Skip to main content

Phycoremediation: Future Perspective of Green Technology

  • Chapter
  • First Online:
Algae and Environmental Sustainability

Part of the book series: Developments in Applied Phycology ((DAPH,volume 7))

Abstract

A rapid buildup of toxic pollutants (metals, radionuclides and organic contaminants) in the environment has adversely affected the quality of natural resources and has created major strains on the natural ecosystems. The various conventional methods used for cleaning the environmental contaminants do not find favour because of the tedious nature of the treatment method and higher economic cost. In recent years, an increasing interest of scientists in the phycoremediation of wastewater has been growing rapidly due to its cost-effective and environmental friendly nature of the technology. The use of algal systems with bare minimum requirement of space and nutrients is one of the preferred sustainable green technologies for removal of toxic wastes from the environment. Algae are the photoautotrophic organisms with their unique characteristics of using sunlight and CO2 for their growth and survival. They are endowed with remarkable metabolic and absorption capabilities which enable them to adapt to various environmental conditions. This chapter provides an overview of phycoremediation of toxic heavy metals from wastewater by using algae. The algal biomass raised from the wastewater can be good resource for a variety of biotechnological applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adhiya J, Cai X, Sayre RT, Traina SJ (2002) Binding of aqueous cadmium by the lyophilized biomass of Chlamydomonas reinhardtii. Colloids Surf A Physicochem Eng Asp 210:1–11

    Article  CAS  Google Scholar 

  • Afkar E, Ababna H, Fathi AA (2010) Toxicological response of the green alga Chlorella vulgaris to some heavy metals. Am J Environ Sci 6(3):230–237

    Article  CAS  Google Scholar 

  • Aksu Z (2001) Biosorption of reactive dyes by dried activated sludge. Equilibrium and kinetic modelling. Biochem Eng J 7:79–84

    Article  CAS  PubMed  Google Scholar 

  • Aksu Z (2002) Determination of the equilibrium, kinetic and thermodynamic parameters of the batch biosorption of nickel (II) ions onto Chlorella vulgaris. Process Biochem 38:89–99

    Article  CAS  Google Scholar 

  • Aksu Z, Kutsal T (1991) A bioseparation process for removing lead (II) ions from waste water by using C. vulgaris. J Chem Technol Biotechnol 52:109–118

    Article  CAS  Google Scholar 

  • Aloysius R, Karim MIA, Arif AB (1999) The mechanism of cadmium removal from aqueous solution by non-metabolizing free and immobilized live biomass of Rhizopus oligosporus. World J Microbiol Biotechnol 15:571–578

    Article  CAS  Google Scholar 

  • Anjana K, Kaushik A, Kiran B, Nisha R (2007) Biosorption of Cr (VI) by immobilized biomass of two indigenous strains of cyanobacteria isolated from metal contaminated soil. J Hazard Mater 148:383–386

    Article  CAS  PubMed  Google Scholar 

  • Avron M (1992) Osmoregulation. In: Avron M, Ben-Amotz A (eds) Dunaliella: physiology, biochemistry and biotechnology. CRC Press, Boca Raton

    Google Scholar 

  • Axtell NR, Sternberg SP, Claussen K (2003) Lead and nickel removal using Microspora and Lemna minor. Bioresour Technol 89:41–48

    Article  CAS  PubMed  Google Scholar 

  • Ayelet H, Dror H, Daniella M, Hofit C, Iris B, Yehuda K, Ayelet G, Yariv G, Ami BA, Aviv SA (2008) 9-cis b-carotene-enriched diet inhibits atherogenesis and fatty liver formation in LDL receptor knockout Mice. J Nutr 138:1923–1930

    Google Scholar 

  • Bajguz A (2000) Blockade of heavy metals accumulation in Chlorella vulgaris cells by 24-epibrassinolide. Plant Physiol Biochem 38:797–801

    Article  CAS  Google Scholar 

  • Banerjee M, Mishra S, Chatterjee J (2004) Scavenging of nickel and chromium toxicity in Aulosira fertilissima by immobilization: effect on nitrogen assimilating enzymes. Electron J Biotechnol 7:302–309

    Article  Google Scholar 

  • Barakat MA (2011) New trends in removing heavy metals from industrial wastewater. Arab J Chem 4(4):361–377

    Article  CAS  Google Scholar 

  • Benquell B, Benaissa H (2002) Cadmium removal from aqueous solution by chitin: kinetic and equilibrium studies. Water Res 36:2463–2474

    Article  Google Scholar 

  • Blanco AM, Moreno J, Del Campo JA, Rivas J, Guerrero JLG (2007) outdoor cultivation of lutein rich cells of Muriellopsis sp in open ponds. Appl Microbiol Biotechnol 73:1259–1266

    Article  CAS  PubMed  Google Scholar 

  • Borowitzka MA (1988) Vitamins and fine chemicals from microalgae. In: Borowitzka MA, Borowitzka LJ (eds) Microalgal biotechnology. Cambridge University Press, Cambridge, pp 153–196

    Google Scholar 

  • Burja AM, Banaigs B, Abou-Mansour E, Burgess JG, Wright PC (2001) Marine Cyanobacteria-a prolific source of natural products. Tetrahedron 57:9347–9377

    Article  CAS  Google Scholar 

  • Cai XH, Logan T, Gustafson T, Traina S, Sayre RT (1995) Applications of eukaryotic algae for the removal of heavy metals from water. Mol Mar Biol Biotechnol 4:338–344

    CAS  Google Scholar 

  • Cain A, Vannela R, Woo LK (2008) Cyanobacteria as a biosorbent for mercuric ion. Bioresour Technol 99:6578–6586

    Article  CAS  PubMed  Google Scholar 

  • Chacoón-Lee TL, González-Mariño GE (2010) Microalgae for “Healthy” foods-possibilities and challenges. Compr Rev Food Sci Food Saf 9:655–675

    Article  Google Scholar 

  • Chen H, Pan S (2005) Bioremediation potential of Spirulina: toxicity and biosorption studies of lead. J Zhejiang Univ Sci 6B(3):171–174

    Article  CAS  Google Scholar 

  • Chen JP, Yiacoumi S (1997) Biosorption of metal ions from aqueous solutions. Sep Sci Technol 32:51–69

    Article  CAS  Google Scholar 

  • Cho DY, Lee ST, Park SW, Chung AS (1994) Studies on the biosorption of heavy metals into Chlorella vulgaris. J Environ Sci Health Part A 29:389–409

    Google Scholar 

  • Chojnacka K, Chojnacki A, Górecka H (2005) Trace element removal by Spirulina sp. from copper smelter and refinery effluents. Hydrometallurgy 73:147–153

    Article  CAS  Google Scholar 

  • Chojnacka K (2010) Biosorption and bioaccumulation-the prospects for practical applications. Environ Int 36:299–307

    Article  CAS  PubMed  Google Scholar 

  • Chojnacka K, Chojnacki A, Gόrecka H (2005) Biosorption of Cr3+, Cd2+ and Cu2+ ions by blue-green algae Spirulina sp.: kinetics, equilibrium and the mechanism of the process. Chemosphere 59:75–84

    Article  CAS  PubMed  Google Scholar 

  • Chong KH, Volesky B (1995) Description of two-metal biosorption equilibria by Langmuir-type models. Biotechnol Bioeng 47:451–460

    Article  CAS  PubMed  Google Scholar 

  • Costa JAV, Colla LM, Duarte P (2003) Spirulina platensis growth in open raceway ponds using freshwater supplemented with carbon, nitrogen and metal ions. Zeitschrift fur naturforschung C-A J Biosci 58:76–80

    CAS  Google Scholar 

  • Cruz CCV, Da Costa ACA, Henriques CA, Luna AS (2004) Kinetic modeling and equilibrium studies during cadmium biosorption by dead Sargassum sp. biomass. Bioresour Technol 91:249–257

    Article  CAS  PubMed  Google Scholar 

  • Da Costa ACA, Leite SGF (1991) Metal biosorption by sodium alginate immobilized Chlorella homosphaera cells. Biotechnol Lett 13:359–362

    Article  Google Scholar 

  • David K, Volesky B (1998) Advances in biosorption of heavy metals. Trends Biotechnol 16:291–300

    Article  Google Scholar 

  • Davis TA, Volesky B, Mucci A (2003) A review of biochemistry of heavy metal biosorption by brown algae. Water Res 37:4311–4330

    Article  CAS  PubMed  Google Scholar 

  • Del Campo JA, Garcia-Gonzale M, Guerrero MG (2007) Outdoor cultivation of microalgae for carotenoid production: current state and perspectives. Appl Microbiol Biotechnol 74:1163–1174

    Article  CAS  PubMed  Google Scholar 

  • Dixit S, Singh DP (2013) Phycoremediation of lead and cadmium by employing Nostoc muscorum as biosorbent and optimization of its biosorption potential. Int J Phytoremediation 15:801–813

    Article  CAS  PubMed  Google Scholar 

  • Dixit S, Singh DP (2014) An evaluation of Phycoremediation potential of cyanobacterium Nostoc muscorum: characterization of heavy metal removal efficiency. J Appl Phycol 26:1331–1342

    Article  CAS  Google Scholar 

  • Dönmez GC, Aksu Z, Ozturk A, Kutsal T (1999) A comparative study on heavy metal biosorption characteristics of some algae. Process Biochem 34:885–892

    Article  Google Scholar 

  • Elhai J, Wolk CP (1988) Conjugal transfer of DNA to cyanobacteria. Methods Enzymol 167:747

    Article  CAS  PubMed  Google Scholar 

  • El-Enany AE, Issa AA (2000) Cyanobacteria as a biosorbent of heavy metals in sewage water. Environ Toxicol Pharmacol 8:95–101

    Article  CAS  PubMed  Google Scholar 

  • El-Sheekh MM, El-Naggar AH, Osman MEH, El-Mazaly E (2003) Effect of cobalt on growth, pigments and the photosynthetic electron transport in Monoraphidium minutum and Nitzschia perminuta. Braz J Plant Physiol 15:159–166

    Article  CAS  Google Scholar 

  • El-Sheekh MM, El-Shouny WA, Osman MEH, El-Gammal EWE (2005) Growth and heavy metals removal efficiency of Nostoc muscorum and Anabaena subcylindrica in sewage and industrial wastewater effluents. Environ Toxicol Pharmacol 19:357–365

    Article  CAS  PubMed  Google Scholar 

  • Emodi A (1978) Carotenoids: properties and applications. Food Technol 32:38–42

    CAS  Google Scholar 

  • Esposito A, Pagnanelli F, Lodi A, Solisio C, Vegliό F (2001) Biosorption of heavy metals by Sphaerotilus natans: an equilibrium study at different pH and biomass concentrations. Hydrometallurgy 60(2):129–141

    Article  CAS  Google Scholar 

  • Ettajani H, Berthet B, Amiard JC, Chevolot L (2001) Determination of cadmium partitioning in microalgae and oysters: contribution to the assessment of trophic transfer. Arch Environ Contam Toxicol 40:209–221

    Article  CAS  PubMed  Google Scholar 

  • Fathi AA, Zaki FT, Fathy AA (2000) Bioaccumulation of some heavy metals and their influence on the metabolism of Scenedesmus bijuga and Anabaena spiroides. Egypt J Biotechnol 7:293–307

    CAS  Google Scholar 

  • Fathi AA, Zaki FT, Ibraheim HA (2005) Response of tolerant and wild type strains of Chlorella vulgaris to copper with special references to copper uptake system. Protistology 4:73–78

    CAS  Google Scholar 

  • Fourest E, Roux JC (1992) Heavy metal biosorption by fungal mycelial by-products: mechanism and influence of pH. Appl Microbiol Biotechnol 37(3):399–403

    Article  CAS  Google Scholar 

  • Fourest E, Volesky B (1996) Contribution of sulfonate groups and alginate to heavy metal biosorption by the dry biomass of Sargassum fluitans. Environ Sci Technol 30:277–282

    Article  CAS  Google Scholar 

  • Fourest E, Canal C, Roux JC (1994) Improvement of heavy metal biosorption by fungal mycelial by-products: mechanism and influence of pH. Appl Microbiol Biotechnol 37:399–403

    Article  Google Scholar 

  • Francisco JS, Alejandro C, Coral B (2009) Dunaliella salina extract effect on diabetic rats: metabolic fingerprinting and target metabolites analysis. J Pharm Biomed Anal 49:786–792

    Article  CAS  Google Scholar 

  • Fuentes MMR, Sanchez JLG, Sevilla JMF, Fernandez FGA, Perez JAS, Grima EM (1999) Outdoor continuous culture of Porphyridium cruentum in a tubular photobioreactor: quantitative analysis of the daily cyclic variation of culture parameters. J Biotechnol 70:271–288

    Article  Google Scholar 

  • Fujita T, Kuzuno E, Mamiya M (1992) Adsorption of metal ions by river algae. Bunseki Kagaku 108:123–128

    CAS  Google Scholar 

  • Fujitani N, Sakaki S, Yamaguchi Y, Takenaka H (2001) Inhibitory effects of microalgae on the activation of hyaluronidase. J Appl Phycol 13:489–492

    Article  CAS  Google Scholar 

  • Gadd GM, White C, DeRome L (1988) Heavy metal and radionuclide uptake by fungi and yeasts. In: Norri PR, Kelly DP (eds) Biohydrometallurgy. A. Rowe, Chippenham

    Google Scholar 

  • Gianfreda L, Rao MA (2004) Potential of extracellular enzymes in remediation of polluted soils: a review. Enzyme Microb Technol 35:339–354

    Article  CAS  Google Scholar 

  • Gong R, Ding Y, Liu H, Chen Q, Liu Z (2005) Lead biosorption and desorption by intact and pretreated Spirulina maxima biomass. Chemosphere 58:125–130

    Article  CAS  PubMed  Google Scholar 

  • Gudin C, Chaumont D (1991) Les microalgues, de nouvelles sorces de metabolites. Biofuture 106:27–30

    Google Scholar 

  • Gupta VK, Rastogi A, Saini VK, Jain N (2006) Biosorption of copper (II) from aqueous solutions by Spirogyra species. J Colloid Interface Sci 296:59–63

    Article  CAS  PubMed  Google Scholar 

  • Gustafson KR, Cardellina JH, Fuller RW, Weislon OS, Kiser RF, Snader KM (1989) Antiviral sulfolipids from cyanobacteria (blue–green algae). J Natl Cancer Inst 81:1254

    Article  CAS  PubMed  Google Scholar 

  • Guzman MC, Cao EP (2010) Cadmium binding ability of the blue green alga Hapalosiphon welwitschii Nägel under controlled conditions. Phillipp Sci Lett 3(1):76–86

    Google Scholar 

  • Hamdy AA (2000) Biosorption of heavy metals by marine algae. Curr Microbiol 41:232–238

    Article  CAS  PubMed  Google Scholar 

  • Hawkes JS (1997) What is a heavy metal? J Chem Educ 74(11):1374–1378

    Article  CAS  Google Scholar 

  • Hennekens CH, Buring JE, Manson JE, Stampfer M, Rosner B, Cook NR, Belanger C, LaMotte F, Gaziano JM et al (1996) Lack of effect of long term supplementation with beta carotene on the incidence of malignant neoplasms and cardiovascular disease. N Engl J Med 334:1145–1149

    Article  CAS  PubMed  Google Scholar 

  • Ho YS, McKay G (2000) Correlative biosorption equilibria model for a binary batch system. Chem Eng Sci 55:817–825

    Article  CAS  Google Scholar 

  • Holan ZR, Volesky B (1994) Biosorption of lead and nickel by biomass of marine algae. Biotechnol Bioeng 43:1001–1009

    Article  CAS  PubMed  Google Scholar 

  • Holan ZR, Volesky B, Prasetyo I (1998) Biosorption of cadmium by biomass of marine algae. Biotechnol Bioeng 41(8):819–825

    Article  Google Scholar 

  • Inthorn D, Nagase H, Isaji Y, Hirata K, Miyamoto K (1996) Removal of cadmium from aqueous solution by the filamentous cyanobacterium Tolypothrix tenuis. J Ferment Bioeng 6:580–584

    Article  Google Scholar 

  • Jalali-Rad R, Ghalocerian H, Asef Y, Dalir ST, Sahaftipour MH, Gharanjik BM (2004) Biosorption of cesium by native and chemically modified biomass of marine algae: introduce the new biosorbent for biotechnology application. J Hazard Mater 116:125–134

    Article  CAS  PubMed  Google Scholar 

  • Jeraci J, Vansoest P (1986) In: Spiller G (ed) Handbook of dietary fiber in human nutrition. CRC Press, Boca Raton, pp 299–303

    Google Scholar 

  • Jin ES, Melis A (2003) Microalgal biotechnology: carotenoid production by the green algae Dunaliella salina. Biotechnol Bioprocess Eng 8:331–337

    Article  CAS  Google Scholar 

  • Kamaraj R, Muthukannan SK, Nooruddin T (2011) Adsorption isotherms for Cr (VI) by two immobilized marine cyanobacteria. Ann Microbiol. doi:10.1007/s13213-11-0252-3

    Google Scholar 

  • Kaushik BD, Venkataraman GS (1979) Effect of algal inoculation on the yield and vitamin C content of two varieties of tomato. Plant Soil 52:135–137

    Article  CAS  Google Scholar 

  • Kelly M (1988) Mining and the freshwater environment. BP Elsevier Applied Science, London

    Book  Google Scholar 

  • Khoshmanesh A, Lawson F, Prince IG (1996) Cadmium uptake by unicellular green microalgae. Chem Eng J 62:81–88

    CAS  Google Scholar 

  • Khummongkol D, Canterford GS, Freyer C (1982) Accumulation of heavy metals in unicellular algae. Biotechnol Bioeng 12:2643–2660

    Article  Google Scholar 

  • Kiran B, Kaushik A, Kaushik CP (2008) Metal–salt co-tolerance and metal removal by indigenous cyanobacterial strains. Process Biochem 43:598–604

    Article  CAS  Google Scholar 

  • Kotrba P, Ruml T (2000) Bioremediation of heavy metal pollution exploiting constituents, metabolites and metabolic pathways of livings. A review collect. Czech Chem Commun 65:1205–1247

    Article  CAS  Google Scholar 

  • Kuyucak N, Volesky B (1989) Accumulation of cobalt by marine alga. Biotechnol Bioeng 33:809–814

    Article  CAS  PubMed  Google Scholar 

  • Lee RE (1997) Phycology, 2nd edn. Cambridge University Press, Cambridge

    Google Scholar 

  • Lee YK (2001) Microalgal mass culture systems and methods: their limitation and potential. J Appl Phycol 13:307–315

    Article  Google Scholar 

  • Lee HS, Volesky B (1997) Interaction of light metals and protons with seaweed biosorbent. Water Res 31:3082–3088

    Article  CAS  Google Scholar 

  • Leppard GG (1995) The characterization of algal and microbial mucilages and their aggregates in aquatic systems. Sci Total Environ 165:103–131

    Article  CAS  PubMed  Google Scholar 

  • Levy JL, Stauberand JL, Jolley DF (2007) Sensitivity of marine microalgae to copper: the effect of biotic factors on copper adsorption and toxicity. Sci Total Environ 387:141–154

    Article  CAS  PubMed  Google Scholar 

  • Liping D, Yingying S, Hua S, Xinting W, Xiaobin Z (2006) Biosorption of copper (II) and lead (II) from aqueous solutions by nonliving green algae Cladophora fascicularis: equilibrium, kinetics and environmental effects. Adsorption 12:267–277

    Article  CAS  Google Scholar 

  • Liping DB, Xiaobin Z, Yingying SB, Hua SB, Xinting WA (2008) Biosorption and desorption of Cd2+ from wastewater by dehydrated shreds of Cladophora fascicularis. Chinese J Oceanol Limnol 26(1):45–49

    Article  CAS  Google Scholar 

  • Liu CP, Lin LP (2001) Ultrastructural study and lipid formation of Isochrysis sp. CCMP1324. Bot Bull Acad Sin 42:207–214

    CAS  Google Scholar 

  • Lorenz RT, Cysewski GR (2000) Commercial potential for Haematococcus microalgae as a natural source of astaxanthin. Trends Biotechnol 18:160–167

    Article  CAS  PubMed  Google Scholar 

  • Low KS, Lee CK, Liew SC (2000) Sorption of cadmium and lead from aqueous solutions by spent grain. Process Biochem 36:59–64

    Article  CAS  Google Scholar 

  • Lozano MS, Verde Star J, Maitic PK, Orandy CA, Gaona RH, Aranada HE, Rojas GM (1999) Effect of an algal extract and several plant growth regulators on the nutritive value of Potatoes (Solanum tuberosum L. Var. Gigant). archives hat in oamericanos de Nuticion 49:166–170

    CAS  Google Scholar 

  • Mallick N (2003) Biotechnological potential of Chlorella vulgaris for accumulation of Cu and Ni from single and binary metal solutions. W J Microbiol Biotechnol 19:695–701

    Article  CAS  Google Scholar 

  • Malliga P, Uma L, Subramanian G (1996) Lignolytic activity of the cyanobacterium Anabaena azollae ML 2 and the value of coir waste as a carrier for BGA biofertilizer. Microbios 86:175–183

    CAS  Google Scholar 

  • Mameri N, Boudries N, Addour L, Belhocine D, Lounici H, Grib H, Pauss A (1999) Batch zinc biosorption by a bacterial nonliving Streptomyces rimosus biomass. Water Res 33(6):1347–1354

    Article  CAS  Google Scholar 

  • Matheickal JT, Yu Q (1996) Biosorption of lead from aqueous solutions by marine alga Ecklonia radiata. Water Sci Technol 34:1–7

    Article  CAS  Google Scholar 

  • Matheickal JT, Iyengar L, Venkobachar C (1991) Sorption and desorption of Cu (II) by Ganoderma lucidum. Water Poll Res J Canada 26:187–200

    CAS  Google Scholar 

  • Mehta SK, Gaur JP (2001a) Characterization and optimization of Ni and Cu sorption from aqueous solution by Chlorella vulgaris. Ecol Eng 18:1–13

    Article  Google Scholar 

  • Mehta SK, Gaur JP (2001b) Concurrent sorption of Ni2+ and Cu2+ by Chlorella vulgaris from a binary metal solution. Appl Microbiol Biotechnol 55:379–382

    Article  CAS  PubMed  Google Scholar 

  • Mehta SK, Gaur JP (2001c) Removal of Ni and Cu from single and binary metal solutions by free and immobilized Chlorella vulgaris. Eur J Protistol 37:261–271

    Article  Google Scholar 

  • Mehta SK, Gaur JP (2005) Use of algae for removing heavy metal ions from wastewater: progress and prospects. Crit Rev Biotechnol 25:113–152

    Article  CAS  PubMed  Google Scholar 

  • Mehta SK, Singh A, Gaur JP (2002a) Kinetics of adsorption and uptake of Cu2+ by Chlorella vulgaris: influence of pH, temperature, culture age and cations. J Environ Sci Health Part A 37:399–414

    Article  CAS  Google Scholar 

  • Mehta SK, Tripathi BN, Gaur JP (2002b) Enhanced sorption of Ni2+ and Cu2+ by acid pretreated Chlorella vulgaris from single and binary metal solutions. J Appl Phycol 14:267–273

    Article  CAS  Google Scholar 

  • Meikle AJ, Gadd GM, Reed RH (1990) Manipulation of yeast for transport studies: critical assessment of cultural and experimental procedures. Enzyme Microb Technol 12:865–872

    Article  CAS  Google Scholar 

  • Micheletti E, Colica G, Viti C, Tamagnini P, De Philippis R (2008) Selectivity in the heavy metal removal by exopolysaccharide-producing cyanobacteria. J Appl Microbiol 105:88–94

    Article  CAS  PubMed  Google Scholar 

  • Mishra U, Pabbi S (2004) Cyanobacteria: a potential biofertilizer for rice. Resonance 9(6):6–10

    Article  Google Scholar 

  • Molina Grima EM, Belarbi EH, Fernandez FGA, Medina AR, Chisti Y (2003) Recovery of microalgal biomass and metabolites: process options and economics. Biotechnol Adv 20:491–515

    Article  CAS  PubMed  Google Scholar 

  • Murugesan GS, Sathiskumar M, Swaminathan K (2006) Arsenic from groundwater by pretreated waste tea fungal biomass. Bioresour Technol 97(3):483–487

    Article  CAS  PubMed  Google Scholar 

  • Nakazawa Y, Sashima T, Hosokawa M, Miyashita K (2009) Comparative evaluation of growth inhibitory effect of stereoisomers of fucoxanthin in human cancer cell lines. J Funct Foods 1:88–97

    Article  CAS  Google Scholar 

  • Niu H, Volesky B (2000) Gold-cyanide biosorption with L-cysteine. J Chem Technol Biotechnol 75:436–442

    Article  CAS  Google Scholar 

  • Norris PR, Kelly DP (1979) Accumulation of cadmium and cobalt by Saccharomyces cerevisiae. J Gen Microbiol 99:317–324

    Article  Google Scholar 

  • Nuhoglu Y, Malkoc E, Gürses A, Canpolat N (2002) The removal of Cu (II) from aqueous solution by Ulothrix zonata. Bioresour Technol 85:331–333

    Article  CAS  PubMed  Google Scholar 

  • Oren A (2005) A hundred years of Dunaliella research: 1905–2005. Saline Syst 1:2

    Article  PubMed Central  PubMed  Google Scholar 

  • Osman MEH, El-Naggar AH, El-Sheekh MM, El-Mazally E (2004) Differential effects of Co+2 and Ni+2 on protein metabolism in Scenedesmus obliquus and Nitzschia perminuta. Environ Toxicol Pharmacol 16:169–178

    Article  CAS  PubMed  Google Scholar 

  • Özer D, Aksu Z, Kutsal T, Caglar A (1994) Adsorption isotherms of lead (II) and chromium (VI) on Cladophora crispate. Environ Technol 15:439–448

    Article  Google Scholar 

  • Patterson GML (1996) Biotechnological applications of cyanobacteria. J Sci Ind Res 55:669–684

    CAS  Google Scholar 

  • Pawlik B, Skowronski T (1994) Transport and toxicity of cadmium: its regulation in the cyanobacterium Synechocystis aquatilis. Environ Exp Bot 34(2):225–233

    Article  CAS  Google Scholar 

  • Pawlik-Skowronska B (2003) When adapted to high concentration the periphytic green alga Stigeoclonium tenue produces high amounts of novel Phytochelatin-related peptides. Aquat Toxicol 62:155–163

    Article  CAS  PubMed  Google Scholar 

  • Prabhakaran D, Sumathi M, Subramanian G (1994) Ability to use ampicillin as nitrogen source by marine cyanobacterium Phormidium valderianum BDU 30501. Curr Microbiol 28:315–320

    Article  Google Scholar 

  • Prasad BB, Pandey UC (2000) Separation and preconcentration of copper and cadmium ions from multimetal solutions using Nostoc muscorum-based biosorbents. World J Microbiol Biotechnol 16:819–827

    Article  CAS  Google Scholar 

  • Priyadarshani I, Sahu D, Rath B (2011) Microalgal bioremediation: current practices and perspectives. J Biochem Technol 3(3):299–304

    CAS  Google Scholar 

  • Pulz O, Gross W (2004) Valuable products from biotechnology of microalgae. Appl Microbiol Biotechnol 65:635–648

    Article  CAS  PubMed  Google Scholar 

  • Raghavan C, Kadalmani B, Thirunalasundari T, Subramanian G, Akbarsha MA (2002) A study of the male antifertility properties of the marine cyanobacterium Oscillatoria willei BDU 135011 – a preliminary report. In: Proceedings of the XX symposium. Reporting of biology comparative endocrinology, Bharathidasan University, Tiruchirapalli, pp 137–138

    Google Scholar 

  • Rai LC, Mallick N (1992) Removal and assessment of toxicity of Cu and Fe to Anabaena doliolum and Chlorella vulgaris using free and immobilized cells. World J Microbiol Biotechnol 8:110–114

    Article  CAS  PubMed  Google Scholar 

  • Rai LC, Gaur JP, Kumar HD (1981) Phycology and heavy-metal pollution. Biol Rev Philos Soc 56:99–151

    Article  CAS  Google Scholar 

  • Raungsomboon S, Chidthaisong A, Bunnag B, Inthorn D, Harveya NW (2008) Removal of lead (Pb2+) by the cyanobacterium Gloeocapsa sp. Bioresour Technol 99:5650–5658

    Article  CAS  PubMed  Google Scholar 

  • Saadatnia H, Riahi H (2009) Cyanobacteria from paddy fields in Iran as a biofertilizer in rice plants. Plant Soil Environ 55(5):207–212

    Google Scholar 

  • Safinaz AF, Ragaa AH (2013) Effect of some red marine algae as biofertilizers on growth of maize (Zea mays L.) plants. Int Food Res J 20(4):1629–1632

    Google Scholar 

  • Sag YI, Kutsal T (2000) Determination of biosorption heats of heavy metal ions on Zoogloea ramigera and Rhizopus arrhizus. Biochem Eng J 6(2):145–151

    Article  CAS  PubMed  Google Scholar 

  • Sandau E, Sandau P, Pulz O (1996) Heavy metal sorption by microalgae. Acta Biotechnol 16:227–235

    Article  CAS  Google Scholar 

  • Say R, Denizli AM, Arica MY (2001) Biosorption of cadmium (II), lead (II) and copper (II) with the filamentous fungus Phanerochaete chrysosporium. Bioresour Technol 76(1):67–70

    Article  CAS  PubMed  Google Scholar 

  • Selatina A, Boukazoula A, Kechid N, Bakhti MZ, Chergui A, Kerchich Y (2004) Biosorption of lead (II) from aqueous solution by a bacterial dead Streptomyces rimosus biomass. Biochem Eng J 19(2):127–135

    Article  CAS  Google Scholar 

  • Sharma RM, Azeez PA (1988) Accumulation of copper and cobalt by blue-green algae at different temperatures. Int J Environ Anal Chem 32:87–95

    Article  Google Scholar 

  • Shashirekha S, Uma L, Subramanian G (1997) Phenol degradation by the marine cyanobacterium Phormidium valderianum BDU 30501. J Ind Microbiol Biotechnol 19:130–133

    Article  CAS  Google Scholar 

  • Sheng PX, Ting YP, Chen JP, Hong L (2004) Sorption of lead, copper, cadmium, zinc, and nickel by marine algal biomass: characterization of biosorptive capacity and investigation of mechanisms. Colloid Interface Sci 275:131–141

    Article  CAS  Google Scholar 

  • Singh SP, Yadava V (1986) Cadmium tolerance in the Cyanobacterium Anacysis nidulans. Biol Zentralbl 105:539–542

    CAS  Google Scholar 

  • Singh S, Kate BN, Banerjee UC (2005) Bioactive compounds from cyanobacteria and microalgae: an overview. Crit Rev Biotechnol 25:73–95

    Article  CAS  PubMed  Google Scholar 

  • Skowron’ski T (1986) Influence of some physico-chemical factors on cadmium uptake by the green alga Stichococcus bacillaris. Appl Microbiol Biotechnol 24:423–425

    Article  Google Scholar 

  • Solisio C, Lodi A, Soletto D, Converti A (2008) Cadmium biosorption on Spirulina platensis biomass. Bioresour Technol 99:5933–5937

    Article  CAS  PubMed  Google Scholar 

  • Spolaore P, Joannis-Cassan C, Durnan E, Isambert A (2006) Commercial applications of microalgae-review. J Biosci Bioeng 101:87–96

    Article  CAS  PubMed  Google Scholar 

  • Subashchandrabose SR, Ramakrishnan B, Megharaj M, Venkateswarlu K, Naidu R (2013) Mixotrophic cyanobacteria and microalgae as distinctive biological agents for organic pollutant degradation. Environ Int 51:59–72

    Article  CAS  PubMed  Google Scholar 

  • Subramaninan G, Uma L (1996) Cyanobacteria in pollution control. J Sci Ind Res 55:685–692

    Google Scholar 

  • Suh JH, Kim DS (2000) Comparison of different sorbents (inorganic and biological) for the removal of Pb2+ from aqueous solutions. J Chem Technol Biotechnol 75:279–284

    Article  CAS  Google Scholar 

  • Suhasini IP, Sriram G, Asolekar SR, Sureshkumar GK (1999) Biosorptive removal and recovery of cobalt from aqueous systems. Process Biochem 34(3):239–247

    Article  CAS  Google Scholar 

  • Talbot P, De la Noue J (1993) Tertiary treatment of wastewater with Phormidium bohneri (Schmidle) under various light and temperature conditions. Water Resour 27(1):153–159

    CAS  Google Scholar 

  • Tamilselvan N, Saurav K, Kannabiran K (2012) Biosorption of Cr (VI), Cr (III), Pb (II) and Cd (II) from aqueous solutions by Sargassum wightii and Caulerpa racemosa algal biomass. J Ocean Univ China 11(1):52–58

    Article  CAS  Google Scholar 

  • Terry PA, Stone W (2002) Biosorption of cadmium and copper contaminated water by Scenedesmus abundans. Chemosphere 47:249–255

    Article  CAS  PubMed  Google Scholar 

  • Thajuddin N, Subramanian G (2005) Cyanobacterial biodiversity and potential applications in biotechnology. Curr Sci 89(1):47–57

    CAS  Google Scholar 

  • Timmis KN, Pieper DH (1999) Bacteria designed for bioremediation. Trends Biotechnol 17:200–204

    Article  CAS  PubMed  Google Scholar 

  • Tsezos M, Volesky B (1981) Biosorption of uranium and thorium. Biotechnol Bioeng 23:583–604

    Article  CAS  Google Scholar 

  • Tsuji N, Hirayanagi N, Okada M, Miyasaka H, Hirata K, Zenk MH, Miyamoto K (2002) Enhancement of tolerance to heavy metals and oxidative stress in Dunaliella tertiolecta by Zn-induced phytochelatin synthesis. Biochem Biophys Res Commun 293:653–659

    Article  CAS  PubMed  Google Scholar 

  • Tsuji N, Hirayanagi N, Iwabe O, Namba T, Tagawa M, Miyamoto S, Miyasaka H, Takagi M, Hirata K, Miyamoto K (2003) Regulation of phytochelatin synthesis by zinc and cadmium in marine green alga Dunaliella tertiolecta. Phytochemistry 62:453–459

    Article  CAS  PubMed  Google Scholar 

  • Uma L, Subramanian G (1990) Effective use of cyanobacteria in effluent treatment. In: Proceedings of the national symposium on cyanobacterial N2 fixation, IARI, New Delhi, pp 437–444

    Google Scholar 

  • Vannela R, Verma SK (2006) Co2+, Cu2+ and Zn2+ accumulation by cyanobacterium Spirulina platensis. Biotechnol Prog 22:1282–1293

    Google Scholar 

  • Venkataraman GS (1981) Blue–green algae for rice production. FAO Soil Bull 16:33–42

    Google Scholar 

  • Verma SK, Singh SP (1990) Factors regulating copper uptake in cyanobacterium. Curr Microbiol 21:33–37

    Article  CAS  Google Scholar 

  • Vijayaraghavan K, Yun YS (2007) Utilization of fermentation waste (Corynebacterium glutamicum) for biosorption of Reactive Black 5 from aqueous solution. J Hazard Mater 141(1):45–52

    Article  CAS  PubMed  Google Scholar 

  • Volesky B (1992) Removal of heavy metals by biosorption. American Chemical Society, Washington, DC, pp 462–466

    Google Scholar 

  • Volesky B (1994) Advances in biosorption of metals: selection of biomass types. FEMS Microbiol Rev 14:291–302

    Article  CAS  PubMed  Google Scholar 

  • Volesky B (1997) Removal and recovery of heavy metals by biosorption. In: Volesky B (ed) Biosorption of heavy metals. CRC Press, Boca Raton, pp 629–635

    Google Scholar 

  • Wase DAJ, Forster CF (1997) Biosorbents for metal ions. Taylor & Francis, London

    Google Scholar 

  • Weckesser J, Hofmann K, Jürgens UJ, Whitton BA, Raffelsberger B (1988) Isolation and chemical analysis of the sheaths of the filamentous cyanobacteria Calothrix parietina and C. scopulorum. J Gen Microbiol 134:629–634

    CAS  Google Scholar 

  • Wikstrom P, Szwajeer E, Brodelius P, Nilsson KN, Mosbach K (1997) Formation of alpha keto acids from amino acids using immobilized bacteria and algae. Biotechnol Lett 4:153

    Article  Google Scholar 

  • Wilde EW, Benemann JR (1993) Bioremoval of heavy metals by the use of microalgae. Biotechnol Adv 11:781–812

    Article  CAS  PubMed  Google Scholar 

  • Yamaguchi K (1997) Recent advances in microalgal bioscience in Japan, with special reference to utilization of biomass and metabolites: a review. J Appl Phycol 8:487–502

    Article  Google Scholar 

  • Yee N, Benning LG, Phoenix VR, Ferris FG (2004) Characterization of metal-cyanobacteria sorption reactions: a combined macroscopic and infrared spectroscopic investigation. Environ Sci Technol 38:775–782

    Article  CAS  PubMed  Google Scholar 

  • Yongmanitchai W, Ward OP (1991) Growth of the omega-3-fatty-acid production by Phaeodactylum-Tricornutum under different culture conditions. Appl Environ Microbiol 57:419–425

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zhao Y, Hao Y, Ramelow GJ (1994) Evaluation of treatment techniques for increasing the uptake of metal ions from solution by non-living seaweed algal biomass. Environ Monit Assess 33:61–70

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. P. Singh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer India

About this chapter

Cite this chapter

Dixit, S., Singh, D.P. (2015). Phycoremediation: Future Perspective of Green Technology. In: Singh, B., Bauddh, K., Bux, F. (eds) Algae and Environmental Sustainability. Developments in Applied Phycology, vol 7. Springer, New Delhi. https://doi.org/10.1007/978-81-322-2641-3_2

Download citation

Publish with us

Policies and ethics