Skip to main content

Advertisement

Log in

Clock gene variants in mood and anxiety disorders

  • Biological Psychiatry - Review article
  • Published:
Journal of Neural Transmission Aims and scope Submit manuscript

Abstract

Circadian clocks are driven by signals from the habitat to match the solar day and to reset their phase relative to local time. A key function of the circadian clocks allows individuals to anticipate routine environmental conditions and to adjust their behaviors to the change of conditions. In clinical practice mood, anxiety and alcohol use disorders are often comorbid conditions. Clinical data have demonstrated that there are abnormalities in the circadian rhythms in patients with mood disorders and those with alcohol use disorders. Recent findings of molecular genetics have yielded the first insight into the targets of interest. Circadian clock gene variants are a fruitful target for elucidation of the pathogenesis. The findings that have gained support indicate that genetic variants of RORA (rs2028122) and CRY1 (rs2287161) associate with depressive disorder, those of RORB (rs7022435, rs3750420, rs1157358, rs3903529) and NR1D1 (rs2314339) with bipolar disorder, and those of NPAS2 (rs11541353) and CRY2 (rs10838524) with seasonal affective disorder or winter depression. Concerning anxiety disorders and alcohol use disorders, the current findings are preliminary and need further verification to explain the association of ARNTL2, being suggestive only, with social phobia (rs2306073) and with alcohol abuse (rs7958822, rs4964057).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

ARNTL:

Aryl hydrocarbon receptor nuclear translocator-like

ARNTL2:

Aryl hydrocarbon receptor nuclear translocator-like 2

BHLHE40:

Basic helix-loop-helix family, member e40

CLOCK:

Circadian locomoter output cycles kaput homolog (mouse)

CRY1:

Cryptochrome 1 (photolyase-like)

CRY2:

Cryptochrome 2 (photolyase-like)

CSNK1E:

Casein kinase 1, epsilon

GSK3B:

Glycogen synthase kinase 3 beta

NPAS2:

Neuronal PAS [period—aryl hydrocarbon receptor nuclear translocator—single-minded] domain protein 2

NR1D1:

Nuclear receptor subfamily 1, group D, member 1

PER1:

Period homolog 1 (Drosophila)

PER2:

Period homolog 2 (Drosophila)

PER3:

Period homolog 3 (Drosophila)

RORA:

RAR [retinoic acid receptor]-related orphan receptor A [alpha]

RORB:

RAR-related orphan receptor B [beta]

SIRT1:

Sirtuin 1

TIMELESS:

Timeless homolog (Drosophila)

VIP:

Vasoactive intestinal peptide

References

  • Albrecht U (2010) Circadian clocks in mood-related behaviors. Ann Med 42:241–251

    PubMed  Google Scholar 

  • Artioli P, Lorenzi C, Pirovano A, Serretti A, Benedetti F, Catalano M, Smeraldi E (2007) How do genes exert their role? Period 3 gene variants and possible influences on mood disorder phenotypes. Eur Neuropsychopharmacol 17:587–594

    PubMed  CAS  Google Scholar 

  • Asher G, Schibler U (2011) Crosstalk between components of circadian and metabolic cycles in mammals. Cell Metab 13:125–137

    PubMed  CAS  Google Scholar 

  • Bailer U, Wiesegger G, Leisch F, Fuchs K, Leitner I, Letmaier M, Konstantinidis A, Stastny J, Sieghart W, Hornik K, Mitterauer B, Kasper S, Aschauer HN (2005) No association of clock gene T3111C polymorphism and affective disorders. Eur Neuropsychopharmacol 15:51–55

    PubMed  CAS  Google Scholar 

  • Barnard AR, Nolan PM (2008) When clocks go bad: neurobehavioural consequences of disrupted circadian timing. PLoS Genet 4:e1000040

    PubMed  Google Scholar 

  • Beck-Friis J, Kjellman BF, Aperia B, Undén F, von Rosen D, Ljunggren JG, Wetterberg L (1985) Serum melatonin in relation to clinical variables in patients with major depressive disorder and a hypothesis of a low melatonin syndrome. Acta Psychiatr Scand 71:319–330

    PubMed  CAS  Google Scholar 

  • Belle MD, Diekman CO, Forger DB, Piggins HD (2009) Daily electrical silencing in the mammalian circadian clock. Science 326:281–284

    PubMed  CAS  Google Scholar 

  • Benedetti F, Serretti A, Colombo C, Barbini B, Lorenzi C, Campori E, Smeraldi E (2003) Influence of CLOCK gene polymorphism on circadian mood fluctuation and illness recurrence in bipolar depression. Am J Med Genet B Neuropsychiatr Genet 123B:23–26

    PubMed  Google Scholar 

  • Benedetti F, Bernasconi A, Lorenzi C, Pontiggia A, Serretti A, Colombo C, Smeraldi E (2004a) A single nucleotide polymorphism in glycogen synthase kinase 3-β promoter gene influences onset of illness in patients affected by bipolar disorder. Neurosci Lett 355:37–40

    PubMed  CAS  Google Scholar 

  • Benedetti F, Serretti A, Colombo C, Lorenzi C, Tubazio V, Smeraldi E (2004b) A glycogen synthase kinase 3-β promoter gene single nucleotide polymorphism is associated with age at onset and response to total sleep deprivation in bipolar depression. Neurosci Lett 368:123–126

    PubMed  CAS  Google Scholar 

  • Benedetti F, Dallaspezia S, Fulgosi MC, Lorenzi C, Serretti A, Barbini B, Colombo C, Smeraldi E (2007) Actimetric evidence that CLOCK 3111 T/C SNP influences sleep and activity patterns in patients affected by bipolar depression. Am J Med Genet B Neuropsychiatr Genet 144B:631–635

    PubMed  CAS  Google Scholar 

  • Benedetti F, Radaelli D, Bernasconi A, Dallaspezia S, Falini A, Scotti G, Lorenzi C, Colombo C, Smeraldi E (2008a) Clock genes beyond the clock: CLOCK genotype biases neural correlates of moral valence decision in depressed patients. Genes Brain Behav 7:20–25

    PubMed  CAS  Google Scholar 

  • Benedetti F, Dallaspezia S, Colombo C, Pirovano A, Marino E, Smeraldi E (2008b) A length polymorphism in the circadian clock gene Per3 influences age at onset of bipolar disorder. Neurosci Lett 445:184–187

    PubMed  CAS  Google Scholar 

  • Bruce VG (1972) Mutants of the biological clock in Chlamydomonas reinhardi. Genetics 70:537–548

    PubMed  CAS  Google Scholar 

  • Bunney WE, Bunney BG (2000) Molecular clock genes in man and lower animals: possible implications for circadian abnormalities in depression. Neuropsychopharmacology 22:335–345

    PubMed  CAS  Google Scholar 

  • Calati R, Gaspar-Barba E, Yukler A, Serretti A (2010) T3111C clock single nucleotide polymorphism and mood disorders: a meta-analysis. Chronobiol Int 27:706–721

    PubMed  CAS  Google Scholar 

  • Chen R, Schirmer A, Lee Y, Lee H, Kumar V, Yoo SH, Takahashi JS, Lee C (2009) Rhythmic PER abundance defines a critical nodal point for negative feedback within the circadian clock mechanism. Mol Cell 36:417–430

    PubMed  Google Scholar 

  • Comasco E, Nordquist N, Göktürk C, Aslund C, Hallman J, Oreland L, Nilsson KW (2010) The clock gene PER2 and sleep problems: association with alcohol consumption among Swedish adolescents. Ups J Med Sci 115:41–48

    PubMed  Google Scholar 

  • Dallaspezia S, Lorenzi C, Pirovano A, Colombo C, Smeraldi E, Benedetti F (2011) Circadian clock gene Per3 variants influence the postpartum onset of bipolar disorder. Eur Psychiatry 26:138–140

    PubMed  CAS  Google Scholar 

  • Dardente H, Fortier EE, Martineau V, Cermakian N (2007) Cryptochromes impair phosphorylation of transcriptional activators in the clock: a general mechanism for circadian repression. Biochem J 402:525–536

    PubMed  CAS  Google Scholar 

  • Desan PH, Oren DA, Malison R, Price LH, Rosenbaum J, Smoller J, Charney DS, Gelernter J (2000) Genetic polymorphism at the CLOCK gene locus and major depression. Am J Med Genet 96:418–421

    PubMed  CAS  Google Scholar 

  • Feldman JF, Hoyle MN (1973) Isolation of circadian clock mutants of Neurospora crassa. Genetics 75:605–613

    PubMed  CAS  Google Scholar 

  • Florez JC, Takahashi JS (1995) The circadian clock: from molecules to behaviour. Ann Med 27:481–490

    PubMed  CAS  Google Scholar 

  • Foley LE, Gegear RJ, Reppert SM (2011) Human cryptochrome exhibits light-dependent magnetosensitivity. Nat Commun 2:356

    PubMed  Google Scholar 

  • Gonzalez MM, Aston-Jones G (2008) Light deprivation damages monoamine neurons and produces a depressive behavioral phenotype in rats. Proc Natl Acad Sci USA 105:4898–4903

    PubMed  CAS  Google Scholar 

  • Grimaldi S, Englund A, Partonen T, Haukka J, Pirkola S, Reunanen A, Aromaa A, Lönnqvist J (2009) Experienced poor lighting contributes to the seasonal fluctuations in weight and appetite that relate to the metabolic syndrome. J Environ Public Health 2009:165013

    PubMed  Google Scholar 

  • Hakkarainen R, Johansson C, Kieseppä T, Partonen T, Koskenvuo M, Kaprio J, Lönnqvist J (2003) Seasonal changes, sleep length and circadian preference among twins with bipolar disorder. BMC Psychiatry 3:6

    PubMed  Google Scholar 

  • Hampp G, Ripperger JA, Houben T, Schmutz I, Blex C, Perreau-Lenz S, Brunk I, Spanagel R, Ahnert-Hilger G, Meijer JH, Albrecht U (2008) Regulation of monoamine oxidase A by circadian-clock components implies clock influence on mood. Curr Biol 18:678–683

    PubMed  CAS  Google Scholar 

  • Harrison NL, Zatz M (1989) Voltage-dependent calcium channels regulate melatonin output from cultured chick pineal cells. J Neurosci 9:2462–2467

    PubMed  CAS  Google Scholar 

  • Hiltunen L, Suominen K, Lönnqvist J, Partonen T (2011) Relationship between day length and suicide in Finland. J Circadian Rhythms 9:10

    PubMed  Google Scholar 

  • Hughes ME, DiTacchio L, Hayes KR, Vollmers C, Pulivarthy S, Baggs JE, Panda S, Hogenesch JB (2009) Harmonics of circadian gene transcription in mammals. PLoS Genet 5:e1000442

    PubMed  Google Scholar 

  • Huttunen P, Kortelainen ML (1990) Long-term alcohol consumption and brown adipose tissue in man. Eur J Appl Physiol Occup Physiol 60:418–424

    PubMed  CAS  Google Scholar 

  • Irwin RP, Allen CN (2007) Calcium response to retinohypothalamic tract synaptic transmission in suprachiasmatic nucleus neurons. J Neurosci 27:11748–11757

    PubMed  CAS  Google Scholar 

  • Jetten AM (2009) Retinoid-related orphan receptors (RORs): critical roles in development, immunity, circadian rhythm, and cellular metabolism. Nucl Recept Signal 7:e003

    PubMed  Google Scholar 

  • Johansson C, Willeit M, Smedh C, Ekholm J, Paunio T, Kieseppä T, Lichtermann D, Praschak-Rieder N, Neumeister A, Nilsson LG, Kasper S, Peltonen L, Adolfsson R, Schalling M, Partonen T (2003) Circadian clock-related polymorphisms in seasonal affective disorder and their relevance to diurnal preference. Neuropsychopharmacology 28:734–739

    PubMed  CAS  Google Scholar 

  • Johnston JD, Tournier BB, Andersson H, Masson-Pévet M, Lincoln GA, Hazlerigg DG (2006) Multiple effects of melatonin on rhythmic clock gene expression in the mammalian pars tuberalis. Endocrinology 147:959–965

    PubMed  CAS  Google Scholar 

  • Kaasik K, Lee CC (2004) Reciprocal regulation of haem biosynthesis and the circadian clock in mammals. Nature 430:467–471

    PubMed  CAS  Google Scholar 

  • Katzenberg D, Young T, Finn L, Lin L, King DP, Takahashi JS, Mignot E (1998) A CLOCK polymorphism associated with human diurnal preference. Sleep 21:569–576

    PubMed  CAS  Google Scholar 

  • Kieseppä T, Partonen T, Haukka J, Kaprio J, Lönnqvist J (2004) High concordance of bipolar I disorder in a nationwide sample of twins. Am J Psychiatry 161:1814–1821

    PubMed  Google Scholar 

  • Kishi T, Kitajima T, Ikeda M, Yamanouchi Y, Kinoshita Y, Kawashima K, Okochi T, Ozaki N, Iwata N (2008) Association analysis of nuclear receptor Rev–erb alpha gene (NR1D1) with mood disorders in the Japanese population. Neurosci Res 62:211–215

    PubMed  CAS  Google Scholar 

  • Kishi T, Kitajima T, Ikeda M, Yamanouchi Y, Kinoshita Y, Kawashima K, Okochi T, Okumura T, Tsunoka T, Inada T, Ozaki N, Iwata N (2009) Association study of clock gene (CLOCK) and schizophrenia and mood disorders in the Japanese population. Eur Arch Psychiatry Clin Neurosci 259:293–297

    PubMed  Google Scholar 

  • Kishi T, Yoshimura R, Kitajima T, Okochi T, Okumura T, Tsunoka T, Yamanouchi Y, Kinoshita Y, Kawashima K, Fukuo Y, Naitoh H, Umene-Nakano W, Inada T, Nakamura J, Ozaki N, Iwata N (2010) SIRT1 gene is associated with major depressive disorder in the Japanese population. J Affect Disord 126:167–173

    PubMed  CAS  Google Scholar 

  • Kishi T, Yoshimura R, Fukuo Y, Kitajima T, Okochi T, Matsunaga S, Inada T, Kunugi H, Kato T, Yoshikawa T, Ujike H, Umene-Nakano W, Nakamura J, Ozaki N, Serretti A, Correll CU, Iwata N (2011) The CLOCK gene and mood disorders: a case–control study and meta-analysis. Chronobiol Int 28:825–833

    PubMed  CAS  Google Scholar 

  • Kondo T, Tsinoremas NF, Golden SS, Johnson CH, Kutsuna S, Ishiura M (1994) Circadian clock mutants of cyanobacteria. Science 266:1233–1236

    PubMed  CAS  Google Scholar 

  • Kondratov RV, Kondratova AA, Lee C, Gorbacheva VY, Chernov MV, Antoch MP (2006) Post-translational regulation of circadian transcriptional CLOCK(NPAS2)/BMAL1 complex by CRYPTOCHROMES. Cell Cycle 5:890–895

    PubMed  CAS  Google Scholar 

  • Konopka RJ, Benzer S (1971) Clock mutants of Drosophila melanogaster. Proc Natl Acad Sci USA 68:2112–2116

    PubMed  CAS  Google Scholar 

  • Kovanen L, Saarikoski ST, Haukka J, Pirkola S, Aromaa A, Lönnqvist J, Partonen T (2010) Circadian clock gene polymorphisms in alcohol use disorders and alcohol consumption. Alcohol Alcohol 45:303–311

    PubMed  CAS  Google Scholar 

  • Kripke DF, Mullaney DJ, Atkinson M, Wolf S (1978) Circadian rhythm disorders in manic-depressives. Biol Psychiatry 13:335–351

    PubMed  CAS  Google Scholar 

  • Kripke DF, Nievergelt CM, Joo E, Shekhtman T, Kelsoe JR (2009) Circadian polymorphisms associated with affective disorders. J Circadian Rhythms 7:2

    PubMed  Google Scholar 

  • Kronfeld-Schor N, Einat H (2012) Circadian rhythms and depression: human psychopathology and animal models. Neuropharmacology 62:101–114

    PubMed  CAS  Google Scholar 

  • Lavebratt C, Sjöholm LK, Partonen T, Schalling M, Forsell Y (2010a) PER2 variation is associated with depression vulnerability. Am J Med Genet B Neuropsychiatr Genet 153B:570–581

    PubMed  CAS  Google Scholar 

  • Lavebratt C, Sjöholm LK, Soronen P, Paunio T, Vawter MP, Bunney WE, Adolfsson R, Forsell Y, Wu JC, Kelsoe JR, Partonen T, Schalling M (2010b) CRY2 is associated with depression. PLoS One 5:e9407

    PubMed  Google Scholar 

  • Lee KY, Song JY, Kim SH, Kim SC, Joo EJ, Ahn YM, Kim YS (2010) Association between CLOCK 3111T/C and preferred circadian phase in Korean patients with bipolar disorder. Prog Neuropsychopharmacol Biol Psychiatry 34:1196–1201

    PubMed  CAS  Google Scholar 

  • Le-Niculescu H, Patel SD, Bhat M, Kuczenski R, Faraone SV, Tsuang MT, McMahon FJ, Schork NJ, Nurnberger JI Jr, Niculescu AB III (2009) Convergent functional genomics of genome-wide association data for bipolar disorder: comprehensive identification of candidate genes, pathways and mechanisms. Am J Med Genet B Neuropsychiatr Genet 150B:155–181

    PubMed  CAS  Google Scholar 

  • Lewy AJ, Sack RL (1988) The phase-shift hypothesis of seasonal affective disorder. Am J Psychiatry 145:1041–1043

    PubMed  CAS  Google Scholar 

  • Lewy AJ, Lefler BJ, Emens JS, Bauer VK (2006) The circadian basis of winter depression. Proc Natl Acad Sci USA 103:7414–7419

    PubMed  CAS  Google Scholar 

  • Libert S, Pointer K, Bell EL, Das A, Cohen DE, Asara JM, Kapur K, Bergmann S, Preisig M, Otowa T, Kendler KS, Chen X, Hettema JM, van den Oord EJ, Rubio JP, Guarente L (2011) SIRT1 activates MAO-A in the brain to mediate anxiety and exploratory drive. Cell 147:1459–1472

    PubMed  CAS  Google Scholar 

  • Lincoln GA, Andersson H, Hazlerigg D (2003) Clock genes and the long-term regulation of prolactin secretion: evidence for a photoperiod/circannual timer in the pars tuberalis. J Neuroendocrinol 15:390–397

    PubMed  CAS  Google Scholar 

  • Liu Y, Blackwood DH, Caesar S, de Geus EJ, Farmer A, Ferreira MA, Ferrier IN, Fraser C, Gordon-Smith K, Green EK, Grozeva D, Gurling HM, Hamshere ML, Heutink P, Holmans PA, Hoogendijk WJ, Hottenga JJ, Jones L, Jones IR, Kirov G, Lin D, McGuffin P, Moskvina V, Nolen WA, Perlis RH, Posthuma D, Scolnick EM, Smit AB, Smit JH, Smoller JW, St Clair D, van Dyck R, Verhage M, Willemsen G, Young AH, Zandbelt T, Boomsma DI, Craddock N, O’Donovan MC, Owen MJ, Penninx BW, Purcell S, Sklar P, Sullivan PF; Wellcome Trust Case-Control Consortium (2011) Meta-analysis of genome-wide association data of bipolar disorder and major depressive disorder. Mol Psychiatry 16:2–4

  • Maeda K, Robinson AJ, Henbest KB, Hogben HJ, Biskup T, Ahmad M, Schleicher E, Weber S, Timmel CR, Hore PJ (2012) Magnetically sensitive light-induced reactions in cryptochrome are consistent with its proposed role as a magnetoreceptor. Proc Natl Acad Sci USA 109:4774–4779

    PubMed  CAS  Google Scholar 

  • Mansour HA, Monk TH, Nimgaonkar VL (2005) Circadian genes and bipolar disorder. Ann Med 37:196–205

    PubMed  CAS  Google Scholar 

  • Mansour HA, Wood J, Logue T, Chowdari KV, Dayal M, Kupfer DJ, Monk TH, Devlin B, Nimgaonkar VL (2006) Association study of eight circadian genes with bipolar I disorder, schizoaffective disorder and schizophrenia. Genes Brain Behav 5:150–157

    PubMed  CAS  Google Scholar 

  • Mansour HA, Talkowski ME, Wood J, Chowdari KV, McClain L, Prasad K, Montrose D, Fagiolini A, Friedman ES, Allen MH, Bowden CL, Calabrese J, El-Mallakh RS, Escamilla M, Faraone SV, Fossey MD, Gyulai L, Loftis JM, Hauser P, Ketter TA, Marangell LB, Miklowitz DJ, Nierenberg AA, Patel J, Sachs GS, Sklar P, Smoller JW, Laird N, Keshavan M, Thase ME, Axelson D, Birmaher B, Lewis D, Monk T, Frank E, Kupfer DJ, Devlin B, Nimgaonkar VL (2009) Association study of 21 circadian genes with bipolar I disorder, schizoaffective disorder, and schizophrenia. Bipolar Disord 11:701–710

    PubMed  CAS  Google Scholar 

  • McCarthy MJ, Nievergelt CM, Kelsoe JR, Welsh DK (2012) A survey of genomic studies supports association of circadian clock genes with bipolar disorder spectrum illnesses and lithium response. PLoS One 7:e32091

    PubMed  CAS  Google Scholar 

  • McGrath CL, Glatt SJ, Sklar P, Le-Niculescu H, Kuczenski R, Doyle AE, Biederman J, Mick E, Faraone SV, Niculescu AB, Tsuang MT (2009) Evidence for genetic association of RORB with bipolar disorder. BMC Psychiatry 9:70

    PubMed  Google Scholar 

  • Menet JS, Rosbash M (2011) When brain clocks lose track of time: cause or consequence of neuropsychiatric disorders. Curr Opin Neurobiol 21:849–857

    PubMed  CAS  Google Scholar 

  • Monje FJ, Cabatic M, Divisch I, Kim EJ, Herkner KR, Binder BR, Pollak DD (2011) Constant darkness induces IL-6-dependent depression-like behavior through the NF-κB signaling pathway. J Neurosci 31:9075–9083

    PubMed  CAS  Google Scholar 

  • Monteleone P, Maj M (2008) The circadian basis of mood disorders: recent developments and treatment implications. Eur Neuropsychopharmacol 18:701–711

    PubMed  CAS  Google Scholar 

  • Nahm SS, Farnell YZ, Griffith W, Earnest DJ (2005) Circadian regulation and function of voltage-dependent calcium channels in the suprachiasmatic nucleus. J Neurosci 25:9304–9308

    PubMed  CAS  Google Scholar 

  • Nakamura TJ, Ebihara S, Shinohara K (2011) Reduced light response of neuronal firing activity in the suprachiasmatic nucleus and optic nerve of cryptochrome-deficient mice. PLoS One 6:e28726

    PubMed  CAS  Google Scholar 

  • Nievergelt CM, Kripke DF, Remick RA, Sadovnick AD, McElroy SL, Keck PE Jr, Kelsoe JR (2005) Examination of the clock gene cryptochrome 1 in bipolar disorder: mutational analysis and absence of evidence for linkage or association. Psychiatr Genet 15:45–52

    PubMed  Google Scholar 

  • Nievergelt CM, Kripke DF, Barrett TB, Burg E, Remick RA, Sadovnick AD, McElroy SL, Keck PE Jr, Schork NJ, Kelsoe JR (2006) Suggestive evidence for association of the circadian genes PERIOD3 and ARNTL with bipolar disorder. Am J Med Genet B Neuropsychiatr Genet 141B:234–241

    PubMed  CAS  Google Scholar 

  • Nikitopoulou G, Crammer JL (1976) Change in diurnal temperature rhythm in manic-depressive illness. Br Med J 1:1311–1314

    PubMed  CAS  Google Scholar 

  • O’Neill JS, Reddy AB (2011) Circadian clocks in human red blood cells. Nature 469:498–503

    PubMed  Google Scholar 

  • O’Neill JS, Maywood ES, Chesham JE, Takahashi JS, Hastings MH (2008) cAMP-dependent signaling as a core component of the mammalian circadian pacemaker. Science 320:949–953

    PubMed  Google Scholar 

  • O’Neill JS, van Ooijen G, Dixon LE, Troein C, Corellou F, Bouget FY, Reddy AB, Millar AJ (2011) Circadian rhythms persist without transcription in a eukaryote. Nature 469:554–558

    PubMed  Google Scholar 

  • Pajunen P, Lönnqvist J, Partonen T (2007) Seasonal changes in mood and behavior in relation to work conditions among the general population. Scand J Work Environ Health 33:198–203

    PubMed  Google Scholar 

  • Park SK, Nguyen MD, Fischer A, Luke MP, Affar EB, Dieffenbach PB, Tseng HC, Shi Y, Tsai LH (2005) Par-4 links dopamine signaling and depression. Cell 122:275–287

    Google Scholar 

  • Partonen T (1994) The molecular basis for winter depression. Ann Med 26:239–243

    PubMed  CAS  Google Scholar 

  • Partonen T, Lönnqvist J (1996) Seasonal variation in bipolar disorder. Br J Psychiatry 169:641–646

    PubMed  CAS  Google Scholar 

  • Partonen T, Lönnqvist J (1998) Seasonal affective disorder. Lancet 352:1369–1374

    PubMed  CAS  Google Scholar 

  • Partonen T, Treutlein J, Alpman A, Frank J, Johansson C, Depner M, Aron L, Rietschel M, Wellek S, Soronen P, Paunio T, Koch A, Chen P, Lathrop M, Adolfsson R, Persson ML, Kasper S, Schalling M, Peltonen L, Schumann G (2007) Three circadian clock genes Per2, Arntl, and Npas2 contribute to winter depression. Ann Med 39:229–238

    PubMed  CAS  Google Scholar 

  • Pennartz CM, de Jeu MT, Bos NP, Schaap J, Geurtsen AM (2002) Diurnal modulation of pacemaker potentials and calcium current in the mammalian circadian clock. Nature 416:286–290

    PubMed  CAS  Google Scholar 

  • Piggins HD (2002) Human clock genes. Ann Med 34:394–400

    PubMed  CAS  Google Scholar 

  • Rocha PMB, Neves FS, Alvarenga NB, Hughet RB, Barbosa IG, Corrêa H (2010) Association of Per3 gene with bipolar disorder: comment on “Association study of 21 circadian genes with bipolar I disorder, schizoaffective disorder, and schizophrenia”. Bipolar Disord 12:875–876

    PubMed  CAS  Google Scholar 

  • Rosenthal NE, Sack DA, Gillin JC, Lewy AJ, Goodwin FK, Davenport Y, Mueller PS, Newsome DA, Wehr TA (1984) Seasonal affective disorder: a description of the syndrome and preliminary findings with light therapy. Arch Gen Psychiatry 41:72–80

    PubMed  CAS  Google Scholar 

  • Sancar G, Sancar C, Brügger B, Ha N, Sachsenheimer T, Gin E, Wdowik S, Lohmann I, Wieland F, Höfer T, Diernfellner A, Brunner M (2011) A global circadian repressor controls antiphasic expression of metabolic genes in Neurospora. Mol Cell 44:687–697

    PubMed  CAS  Google Scholar 

  • Sasaki M, Yoshitane H, Du NH, Okano T, Fukada Y (2009) Preferential inhibition of BMAL2-CLOCK activity by PER2 reemphasizes its negative role and a positive role of BMAL2 in the circadian transcription. J Biol Chem 284:25149–25159

    PubMed  CAS  Google Scholar 

  • Sato TK, Yamada RG, Ukai H, Baggs JE, Miraglia LJ, Kobayashi TJ, Welsh DK, Kay SA, Ueda HR, Hogenesch JB (2006) Feedback repression is required for mammalian circadian clock function. Nat Genet 38:312–319

    PubMed  CAS  Google Scholar 

  • Saus E, Soria V, Escaramís G, Vivarelli F, Crespo JM, Kagerbauer B, Menchón JM, Urretavizcaya M, Gratacòs M, Estivill X (2010) Genetic variants and abnormal processing of pre-miR-182, a circadian clock modulator, in major depression patients with late insomnia. Hum Mol Genet 19:4017–4025

    PubMed  CAS  Google Scholar 

  • Schmutz I, Ripperger JA, Baeriswyl-Aebischer S, Albrecht U (2010) The mammalian clock component PERIOD2 coordinates circadian output by interaction with nuclear receptors. Genes Dev 24:345–357

    PubMed  CAS  Google Scholar 

  • Serretti A, Benedetti F, Mandelli L, Lorenzi C, Pirovano A, Colombo C, Smeraldi E (2003) Genetic dissection of psychopathological symptoms: insomnia in mood disorders and CLOCK gene polymorphism. Am J Med Genet B Neuropsychiatr Genet 121B:35–38

    PubMed  Google Scholar 

  • Serretti A, Benedetti F, Mandelli L, Calati R, Caneva B, Lorenzi C, Fontana V, Colombo C, Smeraldi E (2008) Association between GSK-3β-50T/C polymorphism and personality and psychotic symptoms in mood disorders. Psychiatry Res 158:132–140

    PubMed  CAS  Google Scholar 

  • Serretti A, Gaspar-Barba E, Calati R, Cruz-Fuentes CS, Gomez-Sanchez A, Perez-Molina A, De Ronchi D (2010) 3111T/C clock gene polymorphism is not associated with sleep disturbances in untreated depressed patients. Chronobiol Int 27:265–277

    PubMed  CAS  Google Scholar 

  • Severino G, Manchia M, Contu P, Squassina A, Lampus S, Ardau R, Chillotti C, Del Zompo M (2009) Association study in a Sardinian sample between bipolar disorder and the nuclear receptor REV-ERBα gene, a critical component of the circadian clock system. Bipolar Disord 11:215–220

    PubMed  Google Scholar 

  • Shearman LP, Sriram S, Weaver DR, Maywood ES, Chaves I, Zheng B, Kume K, Lee CC, van der Horst GT, Hastings MH, Reppert SM (2000) Interacting molecular loops in the mammalian circadian clock. Science 288:1013–1019

    PubMed  CAS  Google Scholar 

  • Shi J, Wittke-Thompson JK, Badner JA, Hattori E, Potash JB, Willour VL, McMahon FJ, Gershon ES, Liu C (2008) Clock genes may influence bipolar disorder susceptibility and dysfunctional circadian rhythm. Am J Med Genet B Neuropsychiatr Genet 147B:1047–1055

    PubMed  CAS  Google Scholar 

  • Shi S, Hida A, McGuinness OP, Wasserman DH, Yamazaki S, Johnson CH (2010) Circadian clock gene Bmal1 is not essential; functional replacement with its paralog, Bmal2. Curr Biol 20:316–321

    PubMed  CAS  Google Scholar 

  • Shiino Y, Nakajima S, Ozeki Y, Isono T, Yamada N (2003) Mutation screening of the human period 2 gene in bipolar disorder. Neurosci Lett 338:82–84

    PubMed  CAS  Google Scholar 

  • Sipilä T, Kananen L, Greco D, Donner J, Silander K, Terwilliger JD, Auvinen P, Peltonen L, Lönnqvist J, Pirkola S, Partonen T, Hovatta I (2010) An association analysis of circadian genes in anxiety disorders. Biol Psychiatry 67:1163–1170

    PubMed  Google Scholar 

  • Sjöholm LK, Backlund L, Cheteh EH, Ek IR, Frisén L, Schalling M, Osby U, Lavebratt C, Nikamo P (2010a) CRY2 is associated with rapid cycling in bipolar disorder patients. PLoS One 5:e12632

    PubMed  Google Scholar 

  • Sjöholm LK, Kovanen L, Saarikoski ST, Schalling M, Lavebratt C, Partonen T (2010b) CLOCK is suggested to associate with comorbid alcohol use and depressive disorders. J Circadian Rhythms 8:1

    PubMed  Google Scholar 

  • Solt LA, Griffin PR, Burris TP (2010) Ligand regulation of retinoic acid receptor-related orphan receptors: implications for development of novel therapeutics. Curr Opin Lipidol 21:204–211

    PubMed  CAS  Google Scholar 

  • Soria V, Martínez-Amorós E, Escaramís G, Valero J, Pérez-Egea R, García C, Gutiérrez-Zotes A, Puigdemont D, Bayés M, Crespo JM, Martorell L, Vilella E, Labad A, Vallejo J, Pérez V, Menchón JM, Estivill X, Gratacòs M, Urretavizcaya M (2010) Differential association of circadian genes with mood disorders: CRY1 and NPAS2 are associated with unipolar major depression and CLOCK and VIP with bipolar disorder. Neuropsychopharmacology 35:1279–1289

    PubMed  CAS  Google Scholar 

  • Spanagel R, Pendyala G, Abarca C, Zghoul T, Sanchis-Segura C, Magnone MC, Lascorz J, Depner M, Holzberg D, Soyka M, Schreiber S, Matsuda F, Lathrop M, Schumann G, Albrecht U (2005) The clock gene Per2 influences the glutamatergic system and modulates alcohol consumption. Nat Med 11:35–42

    PubMed  CAS  Google Scholar 

  • Spoelstra K, Daan S (2008) Effects of constant light on circadian rhythmicity in mice lacking functional cry genes: dissimilar from per mutants. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 194:235–242

    PubMed  CAS  Google Scholar 

  • Stoleru D, Nawathean P, Fernández MP, Menet JS, Ceriani MF, Rosbash M (2007) The Drosophila circadian network is a seasonal timer. Cell 129:207–219

    PubMed  CAS  Google Scholar 

  • Szczepankiewicz A, Skibinska M, Hauser J, Slopien A, Leszczynska-Rodziewicz A, Kapelski P, Dmitrzak-Weglarz M, Czerski PM, Rybakowski JK (2006) Association analysis of the GSK-3β T-50C gene polymorphism with schizophrenia and bipolar disorder. Neuropsychobiology 53:51–56

    PubMed  CAS  Google Scholar 

  • Takahashi JS, Hong HK, Ko CH, McDearmon EL (2008) The genetics of mammalian circadian order and disorder: implications for physiology and disease. Nat Rev Genet 9:764–775

    PubMed  CAS  Google Scholar 

  • Teicher MH, Glod CA, Magnus E, Harper D, Benson G, Krueger K, McGreenery CE (1997) Circadian rest-activity disturbances in seasonal affective disorder. Arch Gen Psychiatry 54:124–130

    PubMed  CAS  Google Scholar 

  • Thompson C, Stinson D, Smith A (1990) Seasonal affective disorder and season-dependent abnormalities of melatonin suppression by light. Lancet 336:703–706

    PubMed  CAS  Google Scholar 

  • Thresher RJ, Vitaterna MH, Miyamoto Y, Kazantsev A, Hsu DS, Petit C, Selby CP, Dawut L, Smithies O, Takahashi JS, Sancar A (1998) Role of mouse cryptochrome blue-light photoreceptor in circadian photoresponses. Science 282:1490–1494

    PubMed  CAS  Google Scholar 

  • Toh KL, Jones CR, He Y, Eide EJ, Hinz WA, Virshup DM, Ptácek LJ, Fu YH (2001) An hPer2 phosphorylation site mutation in familial advanced sleep phase syndrome. Science 291:1040–1043

    PubMed  CAS  Google Scholar 

  • Ueda HR, Hayashi S, Chen W, Sano M, Machida M, Shigeyoshi Y, Iino M, Hashimoto S (2005) System-level identification of transcriptional circuits underlying mammalian circadian clocks. Nat Genet 37:187–192

    PubMed  CAS  Google Scholar 

  • Ukai-Tadenuma M, Kasukawa T, Ueda HR (2008) Proof-by-synthesis of the transcriptional logic of mammalian circadian clocks. Nat Cell Biol 10:1154–1163

    PubMed  CAS  Google Scholar 

  • Ukai-Tadenuma M, Yamada RG, Xu H, Ripperger JA, Liu AC, Ueda HR (2011) Delay in feedback repression by cryptochrome 1 is required for circadian clock function. Cell 144:268–281

    PubMed  CAS  Google Scholar 

  • Utge SJ, Soronen P, Loukola A, Kronholm E, Ollila HM, Pirkola S, Porkka-Heiskanen T, Partonen T, Paunio T (2010) Systematic analysis of circadian genes in a population-based sample reveals association of TIMELESS with depression and sleep disturbance. PLoS One 5:e9259

    PubMed  Google Scholar 

  • van der Horst GTJ, Muijtjens M, Kobayashi K, Takano R, Kanno S, Takao M, de Wit J, Verkerk A, Eker APM, van Leenen D, Buijs R, Bootsma D, Hoeijmakers JHJ, Yasui A (1999) Mammalian Cry1 and Cry2 are essential for maintenance of circadian rhythms. Nature 398:627–630

    PubMed  Google Scholar 

  • Vitaterna MH, King DP, Chang AM, Kornhauser JM, Lowrey PL, McDonald JD, Dove WF, Pinto LH, Turek FW, Takahashi JS (1994) Mutagenesis and mapping of a mouse gene, Clock, essential for circadian behavior. Science 264:719–725

    PubMed  CAS  Google Scholar 

  • Vitaterna MH, Selby CP, Todo T, Niwa H, Thompson C, Fruechte EM, Hitomi K, Thresher RJ, Ishikawa T, Miyazaki J, Takahashi JS, Sancar A (1999) Differential regulation of mammalian period genes and circadian rhythmicity by cryptochromes 1 and 2. Proc Natl Acad Sci USA 96:12114–12119

    PubMed  CAS  Google Scholar 

  • Wehr TA, Duncan WC Jr, Sher L, Aeschbach D, Schwartz PJ, Turner EH, Postolache TT, Rosenthal NE (2001) A circadian signal of change of season in patients with seasonal affective disorder. Arch Gen Psychiatry 58:1108–1114

    PubMed  CAS  Google Scholar 

  • Weydahl A, Sothern RB, Cornélissen G, Wetterberg L (2001) Geomagnetic activity influences the melatonin secretion at latitude 70 degrees N. Biomed Pharmacother 55(Suppl 1):57s–62s

    PubMed  CAS  Google Scholar 

  • Ye R, Selby CP, Ozturk N, Annayev Y, Sancar A (2011) Biochemical analysis of the canonical model for the mammalian circadian clock. J Biol Chem 286:25891–25902

    PubMed  CAS  Google Scholar 

  • Zhang EE, Liu Y, Dentin R, Pongsawakul PY, Liu AC, Hirota T, Nusinow DA, Sun X, Landais S, Kodama Y, Brenner DA, Montminy M, Kay SA (2010) Cryptochrome mediates circadian regulation of cAMP signaling and hepatic gluconeogenesis. Nat Med 16:1152–1156

    PubMed  CAS  Google Scholar 

Download references

Conflict of interest

The author declares that he has no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Timo Partonen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Partonen, T. Clock gene variants in mood and anxiety disorders. J Neural Transm 119, 1133–1145 (2012). https://doi.org/10.1007/s00702-012-0810-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00702-012-0810-2

Keywords

Navigation