Skip to main content

Circadian Clock Genes and Mood Disorders

  • Chapter
  • First Online:
Melatonin, Neuroprotective Agents and Antidepressant Therapy

Abstract

Circadian clocks are driven by signals from the wild in order to match the functions of an organism with the passage of the solar day and to reset their intrinsic phase relative to external local time. A key function of the circadian clocks allows individuals to anticipate routine environmental conditions and to adjust their behaviors to the change of conditions. Clinical data have demonstrated that abnormalities in the circadian rhythms often exist in patients with mood disorders. The findings which have gained support indicate that genetic variants of CRY1 (rs2287161) and RORA (rs2028122) associate with depressive disorder; those of CRY2 (rs7121611, rs10838524, rs7945565, rs1401419) with dysthymia; those of RORA (rs782931), RORB (rs7022435, rs3750420, rs1157358, rs3903529), NR1D1 (rs2314339), and TIMELESS (rs774045) with bipolar disorder; and those of NPAS2 (rs11541353) and CRY2 (rs10838524) with seasonal affective disorder. Thus far, of these findings, two have been replicated by using independent samples. The association of CRY1 rs2287161 with depressive disorder has been replicated and that of CRY2 rs10838524 with recurrent major depressive disorder with seasonal pattern (the winter type of seasonal affective disorder) has been replicated as well. Beyond, CRY2 rs10838524 has also been associated with dysthymia. Hence, the CRY1 and CRY2 genes seem to be biological keys to depressive disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ARNTL:

Aryl hydrocarbon receptor nuclear translocator-like

ARNTL2:

Aryl hydrocarbon receptor nuclear translocator-like 2

BHLHE40:

Basic helix-loop-helix family, member E40

BHLHE41:

Basic helix-loop-helix family, member E41

CLOCK:

Clock circadian regulator

CRY1:

Cryptochrome circadian clock 1

CRY2:

Cryptochrome circadian clock 2

CSNK1E:

Casein kinase 1, epsilon

GSK3B:

Glycogen synthase kinase 3 beta

NPAS2:

Neuronal pas [period–aryl hydrocarbon receptor nuclear translocator–single-minded] domain protein 2

NR1D1:

Nuclear receptor subfamily 1, group D, member 1

PER1:

Period circadian clock 1

PER2:

Period circadian clock 2

PER3:

Period circadian clock 3

RORA:

RAR [retinoic acid receptor]-related orphan receptor A

RORB:

RAR-related orphan receptor B

RORC:

RAR-related orphan receptor C

TIMELESS:

Timeless circadian clock

VIP:

Vasoactive intestinal peptide

References

  1. Kannan NN, Vaze KM, Sharma VK. Clock accuracy and precision evolve as a consequence of selection for adult emergence in a narrow window of time in fruit flies Drosophila melanogaster. J Exp Biol. 2012;215:3527–34.

    Article  PubMed  Google Scholar 

  2. Vaze KM, Kannan NN, Abhilash L, Sharma VK. Chronotype differences in Drosophila are enhanced by semi-natural conditions. Naturwissenschaften. 2012;99:967–71.

    Article  CAS  PubMed  Google Scholar 

  3. Heijde M, Zabulon G, Corellou F, Ishikawa T, Brazard J, Usman A, Sanchez F, Plaza P, Martin M, Falciatore A, Todo T, Bouget FY, Bowler C. Characterization of two members of the cryptochrome/photolyase family from Ostreococcus tauri provides insights into the origin and evolution of cryptochromes. Plant Cell Environ. 2010;33:1614–26.

    Article  CAS  PubMed  Google Scholar 

  4. Foley LE, Gegear RJ, Reppert SM. Human cryptochrome exhibits light-dependent magnetosensitivity. Nat Commun. 2011;2:356.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Hirayama J, Miyamura N, Uchida Y, Asaoka Y, Honda R, Sawanobori K, Todo T, Yamamoto T, Sassone-Corsi P, Nishina H. Common light signaling pathways controlling DNA repair and circadian clock entrainment in zebrafish. Cell Cycle. 2009;8:2794–801.

    Article  CAS  PubMed  Google Scholar 

  6. Gegear RJ, Foley LE, Casselman A, Reppert SM. Animal cryptochromes mediate magnetoreception by an unconventional photochemical mechanism. Nature. 2010;463:804–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. López M, Varela L, Vázquez MJ, Rodríguez-Cuenca S, González CR, Velagapudi VR, Morgan DA, Schoenmakers E, Agassandian K, Lage R, Martínez de Morentin PB, Tovar S, Nogueiras R, Carling D, Lelliott C, Gallego R, Oresic M, Chatterjee K, Saha AK, Rahmouni K, Diéguez C, Vidal-Puig A. Hypothalamic AMPK and fatty acid metabolism mediate thyroid regulation of energy balance. Nat Med. 2010;16:1001–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Blum ID, Zhu L, Moquin L, Kokoeva MV, Gratton A, Giros B, Storch KF. A highly tunable dopaminergic oscillator generates ultradian rhythms of behavioral arousal. eLife. 2014;3:e05105.

    PubMed Central  Google Scholar 

  9. Hughes ME, DiTacchio L, Hayes KR, Vollmers C, Pulivarthy S, Baggs JE, Panda S, Hogenesch JB. Harmonics of circadian gene transcription in mammals. PLoS Genet. 2009;5:e1000442.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. O’Neill JS, van Ooijen G, Dixon LE, Troein C, Corellou F, Bouget FY, Reddy AB, Millar AJ. Circadian rhythms persist without transcription in a eukaryote. Nature. 2011;469:554–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Takahashi JS, Hong HK, Ko CH, McDearmon EL. The genetics of mammalian circadian order and disorder: implications for physiology and disease. Nat Rev Genet. 2008;9:764–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Li JZ, Bunney BG, Meng F, Hagenauer MH, Walsh DM, Vawter MP, Evans SJ, Choudary PV, Cartagena P, Barchas JD, Schatzberg AF, Jones EG, Myers RM, Watson Jr SJ, Akil H, Bunney WE. Circadian patterns of gene expression in the human brain and disruption in major depressive disorder. Proc Natl Acad Sci U S A. 2013;110:9950–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Kawato M, Fujita K, Suzuki R, Winfree AT. A three-oscillator model of the human circadian system controlling the core temperature rhythm and the sleep-wake cycle. J Theor Biol. 1982;98:369–92.

    Article  CAS  PubMed  Google Scholar 

  14. Ukai H, Kobayashi TJ, Nagano M, Masumoto KH, Sujino M, Kondo T, Yagita K, Shigeyoshi Y, Ueda HR. Melanopsin-dependent photo-perturbation reveals desynchronization underlying the singularity of mammalian circadian clocks. Nat Cell Biol. 2007;9:1327–34.

    Article  CAS  PubMed  Google Scholar 

  15. Coogan AN, Thome J. Chronotherapeutics and psychiatry: setting the clock to relieve the symptoms. World J Biol Psychiatry. 2011;12 Suppl 1:40–3.

    Article  PubMed  Google Scholar 

  16. Partonen T. The molecular basis for winter depression. Ann Med. 1994;26:239–43.

    Article  CAS  PubMed  Google Scholar 

  17. Bunney WE, Bunney BG. Molecular clock genes in man and lower animals: possible implications for circadian abnormalities in depression. Neuropsychopharmacology. 2000;22:335–45.

    Article  CAS  PubMed  Google Scholar 

  18. Barnard AR, Nolan PM. When clocks go bad: neurobehavioural consequences of disrupted circadian timing. PLoS Genet. 2008;4:e1000040.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Menet JS, Rosbash M. When brain clocks lose track of time: cause or consequence of neuropsychiatric disorders. Curr Opin Neurobiol. 2011;21:849–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Johansson C, Willeit M, Smedh C, Ekholm J, Paunio T, Kieseppä T, Lichtermann D, Praschak-Rieder N, Neumeister A, Nilsson LG, Kasper S, Peltonen L, Adolfsson R, Schalling M, Partonen T. Circadian clock-related polymorphisms in seasonal affective disorder and their relevance to diurnal preference. Neuropsychopharmacology. 2003;28:734–9.

    Article  CAS  PubMed  Google Scholar 

  21. Partonen T. Clock gene variants in mood and anxiety disorders. J Neural Transm. 2012;119:1133–45.

    Article  CAS  PubMed  Google Scholar 

  22. Ukai-Tadenuma M, Yamada RG, Xu H, Ripperger JA, Liu AC, Ueda HR. Delay in feedback repression by cryptochrome 1 is required for circadian clock function. Cell. 2011;144:268–81.

    Article  CAS  PubMed  Google Scholar 

  23. Lazar MA, Jones KE, Chin WW. Isolation of a cDNA encoding human Rev-ErbA alpha: transcription from the noncoding DNA strand of a thyroid hormone receptor gene results in a related protein that does not bind thyroid hormone. DNA Cell Biol. 1990;9:77–83.

    Article  CAS  PubMed  Google Scholar 

  24. Preitner N, Damiola F, Lopez-Molina L, Zakany J, Duboule D, Albrecht U, Schibler U. The orphan nuclear receptor REV-ERBalpha controls circadian transcription within the positive limb of the mammalian circadian oscillator. Cell. 2002;110:251–60.

    Article  CAS  PubMed  Google Scholar 

  25. Robinson I, Reddy AB. Molecular mechanisms of the circadian clockwork in mammals. FEBS Lett. 2014;588:2477–83.

    Article  CAS  PubMed  Google Scholar 

  26. Hsu DS, Zhao X, Zhao S, Kazantsev A, Wang RP, Todo T, Wei YF, Sancar A. Putative human blue-light photoreceptors hCRY1 and hCRY2 are flavoproteins. Biochemistry. 1996;35:13871–7.

    Article  CAS  PubMed  Google Scholar 

  27. van der Horst GT, Muijtjens M, Kobayashi K, Takano R, Kanno S, Takao M, de Wit J, Verkerk A, Eker AP, van Leenen D, Buijs R, Bootsma D, Hoeijmakers JH, Yasui A. Mammalian Cry1 and Cry2 are essential for maintenance of circadian rhythms. Nature. 1999;398:627–30.

    Article  PubMed  Google Scholar 

  28. Vitaterna MH, Selby CP, Todo T, Niwa H, Thompson C, Fruechte EM, Hitomi K, Thresher RJ, Ishikawa T, Miyazaki J, Takahashi JS, Sancar A. Differential regulation of mammalian period genes and circadian rhythmicity by cryptochromes 1 and 2. Proc Natl Acad Sci U S A. 1999;96:12114–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Griffin Jr EA, Staknis D, Weitz CJ. Light-independent role of CRY1 and CRY2 in the mammalian circadian clock. Science. 1999;286:768–71.

    Article  CAS  PubMed  Google Scholar 

  30. Dardente H, Fortier EE, Martineau V, Cermakian N. Cryptochromes impair phosphorylation of transcriptional activators in the clock: a general mechanism for circadian repression. Biochem J. 2007;402:525–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Zhang EE, Liu AC, Hirota T, Miraglia LJ, Welch G, Pongsawakul PY, Liu X, Atwood A, Huss 3rd JW, Janes J, Su AI, Hogenesch JB, Kay SA. A genome-wide RNAi screen for modifiers of the circadian clock in human cells. Cell. 2009;139:199–210.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Ye R, Selby CP, Ozturk N, Annayev Y, Sancar A. Biochemical analysis of the canonical model for the mammalian circadian clock. J Biol Chem. 2011;286:25891–902.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Monteleone P, Maj M. The circadian basis of mood disorders: recent developments and treatment implications. Eur Neuropsychopharmacol. 2008;18:701–11.

    Article  CAS  PubMed  Google Scholar 

  34. Bunney JN, Potkin SG. Circadian abnormalities, molecular clock genes and chronobiological treatments in depression. Br Med Bull. 2008;86:23–32.

    Article  CAS  PubMed  Google Scholar 

  35. Kronfeld-Schor N, Einat H. Circadian rhythms and depression: human psychopathology and animal models. Neuropharmacology. 2012;62:101–14.

    Article  CAS  PubMed  Google Scholar 

  36. McClung CA. How might circadian rhythms control mood? Let me count the ways…. Biol Psychiatry. 2013;74:242–9.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Lavebratt C, Sjöholm LK, Partonen T, Schalling M, Forsell Y. PER2 variation is associated with depression vulnerability. Am J Med Genet B Neuropsychiatr Genet. 2010;153B:570–81.

    CAS  PubMed  Google Scholar 

  38. Soria V, Martínez-Amorós E, Escaramís G, Valero J, Pérez-Egea R, García C, Gutiérrez-Zotes A, Puigdemont D, Bayés M, Crespo JM, Martorell L, Vilella E, Labad A, Vallejo J, Pérez V, Menchón JM, Estivill X, Gratacòs M, Urretavizcaya M. Differential association of circadian genes with mood disorders: CRY1 and NPAS2 are associated with unipolar major depression and CLOCK and VIP with bipolar disorder. Neuropsychopharmacology. 2010;35:1279–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Hua P, Liu W, Chen D, Zhao Y, Chen L, Zhang N, Wang C, Guo S, Wang L, Xiao H, Kuo SH. Cry1 and Tef gene polymorphisms are associated with major depressive disorder in the Chinese population. J Affect Disord. 2014;157:100–3.

    Article  CAS  PubMed  Google Scholar 

  40. Kovanen L, Kaunisto M, Donner K, Saarikoski ST, Partonen T. CRY2 genetic variants associate with dysthymia. PLoS One. 2013;8:e71450.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Kripke DF, Nievergelt CM, Joo E, Shekhtman T, Kelsoe JR. Circadian polymorphisms associated with affective disorders. J Circadian Rhythm. 2009;7:2.

    Article  CAS  Google Scholar 

  42. Etain B, Jamain S, Milhiet V, Lajnef M, Boudebesse C, Dumaine A, Mathieu F, Gombert A, Ledudal K, Gard S, Kahn JP, Henry C, Boland A, Zelenika D, Lechner D, Lathrop M, Leboyer M, Bellivier F. Association between circadian genes, bipolar disorders and chronotypes. Chronobiol Int. 2014;31:807–14.

    Article  CAS  PubMed  Google Scholar 

  43. McGrath CL, Glatt SJ, Sklar P, Le-Niculescu H, Kuczenski R, Doyle AE, Biederman J, Mick E, Faraone SV, Niculescu AB, Tsuang MT. Evidence for genetic association of RORB with bipolar disorder. BMC Psychiatry. 2009;9:70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Lavebratt C, Sjöholm LK, Soronen P, Paunio T, Vawter MP, Bunney WE, Adolfsson R, Forsell Y, Wu JC, Kelsoe JR, Partonen T, Schalling M. CRY2 is associated with depression. PLoS One. 2010;5:e9407.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Utge SJ, Soronen P, Loukola A, Kronholm E, Ollila HM, Pirkola S, Porkka-Heiskanen T, Partonen T, Paunio T. Systematic analysis of circadian genes in a population-based sample reveals association of TIMELESS with depression and sleep disturbance. PLoS One. 2010;5:e9259.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Desan PH, Oren DA, Malison R, Price LH, Rosenbaum J, Smoller J, Charney DS, Gelernter J. Genetic polymorphism at the CLOCK gene locus and major depression. Am J Med Genet. 2000;96:418–21.

    Article  CAS  PubMed  Google Scholar 

  47. Katzenberg D, Young T, Finn L, Lin L, King DP, Takahashi JS, Mignot E. A CLOCK polymorphism associated with human diurnal preference. Sleep. 1998;21:569–76.

    CAS  PubMed  Google Scholar 

  48. Bailer U, Wiesegger G, Leisch F, Fuchs K, Leitner I, Letmaier M, Konstantinidis A, Stastny J, Sieghart W, Hornik K, Mitterauer B, Kasper S, Aschauer HN. No association of clock gene T3111C polymorphism and affective disorders. Eur Neuropsychopharmacol. 2005;15:51–5.

    Article  CAS  PubMed  Google Scholar 

  49. Kishi T, Kitajima T, Ikeda M, Yamanouchi Y, Kinoshita Y, Kawashima K, Okochi T, Okumura T, Tsunoka T, Inada T, Ozaki N, Iwata N. Association study of clock gene (CLOCK) and schizophrenia and mood disorders in the Japanese population. Eur Arch Psychiatry Clin Neurosci. 2009;259:293–7.

    Article  PubMed  Google Scholar 

  50. Calati R, Gaspar-Barba E, Yukler A, Serretti A. T3111C clock single nucleotide polymorphism and mood disorders: a meta-analysis. Chronobiol Int. 2010;27:706–21.

    Article  CAS  PubMed  Google Scholar 

  51. Kishi T, Yoshimura R, Fukuo Y, Kitajima T, Okochi T, Matsunaga S, Inada T, Kunugi H, Kato T, Yoshikawa T, Ujike H, Umene-Nakano W, Nakamura J, Ozaki N, Serretti A, Correll CU, Iwata N. The CLOCK gene and mood disorders: a case-control study and meta-analysis. Chronobiol Int. 2011;28:825–33.

    Article  CAS  PubMed  Google Scholar 

  52. Kishi T, Kitajima T, Ikeda M, Yamanouchi Y, Kinoshita Y, Kawashima K, Okochi T, Ozaki N, Iwata N. Association analysis of nuclear receptor Rev-erb alpha gene (NR1D1) with mood disorders in the Japanese population. Neurosci Res. 2008;62:211–5.

    Article  CAS  PubMed  Google Scholar 

  53. Li SX, Liu LJ, Xu LZ, Gao L, Wang XF, Zhang JT, Lu L. Diurnal alterations in circadian genes and peptides in major depressive disorder before and after escitalopram treatment. Psychoneuroendocrinology. 2013;38:2789–99.

    Article  CAS  PubMed  Google Scholar 

  54. Byrne EM, Heath AC, Madden PA, Pergadia ML, Hickie IB, Montgomery GW, Martin NG, Wray NR. Testing the role of circadian genes in conferring risk for psychiatric disorders. Am J Med Genet B Neuropsychiatr Genet. 2014;165B:254–60.

    Article  CAS  PubMed  Google Scholar 

  55. Kieseppä T, Partonen T, Haukka J, Kaprio J, Lönnqvist J. High concordance of bipolar I disorder in a nationwide sample of twins. Am J Psychiatry. 2004;161:1814–21.

    Article  PubMed  Google Scholar 

  56. Hakkarainen R, Johansson C, Kieseppä T, Partonen T, Koskenvuo M, Kaprio J, Lönnqvist J. Seasonal changes, sleep length and circadian preference among twins with bipolar disorder. BMC Psychiatry. 2003;3:6.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Mansour HA, Wood J, Logue T, Chowdari KV, Dayal M, Kupfer DJ, Monk TH, Devlin B, Nimgaonkar VL. Association study of eight circadian genes with bipolar I disorder, schizoaffective disorder and schizophrenia. Genes Brain Behav. 2006;5:150–7.

    Article  CAS  PubMed  Google Scholar 

  58. Mansour HA, Talkowski ME, Wood J, Chowdari KV, McClain L, Prasad K, Montrose D, Fagiolini A, Friedman ES, Allen MH, Bowden CL, Calabrese J, El-Mallakh RS, Escamilla M, Faraone SV, Fossey MD, Gyulai L, Loftis JM, Hauser P, Ketter TA, Marangell LB, Miklowitz DJ, Nierenberg AA, Patel J, Sachs GS, Sklar P, Smoller JW, Laird N, Keshavan M, Thase ME, Axelson D, Birmaher B, Lewis D, Monk T, Frank E, Kupfer DJ, Devlin B, Nimgaonkar VL. Association study of 21 circadian genes with bipolar I disorder, schizoaffective disorder, and schizophrenia. Bipolar Disord. 2009;11:701–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Nievergelt CM, Kripke DF, Barrett TB, Burg E, Remick RA, Sadovnick AD, McElroy SL, Keck Jr PE, Schork NJ, Kelsoe JR. Suggestive evidence for association of the circadian genes PERIOD3 and ARNTL with bipolar disorder. Am J Med Genet B Neuropsychiatr Genet. 2006;141B:234–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Shi J, Wittke-Thompson JK, Badner JA, Hattori E, Potash JB, Willour VL, McMahon FJ, Gershon ES, Liu C. Clock genes may influence bipolar disorder susceptibility and dysfunctional circadian rhythm. Am J Med Genet B Neuropsychiatr Genet. 2008;147B:1047–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Lee KY, Song JY, Kim SH, Kim SC, Joo EJ, Ahn YM, Kim YS. Association between CLOCK 3111T/C and preferred circadian phase in Korean patients with bipolar disorder. Prog Neuropsychopharmacol Biol Psychiatry. 2010;34:1196–201.

    Article  CAS  PubMed  Google Scholar 

  62. Severino G, Manchia M, Contu P, Squassina A, Lampus S, Ardau R, Chillotti C, Del Zompo M. Association study in a Sardinian sample between bipolar disorder and the nuclear receptor REV-ERBα gene, a critical component of the circadian clock system. Bipolar Disord. 2009;11:215–20.

    Article  PubMed  Google Scholar 

  63. Szczepankiewicz A, Skibinska M, Hauser J, Slopien A, Leszczynska-Rodziewicz A, Kapelski P, Dmitrzak-Weglarz M, Czerski PM, Rybakowski JK. Association analysis of the GSK-3β T-50C gene polymorphism with schizophrenia and bipolar disorder. Neuropsychobiology. 2006;53:51–6.

    Article  CAS  PubMed  Google Scholar 

  64. Rocha PMB, Neves FS, Alvarenga NB, Hughet RB, Barbosa IG, Corrêa H. Association of Per3 gene with bipolar disorder: comment on “Association study of 21 circadian genes with bipolar I disorder, schizoaffective disorder, and schizophrenia”. Bipolar Disord. 2010;12:875–6.

    Article  CAS  PubMed  Google Scholar 

  65. Sjöholm LK, Backlund L, Cheteh EH, Ek IR, Frisén L, Schalling M, Osby U, Lavebratt C, Nikamo P. CRY2 is associated with rapid cycling in bipolar disorder patients. PLoS One. 2010;5:e12632.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Nováková M, Praško J, Látalová K, Sládek M, Sumová A. The circadian system of patients with bipolar disorder differs in episodes of mania and depression. Bipolar Disord. 2015;17:303–14.

    Article  CAS  PubMed  Google Scholar 

  67. McCarthy MJ, Wei H, Marnoy Z, Darvish RM, McPhie DL, Cohen BM, Welsh DK. Genetic and clinical factors predict lithium’s effects on PER2 gene expression rhythms in cells from bipolar disorder patients. Transl Psychiatry. 2013;3:e318.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Le-Niculescu H, Patel SD, Bhat M, Kuczenski R, Faraone SV, Tsuang MT, McMahon FJ, Schork NJ, Nurnberger Jr JI, Niculescu III AB. Convergent functional genomics of genome-wide association data for bipolar disorder: comprehensive identification of candidate genes, pathways and mechanisms. Am J Med Genet B Neuropsychiatr Genet. 2009;150B:155–81.

    Article  CAS  PubMed  Google Scholar 

  69. McCarthy MJ, Nievergelt CM, Kelsoe JR, Welsh DK. A survey of genomic studies supports association of circadian clock genes with bipolar disorder spectrum illnesses and lithium response. PLoS One. 2012;7:e32091.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Liu Y, Blackwood DH, Caesar S, de Geus EJ, Farmer A, Ferreira MA, Ferrier IN, Fraser C, Gordon-Smith K, Green EK, Grozeva D, Gurling HM, Hamshere ML, Heutink P, Holmans PA, Hoogendijk WJ, Hottenga JJ, Jones L, Jones IR, Kirov G, Lin D, McGuffin P, Moskvina V, Nolen WA, Perlis RH, Posthuma D, Scolnick EM, Smit AB, Smit JH, Smoller JW, St Clair D, van Dyck R, Verhage M, Willemsen G, Young AH, Zandbelt T, Boomsma DI, Craddock N, O’Donovan MC, Owen MJ, Penninx BW, Purcell S, Sklar P, Sullivan PF, Wellcome Trust Case-Control Consortium. Meta-analysis of genome-wide association data of bipolar disorder and major depressive disorder. Mol Psychiatry. 2011;16:2–4.

    Article  CAS  PubMed  Google Scholar 

  71. Partonen T, Lönnqvist J. Seasonal affective disorder. Lancet. 1998;352:1369–74.

    Article  CAS  PubMed  Google Scholar 

  72. Partonen T, Treutlein J, Alpman A, Frank J, Johansson C, Depner M, Aron L, Rietschel M, Wellek S, Soronen P, Paunio T, Koch A, Chen P, Lathrop M, Adolfsson R, Persson ML, Kasper S, Schalling M, Peltonen L, Schumann G. Three circadian clock genes Per2, Arntl, and Npas2 contribute to winter depression. Ann Med. 2007;39:229–38.

    Article  CAS  PubMed  Google Scholar 

  73. Shearman LP, Sriram S, Weaver DR, Maywood ES, Chaves I, Zheng B, Kume K, Lee CC, van der Horst GT, Hastings MH, Reppert SM. Interacting molecular loops in the mammalian circadian clock. Science. 2000;288:1013–9.

    Article  CAS  PubMed  Google Scholar 

  74. Kaasik K, Lee CC. Reciprocal regulation of haem biosynthesis and the circadian clock in mammals. Nature. 2004;430:467–71.

    Article  CAS  PubMed  Google Scholar 

  75. Hampp G, Ripperger JA, Houben T, Schmutz I, Blex C, Perreau-Lenz S, Brunk I, Spanagel R, Ahnert-Hilger G, Meijer JH, Albrecht U. Regulation of monoamine oxidase A by circadian-clock components implies clock influence on mood. Curr Biol. 2008;18:678–83.

    Article  CAS  PubMed  Google Scholar 

  76. Ueda HR, Hayashi S, Chen W, Sano M, Machida M, Shigeyoshi Y, Iino M, Hashimoto S. System-level identification of transcriptional circuits underlying mammalian circadian clocks. Nat Genet. 2005;37:187–92.

    Article  CAS  PubMed  Google Scholar 

  77. Sato TK, Yamada RG, Ukai H, Baggs JE, Miraglia LJ, Kobayashi TJ, Welsh DK, Kay SA, Ueda HR, Hogenesch JB. Feedback repression is required for mammalian circadian clock function. Nat Genet. 2006;38:312–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Shi S, Hida A, McGuinness OP, Wasserman DH, Yamazaki S, Johnson CH. Circadian clock gene Bmal1 is not essential; functional replacement with its paralog, Bmal2. Curr Biol. 2010;20:316–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Kondratov RV, Kondratova AA, Lee C, Gorbacheva VY, Chernov MV, Antoch MP. Post-translational regulation of circadian transcriptional CLOCK(NPAS2)/BMAL1 complex by CRYPTOCHROMES. Cell Cycle. 2006;5:890–5.

    Article  CAS  PubMed  Google Scholar 

  80. Sasaki M, Yoshitane H, Du NH, Okano T, Fukada Y. Preferential inhibition of BMAL2-CLOCK activity by PER2 reemphasizes its negative role and a positive role of BMAL2 in the circadian transcription. J Biol Chem. 2009;284:25149–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Takeda Y, Jothi R, Birault V, Jetten AM. RORγ directly regulates the circadian expression of clock genes and downstream targets in vivo. Nucleic Acids Res. 2012;40:8519–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Partonen T, Lönnqvist J. Seasonal variation in bipolar disorder. Br J Psychiatry. 1996;169:641–6.

    Article  CAS  PubMed  Google Scholar 

  83. Rosenthal NE, Sack DA, Gillin JC, Lewy AJ, Goodwin FK, Davenport Y, Mueller PS, Newsome DA, Wehr TA. Seasonal affective disorder: a description of the syndrome and preliminary findings with light therapy. Arch Gen Psychiatry. 1984;41:72–80.

    Article  CAS  PubMed  Google Scholar 

  84. Ukai-Tadenuma M, Kasukawa T, Ueda HR. Proof-by-synthesis of the transcriptional logic of mammalian circadian clocks. Nat Cell Biol. 2008;10:1154–63.

    Article  CAS  PubMed  Google Scholar 

  85. Sancar G, Sancar C, Brügger B, Ha N, Sachsenheimer T, Gin E, Wdowik S, Lohmann I, Wieland F, Höfer T, Diernfellner A, Brunner M. A global circadian repressor controls antiphasic expression of metabolic genes in Neurospora. Mol Cell. 2011;44:687–97.

    Article  CAS  PubMed  Google Scholar 

  86. Huttunen P, Kortelainen ML. Long-term alcohol consumption and brown adipose tissue in man. Eur J Appl Physiol Occup Physiol. 1990;60:418–24.

    Article  CAS  PubMed  Google Scholar 

  87. Hiltunen L, Suominen K, Lönnqvist J, Partonen T. Relationship between daylength and suicide in Finland. J Circadian Rhythms. 2011;9:10.

    Article  PubMed  PubMed Central  Google Scholar 

  88. Johnston JD, Tournier BB, Andersson H, Masson-Pévet M, Lincoln GA, Hazlerigg DG. Multiple effects of melatonin on rhythmic clock gene expression in the mammalian pars tuberalis. Endocrinology. 2006;147:959–65.

    Article  CAS  PubMed  Google Scholar 

  89. Chen R, Schirmer A, Lee Y, Lee H, Kumar V, Yoo SH, Takahashi JS, Lee C. Rhythmic PER abundance defines a critical nodal point for negative feedback within the circadian clock mechanism. Mol Cell. 2009;36:417–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Lincoln GA, Andersson H, Hazlerigg D. Clock genes and the long-term regulation of prolactin secretion: evidence for a photoperiod/circannual timer in the pars tuberalis. J Neuroendocrinol. 2003;15:390–7.

    Article  CAS  PubMed  Google Scholar 

  91. Wehr TA, Duncan Jr WC, Sher L, Aeschbach D, Schwartz PJ, Turner EH, Postolache TT, Rosenthal NE. A circadian signal of change of season in patients with seasonal affective disorder. Arch Gen Psychiatry. 2001;58:1108–14.

    Article  CAS  PubMed  Google Scholar 

  92. Thompson C, Stinson D, Smith A. Seasonal affective disorder and season-dependent abnormalities of melatonin suppression by light. Lancet. 1990;336:703–6.

    Article  CAS  PubMed  Google Scholar 

  93. Lewy AJ, Lefler BJ, Emens JS, Bauer VK. The circadian basis of winter depression. Proc Natl Acad Sci U S A. 2006;103:7414–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Teicher MH, Glod CA, Magnus E, Harper D, Benson G, Krueger K, McGreenery CE. Circadian rest-activity disturbances in seasonal affective disorder. Arch Gen Psychiatry. 1997;54:124–30.

    Article  CAS  PubMed  Google Scholar 

  95. Thresher RJ, Vitaterna MH, Miyamoto Y, Kazantsev A, Hsu DS, Petit C, Selby CP, Dawut L, Smithies O, Takahashi JS, Sancar A. Role of mouse cryptochrome blue-light photoreceptor in circadian photoresponses. Science. 1998;282:1490–4.

    Article  CAS  PubMed  Google Scholar 

  96. Spoelstra K, Daan S. Effects of constant light on circadian rhythmicity in mice lacking functional cry genes: dissimilar from per mutants. J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2008;194:235–42.

    Article  CAS  PubMed  Google Scholar 

  97. Anand SN, Maywood ES, Chesham JE, Joynson G, Banks GT, Hastings MH, Nolan PM. Distinct and separable roles for endogenous CRY1 and CRY2 within the circadian molecular clockwork of the suprachiasmatic nucleus, as revealed by the Fbxl3(Afh) mutation. J Neurosci. 2013;33:7145–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Stoleru D, Nawathean P, Fernández MP, Menet JS, Ceriani MF, Rosbash M. The Drosophila circadian network is a seasonal timer. Cell. 2007;129:207–19.

    Article  CAS  PubMed  Google Scholar 

  99. Maeda K, Robinson AJ, Henbest KB, Hogben HJ, Biskup T, Ahmad M, Schleicher E, Weber S, Timmel CR, Hore PJ. Magnetically sensitive light-induced reactions in cryptochrome are consistent with its proposed role as a magnetoreceptor. Proc Natl Acad Sci U S A. 2012;109:4774–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Weydahl A, Sothern RB, Cornélissen G, Wetterberg L. Geomagnetic activity influences the melatonin secretion at latitude 70 degrees N. Biomed Pharmacother. 2001;55 Suppl 1:57s–62.

    CAS  PubMed  Google Scholar 

  101. Green NH, Jackson CR, Iwamoto H, Tackenberg MC, McMahon DG. Photoperiod programs dorsal raphe serotonergic neurons and affective behaviors. Curr Biol. 2015. doi:10.1016/j.cub.2015.03.050. May 6 [Epub ahead of print].

    PubMed Central  Google Scholar 

  102. Zhang EE, Liu Y, Dentin R, Pongsawakul PY, Liu AC, Hirota T, Nusinow DA, Sun X, Landais S, Kodama Y, Brenner DA, Montminy M, Kay SA. Cryptochrome mediates circadian regulation of cAMP signaling and hepatic gluconeogenesis. Nat Med. 2010;16:1152–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. O’Neill JS, Maywood ES, Chesham JE, Takahashi JS, Hastings MH. cAMP-dependent signaling as a core component of the mammalian circadian pacemaker. Science. 2008;320:949–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Park SK, Nguyen MD, Fischer A, Luke MP, el Affar B, Dieffenbach PB, Tseng HC, Shi Y, Tsai LH. Par-4 links dopamine signaling and depression. Cell. 2005;122:275–87.

    Article  CAS  PubMed  Google Scholar 

  105. Jetten AM. Retinoid-related orphan receptors (RORs): critical roles in development, immunity, circadian rhythm, and cellular metabolism. Nucl Recept Signal. 2009;7:e003.

    PubMed  PubMed Central  Google Scholar 

  106. Solt LA, Griffin PR, Burris TP. Ligand regulation of retinoic acid receptor-related orphan receptors: implications for development of novel therapeutics. Curr Opin Lipidol. 2010;21:204–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Schmutz I, Ripperger JA, Baeriswyl-Aebischer S, Albrecht U. The mammalian clock component PERIOD2 coordinates circadian output by interaction with nuclear receptors. Genes Dev. 2010;24:345–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Chung S, Lee EJ, Yun S, Choe HK, Park SB, Son HJ, Kim KS, Dluzen DE, Lee I, Hwang O, Son GH, Kim K. Impact of circadian nuclear receptor REV-ERBα on midbrain dopamine production and mood regulation. Cell. 2014;157:858–68.

    Article  CAS  PubMed  Google Scholar 

  109. Jager J, O’Brien WT, Manlove J, Krizman EN, Fang B, Gerhart-Hines Z, Robinson MB, Klein PS, Lazar MA. Behavioral changes and dopaminergic dysregulation in mice lacking the nuclear receptor Rev-erbα. Mol Endocrinol. 2014;28:490–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Schnell A, Chappuis S, Schmutz I, Brai E, Ripperger JA, Schaad O, Welzl H, Descombes P, Alberi L, Albrecht U. The nuclear receptor REV-ERBα regulates Fabp7 and modulates adult hippocampal neurogenesis. PLoS One. 2014;9:e99883.

    Article  PubMed  PubMed Central  Google Scholar 

  111. Mazzoccoli G, Cai Y, Liu S, Francavilla M, Giuliani F, Piepoli A, Pazienza V, Vinciguerra M, Yamamoto T, Takumi T. REV-ERBα and the clock gene machinery in mouse peripheral tissues: a possible role as a synchronizing hinge. J Biol Regul Homeost Agents. 2012;26:265–76.

    CAS  PubMed  Google Scholar 

  112. Aninye IO, Matsumoto S, Sidhaye AR, Wondisford FE. Circadian regulation of Tshb gene expression by Rev-Erbα (NR1D1) and Nuclear Corepressor 1 (NCOR1). J Biol Chem. 2014;289:17070–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Dardente H, Wyse CA, Birnie MJ, Dupré SM, Loudon AS, Lincoln GA, Hazlerigg DG. A molecular switch for photoperiod responsiveness in mammals. Curr Biol. 2010;20:2193–8.

    Article  CAS  PubMed  Google Scholar 

  114. Gerhart-Hines Z, Feng D, Emmett MJ, Everett LJ, Loro E, Briggs ER, Bugge A, Hou C, Ferrara C, Seale P, Pryma DA, Khurana TS, Lazar MA. The nuclear receptor Rev-erbα controls circadian thermogenic plasticity. Nature. 2013;503:410–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Ki Y, Ri H, Lee H, Yoo E, Choe J, Lim C. Warming up your tick-tock: temperature-dependent regulation of circadian clocks. Neuroscientist. 2015. doi:10.1177/1073858415577083. Epub ahead of print.

    PubMed  Google Scholar 

  116. Partonen T. Hypothesis: cryptochromes and brown fat are essential for adaptation and affect mood and mood-related behaviors. Front Neurol. 2012;3:157.

    Article  PubMed  PubMed Central  Google Scholar 

  117. Zukotynski KA, Fahey FH, Laffin S, Davis R, Treves ST, Grant FD, Drubach LA. Seasonal variation in the effect of constant ambient temperature of 24°C in reducing FDG uptake by brown adipose tissue in children. Eur J Nucl Med Mol Imaging. 2010;37:1854–60.

    Article  PubMed  Google Scholar 

  118. Contreras C, Gonzalez F, Fernø J, Diéguez C, Rahmouni K, Nogueiras R, López M. The brain and brown fat. Ann Med. 2015;47:150–68.

    Article  CAS  PubMed  Google Scholar 

  119. Vaughan CH, Bartness TJ. Anterograde transneuronal viral tract tracing reveals central sensory circuits from brown fat and sensory denervation alters its thermogenic responses. Am J Physiol Regul Integr Comp Physiol. 2012;302:R1049–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Ryu V, Garretson JT, Liu Y, Vaughan CH, Bartness TJ. Brown adipose tissue has sympathetic-sensory feedback circuits. J Neurosci. 2015;35:2181–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Bunney BG, Bunney WE. Mechanisms of rapid antidepressant effects of sleep deprivation therapy: clock genes and circadian rhythms. Biol Psychiatry. 2013;73:1164–71.

    Article  CAS  PubMed  Google Scholar 

Download references

Conflict of Interest

The author declares that he has no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Timo Partonen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer India

About this chapter

Cite this chapter

Partonen, T. (2016). Circadian Clock Genes and Mood Disorders. In: López-Muñoz, F., Srinivasan, V., de Berardis, D., Álamo, C., Kato, T. (eds) Melatonin, Neuroprotective Agents and Antidepressant Therapy. Springer, New Delhi. https://doi.org/10.1007/978-81-322-2803-5_22

Download citation

  • DOI: https://doi.org/10.1007/978-81-322-2803-5_22

  • Published:

  • Publisher Name: Springer, New Delhi

  • Print ISBN: 978-81-322-2801-1

  • Online ISBN: 978-81-322-2803-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics