrylate). Makromol Chem. 1991;192:2141–61.

    Article  CAS  Google Scholar 

  50. Adachi K, Kotaka T. Volume and enthalpy relaxation in polystyrene. Polym J. 1982;14:959–70.

    Article  CAS  Google Scholar 

  51. Simon SL, Plazek DJ, Sobieski JW, McGregor ET. Physical aging of a polyetherimide: volume recovery and its comparison to creep and enthalpy measurements. J Polym Sci Polym Phys. 1997;35:929–36.

    Article  CAS  Google Scholar 

  52. Simon SL, Sobieski JW, Plazek DJ. Volume and enthalpy recovery of polystyrene. Polymer. 2001;42:2555–67.

    Article  CAS  Google Scholar 

  53. Számel G, Klebert S, Sajó I, Pukanszky B. Thermal analysis of cellulose acetate modified with caprolactone. J Therm Anal Calorim. 2008;91:715–22.

    Article  Google Scholar 

  54. Cook WD, Scott TF, Quay-Thevenon S, Forsythe JS. Dynamic mechanical thermal analysis of thermally stable and thermally reactive network polymers. J Appl Polym Sci. 2004;93:1348–59.

    Article  CAS  Google Scholar 

  55. Kelly A, Hine PJ, Landert M, Ward IM. The effect of the measurement frequency on the elastic anisotropy of fibre laminates. J Mater Sci. 2005;40:4461–7.

    Article  CAS  Google Scholar 

  56. Cook WD, Chen F, Pattison DW, Hopson P, Beaujon M. Thermal polymerization of thiolene network-forming systems. Polym Int. 2007;56:1572–9.

    Article  CAS  Google Scholar 

  57. Delin M, Rychwalski RW, Kubát J, Klason C, Hutchinson JM. Physical aging time scales and rates for poly(vinyl acetate) stimulated mechanically in the Tg region. Polym Eng Sci. 1996;36:2955–67.

    Article  CAS  Google Scholar 

  58. Lionetto F, Maffezzoli A. Relaxations during the post-cure of unsaturated polyester networks by ultrasonic wave propagation, dynamic mechanical analysis, and dielectric analysis. J Polym Sci Polym Phys. 2005;43:596–602.

    Article  CAS  Google Scholar 

  59. Montserrat S. Vitrification and physical aging on isothermal curing of an epoxy resin. J Therm Anal. 1991;37:1751–8.

    Article  CAS  Google Scholar 

  60. Cassettari M, Salvetti G, Tombari E, Veronesi S, Johari GP. Calorimetric determination of vitrification time and heat capacity of a thermosetting polymer. J Polym Sci Polym Phys. 1993;31:199–205.

    Article  CAS  Google Scholar 

  61. Van Assche G, Van Hemelrijck A, Raier H, Van Mele B. Modulated differential scanning calorimetry: isothermal cure and vitrification of thermosetting systems. Thermochim Acta. 1995;268:121–42.

    Article  Google Scholar 

  62. Van Hemelrijck A, Van Mele B. Modulated temperature differential scanning calorimetry: characterization of curing systems by TTT and CHT diagrams. J Therm Anal. 1997;49:437–42.

    Article  Google Scholar 

  63. Montserrat S, Cima I. Isothermal curing of an epoxy resin by alternating differential scanning calorimetry. Thermochim Acta. 1999;330:189–200.

    Article  CAS  Google Scholar 

  64. Montserrat S, Pla X. Use of temperature-modulated DSC in kinetic analysis of a catalysed epoxy-anhydride system. Polym Int. 2004;53:326–31.

    Article  CAS  Google Scholar 

  65. Hutchinson JM. Characterising the glass transition and relaxation kinetics by conventional and temperature-modulated differential scanning calorimetry. Thermochim Acta. 1998;324:165–74.

    Article  CAS  Google Scholar 

  66. Hutchinson JM. Studying the glass transition by DSC and TMDSC. J Therm Anal Calorim. 2003;72:619–29.

    Article  CAS  Google Scholar 

  67. Fraga I, Montserrat S, Hutchinson JM. Vitrification during the isothermal cure of thermosets. Part I. An investigation using TOPEM, a new temperature modulated technique. J Therm Anal Calorim. 2008;91:687–95.

    Article  CAS  Google Scholar 

  68. Fraga I, Montserrat S, Hutchinson JM. Vitrification during the isothermal cure of thermosets: comparison of theoretical simulations with temperature-modulated DSC and dielectric analysis. Macromol Chem Phys. 2008;209:2003–11.

    Article  CAS  Google Scholar 

  69. Hutchinson JM, Montserrat S. The application of modulated differential scanning calorimetry to the glass transition: theoretical analysis using a single parameter model. J Therm Anal. 1996;47:103–15.

    Article  CAS  Google Scholar 

  70. Hutchinson JM, Montserrat S. The application of modulated differential scanning calorimetry to the glass transition of polymers.1. A single-parameter theoretical model and its predictions. Thermochim Acta. 1996;286:263–96.

    Article  CAS  Google Scholar 

  71. Hutchinson JM, Montserrat S. A theoretical model of temperature-modulated differential scanning calorimetry in the glass transition region. Thermochim Acta. 1997;304:257–65.

    Article  Google Scholar 

  72. Montserrat S, Hutchinson JM. On the measurement of the width of the distribution of relaxation times in polymer glasses. Polymer. 2002;43:351–5.

    Article  CAS  Google Scholar 

  73. Jiang Z, Hutchinson JM, Imrie CT. Temperature-modulated differential scanning calorimetry. Part II. Determination of activation energies. Polym Int. 1998;47:72–5.

    Article  CAS  Google Scholar 

  74. Schawe JEK, Hütter T, Heitz C, Alig I, Lelliger D. Stochastic temperature modulation: a new technique in temperature-modulated DSC. Thermochim Acta. 2006;446:147–55.

    Article  Google Scholar 

  75. Donth E, Korus J, Hempel E, Beiner M. Comparison of DSC heating rate and HCS frequency at the glass transition. Thermochim Acta. 1997;304:239–49.

    Article  Google Scholar 

  76. Weyer S, Hensel A, Korus J, Donth E, Schick C. Broad band heat capacity spectroscopy in the glass-transition region of polystyrene. Thermochim Acta. 1997;304:251–5.

    Article  Google Scholar 

  77. Weyer S, Merzlyakov M, Schick C. Application of an extended Tool–Narayanaswamy–Moynihan model. Part 1. Description of vitrification and complex heat capacity measured by temperature-modulated DSC. Thermochim Acta. 2001;377:85–96.

    Article  CAS  Google Scholar 

  78. Weyer S, Huth H, Schick C. Application of an extended Tool–Narayanaswamy–Moynihan model. Part 2. Frequency and cooling rate dependence of glass transition from temperature modulated DSC. Polymer. 2005;46:12240–6.

    Article  CAS  Google Scholar 

  79. Donth E. The size of the cooperatively rearranging regions at the glass transition. J Non-Cryst Solids. 1982;53:325–30.

    Article  CAS  Google Scholar 

  80. Kovacs AJ, Aklonis JJ, Ramos AR, Hutchinson JM. Isobaric volume and enthalpy recovery of glasses. II. A transparent multiparameter theory. J Polym Sci Polym Phys. 1979;17:1097–162.

    CAS  Google Scholar 

  81. Ngai KL. Universality of low-frequency fluctuation, dissipation and relaxation properties of condensed matter. I. Comments on Solid State Phys. 1979;9:127–40.

    CAS  Google Scholar 

  82. Ngai KL. Universality of low-frequency fluctuation, dissipation and relaxation properties of condensed matter. II. Comments on Solid State Phys. 1980;9:141–55.

    CAS  Google Scholar 

  83. Ngai KL, Rendell RW, Rajagopal AK, Teitler S. Three coupled relations for relaxations in complex systems. Ann N Y Acad Sci. 1986;484:150–84.

    Article  CAS  Google Scholar 

  84. Danch A. Some comments on nature of the structural relaxation and glass transition. J Therm Anal Calorim. 2008;91:733–6.

    Article  CAS  Google Scholar 

  85. Tracht U, Wilhelm M, Heuer A, Feng H, Schmidt-Rohr K, Spiess HW. Length scale of dynamic heterogeneities at the glass transition determined by multidimensional nuclear magnetic resonance. Phys Rev Lett. 1998;81:2727–30.

    Article  CAS  Google Scholar 

  86. Russell EV, Israeloff NE. Direct observation of molecular cooperativity near the glass transition. Nature. 2000;408:695–8.

    Article  CAS  Google Scholar 

  87. Tyagi M, Alegria A, Colmenero J. Heterogeneous dynamics of poly(vinyl acetate) far above Tg: a combined study by dielectric spectroscopy and quasi-elastic neutron scattering. J Chem Phys. 2005;122:244909. (13 pp).

    Article  Google Scholar 

  88. Huth H, Beiner M, Weyer S, Merzlyakov M, Schick C, Donth E. Glass transition cooperativity from heat capacity spectroscopy: temperature dependence and experimental uncertainties. Thermochim Acta. 2001;377:113–24.

    Article  CAS  Google Scholar 

  89. Donth E. Characteristic length of the glass transition. J Polym Sci Polym Phys. 1996;34:2881–92.

    Article  CAS  Google Scholar 

  90. Schröter K. Characteristic length of glass transition heterogeneity from calorimetry. J Non-Cryst Solids. 2006;352:3249–54.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John M. Hutchinson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hutchinson, J.M. Determination of the glass transition temperature. J Therm Anal Calorim 98, 579–589 (2009). https://doi.org/10.1007/s10973-009-0268-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-009-0268-0

Keywords

Navigation