Skip to main content

Post-genome Sequencing Developments

  • Chapter
Sorghum Molecular Breeding
  • 1010 Accesses

Abstract

The publication of the first draft of the sorghum genome assembly during 2009 opened up avenues directed towards understanding the genome organization and annotation of the genome to know the diverse classes of genes. Post-genome sequencing developments include comparative genomics for understanding the syntenic relationships with other model plants and related crop species, genome annotation through in silico approaches and validation of their functions, functional analysis of agronomically important genes, detection of SNPs and microRNAs and analyzing their role in gene function and regulation, transcriptome analysis to understand the gene networks associated with complex traits, in silico mapping of agronomically important genes, and epigenomics for understanding the non-genetic regulation of gene expression. The most effective strategy for achieving precision in the genetic improvement of sorghum is through the integration of genomic data, genetic principles, statistical knowledge, molecular biology, and plant breeding methodologies through inter-disciplinary research. This chapter focuses on the developments in genomics after the sequencing of sorghum genome, particularly the genome organization, structural and functional gene annotations, functional analysis of genes governing various biochemical pathways, and their impact in the genetic improvement of sorghum.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adai A, Johnson C, Mlotshwa S, Archer-Evans S, Manocha V, Vance V, Sundaresan V (2005) Computational prediction of miRNAs in Arabidopsis thaliana. Genome Res 15:78–91

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Almodares A, Hadi MR (2009) Production of bioethanol from sweet sorghum: a review. Afr J Agric Res 4:772–780

    Google Scholar 

  • Arabidopsis Genome Initiative (2000) Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408:796–815

    Article  Google Scholar 

  • Aubourg S, Rouze P (2001) Genome annotation. Plant Physiol Biochem 39:181–193

    Article  CAS  Google Scholar 

  • Axtell MJ, Bartel DP (2005) Antiquity of microRNAs and their targets in land plants. Plant Cell 17:1658–1673

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bainbridge MN, Warren RL, Hirst M et al (2006) Analysis of the prostate cancer cell line LNCaP transcriptome using a sequencing-by-synthesis approach. BMC Genom 7:246

    Article  CAS  Google Scholar 

  • Baird NA, Etter PD, Atwood TS, Currey MC, Shiver AL, Lewis ZA, Selker EU, Cresko WA, Johnson EA (2008) Rapid SNP discovery and genetic mapping using sequenced RAD markers. PLoS One 3:e3376

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116:281–297

    Article  CAS  PubMed  Google Scholar 

  • Bennetzen JL (2000) Comparative sequence analysis of plant nuclear genomes: microcolinearity and its many exceptions. Plant Cell 12:1021–1030

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bennetzen JL, Ma J (2003) The genetic colinearity of rice and other cereals on the basis of genomic sequence analysis. Curr Opin Plant Biol 6:128–133

    Article  CAS  PubMed  Google Scholar 

  • Bevan MW, Uauy C (2013) Genomics reveals new landscapes for crop improvement. Genome Biol 14:206

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Bouchez D, Hofte H (1998) Functional genomics in plants. Plant Physiol 118:725–732

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bowers J, Mitchell J, Beer E et al (2009) Virtual terminator nucleotides for next-generation DNA sequencing. Nat Methods 6:593–595

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Brent MR (2008) Steady progress and recent breakthroughs in the accuracy of automated genome annotation. Nat Rev Genet 9:62–73

    Article  CAS  PubMed  Google Scholar 

  • Buchanan WV, Page T, Harrison E et al (2005) Comparative transcriptome analysis reveals significant differences in gene expression and signaling pathways between developmental and dark/starvation-induced senescence in Arabidopsis. Plant J 42:567–585

    Article  CAS  Google Scholar 

  • Callinan PA, Feinberg AP (2006) The emerging science of epigenomics. Hum Mol Genet 1:R95–R101

    Article  CAS  Google Scholar 

  • Calvino M, Messing J (2013) Discovery of microRNA169 gene copies in genomes of flowering plants through positional information. Genome Biol Evol 5(2):402–417

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Calvino M, Bruggmann R, Messing J (2011) Characterization of the small RNA component of the transcriptome from grain and sweet sorghum stems. BMC Genom 12:356

    Article  CAS  Google Scholar 

  • Cokus SJ, Feng S, Zhang X, Chen Z, Merriman B, Haudenschild CD, Pradhan S, Nelson SF, Pellegrini M, Jacobsen SE (2008) Shotgun bisulphite sequencing of the Arabidopsis genome reveals DNA methylation patterning. Nature 452:215–219

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Cross SH, Charlton JA, Nan X, Bird AP (1994) Purification of CpG islands using a methylated DNA binding column. Nat Genet 6:236–244

    Article  CAS  PubMed  Google Scholar 

  • Davidson RM, Gowda M, Moghe G, Lin H, Vaillancourt B, Shiu SH, Jiang N, Robin Buell C (2012) Comparative transcriptomics of three Poaceae species reveals patterns of gene expression evolution. Plant J 71:492–502

    CAS  PubMed  Google Scholar 

  • Dryanova A, Zakharov A, Gulick PJ (2008) Data mining for miRNAs and their targets in the Triticeae. Genome 51:433–443

    Article  CAS  PubMed  Google Scholar 

  • Du JF, Wu YJ, Fang XF, Cao JX, Zhao L, Tao SH (2010) Prediction of sorghum miRNAs and their targets with computational methods. Chinese Sci Bull 55:1263–1270

    Article  CAS  Google Scholar 

  • Dubcovsky J, Dvorak J (2007) Genome plasticity a key factor in the success of polyploid wheat under domestication. Science 316:1862–1866

    Article  CAS  PubMed  Google Scholar 

  • Dugas DV, Monaco MK, Olson A, Klein RR, Kumari S, Ware D, Klein PE (2011) Functional annotation of the transcriptome of Sorghum bicolor in response to osmotic stress and abscisic acid. BMC Genom 12:514

    Article  CAS  Google Scholar 

  • Egelhofer TA, Minoda A, Klugman S et al (2010) An assessment of histone-modification antibody quality. Nat Struct Mol Biol 18:91–93

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Eid J, Fehr A, Gray J et al (2009) Real-time DNA sequencing from single polymerase molecules. Science 323:133–138

    Article  CAS  PubMed  Google Scholar 

  • Elling AA, Deng XW (2009) Next-generation sequencing reveals complex relationships between the epigenome and transcriptome in maize. Plant Signal Behav 4:760–762

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Emberton J, Ma J, Yuan Y, SanMiguel P, Bennetzen JL (2005) Gene enrichment in maize with hypomethylated partial restriction (HMPR) libraries. Genome Res 15:1441

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Fu H, Tie Y, Xu C, Zhang Z, Zhu J, Shi Y, Jiang H, Sun Z, Zheng X (2005) Identification of human fetal liver miRNAs by a novel method. FEBS Lett 579:3849–3854

    Article  CAS  PubMed  Google Scholar 

  • Gale MD, Devos KM (1998) Comparative genetics in the grasses. Proc Natl Acad Sci U S A 95:1971–1974

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gelli M, Duo Y, Konda AR, Zhang C, Holding D, Dweikat I (2014) Identification of differentially expressed genes between sorghum genotypes with contrasting nitrogen stress tolerance by genome-wide transcriptional profiling. BMC Genom 15:179

    Article  CAS  Google Scholar 

  • Glaszmann JC, Dufour P, Grivet L, D’Hont A, Deu M, Paulet F, Hamon P (1997) Comparative genome analysis between several tropical grasses. Euphytica 96:13–21

    Article  CAS  Google Scholar 

  • Groth P, Weiss B, Hans-Dieter Pohlenz, Leser U (2008) Mining phenotypes for gene function prediction. BMC Bioinf 9:136

    Article  CAS  Google Scholar 

  • Gupta PK (2008) Single-molecule DNA sequencing technologies for future genomics research. Trends Biotech 26:602–611

    Article  CAS  Google Scholar 

  • Hamblin MT, Salas Fernandez MG, Tuinstra MR, Rooney WL, Kresovich S (2007) Sequence variation at candidate loci in the starch metabolism pathway in sorghum: Prospects for linkage disequilibrium mapping. Crop Sci 47:S125–S134

    Article  Google Scholar 

  • Harris TD, Buzby PR, Babcock H et al (2008) Single-molecule DNA sequencing of a viral genome. Science 320:106–109

    Article  CAS  PubMed  Google Scholar 

  • Havecker ER, Wallbridge LM, Hardcastle TJ, Bush MS, Kelly KA, Dunn RM, Schwach F, Doonan JH, Baulcombe DC (2010) The Arabidopsis RNA-directed DNA methylation argonautes functionally diverge based on their expression and interaction with target loci. Plant Cell 22:321–334

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • He G, Zhu X, Elling AA et al (2010) Global epigenetic and transcriptional trends among two rice sub-species and their reciprocal hybrids. Plant Cell 22:17–33

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • International Rice Genome Sequencing Project (2005) The map-based sequence of the rice genome. Nature 436:793–800

    Article  CAS  Google Scholar 

  • Jiang SY, Ma Z, Vanitha J, Ramachandran S (2013) Genetic variation and expression diversity between grain and sweet sorghum lines. BMC Genom 14:18

    Article  CAS  Google Scholar 

  • Jones-Rhoades MW, Bartel DP (2004) Computational identification of plant microRNAs and their targets, including a stress-induced miRNA. Mol Cell 14:787–799

    Article  CAS  PubMed  Google Scholar 

  • Katiyar A, Smita S, Chinnusamy V, Pandey DM, Bansal KC (2012) Identification of miRNAs in sorghum by using bioinformatics approach. Plant Signal Behav 7:246–259

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kidwell MG (2002) Transposable elements and the evolution of genome size in eukaryotes. Genetica 115:49–63

    Article  CAS  PubMed  Google Scholar 

  • Kumar S, Banks TW, Cloutier S (2012) SNP discovery through next-generation sequencing and its applications. Int J Plant Genomics 2012:1–15

    Google Scholar 

  • Kurihara Y, Watanabe Y (2004) Arabidopsis micro-RNA biogenesis through Dicer-like 1 protein functions. Proc Natl Acad Sci U S A 101:2753–12758

    Google Scholar 

  • Lee RC, Feinbaum RL, Ambros V (1993) The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75:843–854

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Li W, Jin YX (2005) Computational identification of novel family members of microRNA genes in Arabidopsis thaliana and Oryza sativa. Acta Biochim Biophys Sin 37:75–87

    Article  PubMed  Google Scholar 

  • Li, L, Chu, AH, Liu, HJ, Lo C (2009a) Isolation and analysis of defense-related genes in infected sorghum seedlings. Abstract. Plant Biology symposium 2009, American Society of Plant Biologists, Honolulu, 18–22 July 2009

    Google Scholar 

  • Li M, Yuyama N, Luo L, Hirata M, Cai H (2009b) In silico mapping of 1758 new SSR markers developed from public genomic sequences for sorghum. Mol Breed 24:41–47

    Article  CAS  Google Scholar 

  • Liang C, Liu Y, Liu L, Davis AC, Shen Y, Li Q (2008) Expressed sequence tags with cDNA termini: Previously overlooked resources for gene annotation and transcriptome exploration in Chlamydomonas reinhardtii. Genetics 179:83–93

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lim LP, Glasner ME, Yekta S, Burge CB, Bartel DP (2003a) Vertebrate microRNA genes. Science 299:1540

    Article  CAS  PubMed  Google Scholar 

  • Lim LP, Lau NC, Weinstein EG, Abdelhakim A, Yekta S, Rhoades MW, Burge CB, Bartel DP (2003b) The microRNAs of Caenorhabditis elegans. Genes Dev 17:991–1008

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lippman Z, Gendrel AV, Black M et al (2004) Role of transposable elements in heterochromatin and epigenetic control. Nature 430:471–476

    Article  CAS  PubMed  Google Scholar 

  • Liu H, Du Y, Chu H, Shih CH, Wong YW, Wang M, Chu IK, Tao Y, Lo C (2010) Molecular dissection of the pathogen-inducible 3-deoxyanthocyanidin biosynthesis pathway in sorghum. Plant Cell Physiol 51:1173–1185

    Article  CAS  PubMed  Google Scholar 

  • Lu C, Tej SS, Luo S, Haudenschild CD, Meyers BC, Green PJ (2005) Elucidation of the small RNA component of the transcriptome. Science 309:1567–1569

    Article  CAS  PubMed  Google Scholar 

  • Lu C, Kulkarni K, Souret FF et al (2006) MicroRNAs and other small RNAs enriched in the Arabidopsis RNA-dependent RNA polymerase-2 mutant. Genome Res 16:1276–1288

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Mace ES, Jordan DR (2010) Location of major effect genes in sorghum (Sorghum bicolor (L.) Moench). Theor Appl Genet 121:1339–1356

    Article  CAS  PubMed  Google Scholar 

  • Mace ES, Jordan DR (2011) Integrating sorghum whole genome sequence information with a compendium of sorghum QTL studies reveals uneven distribution of QTL and of gene-rich regions with significant implications for crop improvement. Theor Appl Genet 123:169–191

    Article  CAS  PubMed  Google Scholar 

  • Mardis ER (2008) The impact of next-generation sequencing technology on genetics. Trends Genet 24:133–141

    Article  CAS  PubMed  Google Scholar 

  • Mathews DH, Sabina J, Zuker M, Turner DH (1999) Expanded sequence dependence of thermodynamic parameters improves prediction of RNA secondary structure. J Mol Biol 288:911–940

    Article  CAS  PubMed  Google Scholar 

  • McClelland M, Nelson M (1988) The effect of site-specific DNA methylation on restriction endonucleases and DNA modification methyltransferases – a review. Gene 74:291–304

    Article  CAS  PubMed  Google Scholar 

  • McCombie WR, Adams MD, Kelley JM, FitzGerald MG, Utterback TR, Khan M, Dubnick M, Kerlavage AR, Venter JC, Fields C (1992) Caenorhabditis elegans expressed sequence tags identify gene families and potential disease gene homologues. Nat Genet 1:124–131

    Article  CAS  PubMed  Google Scholar 

  • Mead EA, Tu Z (2008) Cloning, characterization and expression of microRNAs from the Asian malaria mosquito, Anopheles stephensi. BMC Genom 9:244

    Article  CAS  Google Scholar 

  • Mi S, Cai T, Hu Y et al (2008) Sorting of small RNAs into Arabidopsis argonaute complexes is directed by the 5′ terminal nucleotide. Cell 133:116–127

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ming R, Liu SC, Lin YR et al (1998) Detailed alignment of Saccharum and sorghum chromosomes: comparative organization of closely related diploid and polyploid genomes. Genetics 150:1663–1668

    PubMed Central  CAS  PubMed  Google Scholar 

  • Mizuno H, Kawahigashi H, Kawahara Y, Kanamori H, Ogata J, Minami H, Itoh T, Matsumoto T (2012) Global transcriptome analysis reveals distinct expression among duplicated genes during sorghum-Bipolaris sorghicola interaction. BMC Plant Biol 12:121

    Google Scholar 

  • Montgomery TA, Howell MD, Cuperus JT, Li D, Hansen JE, Alexander AL, Chapman EJ, Fahlgren N, Allen E, Carrington JC (2008) Specificity of ARGONAUTE7-miR390 interaction and dual functionality in TAS3 trans-acting siRNA formation. Cell 133:128–141

    Article  CAS  PubMed  Google Scholar 

  • Morishige DT, Klein PE, Hilley JL, Sahraeian SME, Sharma A, Mullet JE (2013) Digital genotyping of sorghum – a diverse plant species with a large repeat-rich genome. BMC Genom 14:448

    Article  CAS  Google Scholar 

  • Morozova O, Marra MA (2008) Applications of next-generation sequencing technologies in functional genomics. Genomics 92:255–264

    Article  CAS  PubMed  Google Scholar 

  • Morris GP, Ramu P, Deshpande SP et al (2012) Population genomic and genome-wide association studies of agroclimatic traits in sorghum. Proc Natl Acad Sci U S A 110:453–458

    Article  PubMed Central  PubMed  Google Scholar 

  • Moxon S, Jing R, Szittya G, Schwach F, Rusholme Pilcher RL, Moulton V, Dalmay T (2008) Deep sequencing of tomato short RNAs identifies microRNAs targeting genes involved in fruit ripening. Genome Res 18:1602–1609

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Murray SC, Rooney WL, Hamblin MT, Mitchell SE, Kresovich S (2009) Sweet sorghum genetic diversity and association mapping for brix and height. Plant Gen 2:48–62

    Article  CAS  Google Scholar 

  • Nelson JC, Wang S, Wu Y, Li X, Antony G, White FF, Yu J (2011) Single-nucleotide polymorphism discovery by high-throughput sequencing in sorghum. BMC Genom 12:352

    Article  CAS  Google Scholar 

  • Oh S, Park S, van Nocker S (2008) Genic and global functions for Paf1C in chromatin modification and gene expression in Arabidopsis. PLoS Genet 4:e1000077

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Okou DT, Steinberg KM, Middle C, Cutler DJ, Albert TJ, Zwick ME (2007) Microarray-based genomic selection for high-throughput re-sequencing. Nat Methods 4:907–909

    Article  CAS  PubMed  Google Scholar 

  • Olson A, Klein RR, Dugas DV, Lu Z, Regulski M, Klein PE, Ware D (2014) Expanding and vetting Sorghum bicolor gene annotations through transcriptome and methylome sequencing. Plant Gen 7(2):1–20

    Article  CAS  Google Scholar 

  • Pasquinelli AE, Reinhart BJ, Slack F, Martindale MQ, Kuroda MI, Maller B, Hayward DC (2000) Conservation of the sequence and temporal expression of let-7 heterochronic regulatory RNA. Nature 408:86–89

    Article  CAS  PubMed  Google Scholar 

  • Paterson AH (2013) The Sorghum genome sequence: a core resource for Saccharinae genomics. In: Paterson AH (ed) Genomics of saccharinae, Plant genetics and genomics: crops and models II. Springer, New York, p 107

    Chapter  Google Scholar 

  • Paterson AH, Bowers JE, Bruggmann R et al (2009) The Sorghum bicolor genome and the diversification of grasses. Nature 457:551–556

    Article  CAS  PubMed  Google Scholar 

  • Pavy N, Paule C, Parsons L et al (2005) Generation, annotation, analysis and database integration of 16,500 white spruce EST clusters. BMC Genom 6:144

    Article  Google Scholar 

  • Ramu P, Deshpande SP, Senthilvel S, Jayashree B, Billot C, Deu M, Ananda Reddy L, Hash CT (2010) In silico mapping of important genes and markers available in the public domain for efficient sorghum breeding. Mol Breed 26:409–418

    Article  Google Scholar 

  • Reinhart BJ, Slack FJ, Basson M, Pasquinelli AE, Bettinger JC, Rougvie AE, Horvitz HR (2000) The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature 403:901–906

    Article  CAS  PubMed  Google Scholar 

  • Rival A, Beule T, Bertossi FA, Tregear J, Jaligot E (2010) Plant epigenetics: from genomes to epigenomes. Not Bot Hort Agrobot Cluj (Special Issue) 38:9–15

    CAS  Google Scholar 

  • Robins H, Li Y, Padgett RW (2005) Incorporating structure to predict microRNA targets. Proc Natl Acad Sci U S A 102:4006–4009

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sanger F, Nicklen S, Coulson AR (1977) DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A 74:5463–5467

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Schmutz J, Cannon SB, Schlueter J et al (2010) Genome sequence of the palaeopolyploid soybean. Nature 463:178–183

    Article  CAS  PubMed  Google Scholar 

  • Schnable PS, Ware D, Fulton RS et al (2009) The B73 maize genome: complexity, diversity, and dynamics. Science 326:1112–1115

    Article  CAS  PubMed  Google Scholar 

  • Seki M, Narusaka M, Kamiya A et al (2002) Functional annotation of a full-length Arabidopsis cDNA collection. Science 296:141–145

    Article  PubMed  Google Scholar 

  • Shakoor N, Crasta OR, Nair R, Huang SW, Fan Z, Morris G, Kresovich S (2013) Whole genome gene expression profiling of multiple tissue types and developmental stages in Sorghum bicolor. Abstract: Plant and Animal Genome XXI symposium, San Diego, 12–16 Jan 2013

    Google Scholar 

  • Shakoor N, Nair R, Crasta OR, Morris G, Feltus A, Kresovich S (2014) A Sorghum bicolor expression atlas reveals dynamic genotype-specific expression profiles for vegetative tissues of grain, sweet and bioenergy sorghums. BMC Plant Biol 14:35

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Singh NK, Gupta DK, Jayaswal PK et al (2012) The first draft of the pigeonpea genome sequence. J Plant Biochem Biotechnol 21:98–112

    Article  PubMed Central  PubMed  Google Scholar 

  • Singhal D, Gupta P, Sharma P, Kashyap N, Anand S, Sharma H (2011) In-silico single nucleotide polymorphisms (SNP) mining of Sorghum bicolor genome. Afr J Biotechnol 10:580–583

    Google Scholar 

  • Somerville C, Somerville S (1999) Plant functional genomics. Science 283:380–383

    Article  Google Scholar 

  • Stein L (2001) Genome annotation: from sequence to biology. Nat Rev Genet 2:493–503

    Article  CAS  PubMed  Google Scholar 

  • Sukumaran S, Xiang W, Bean SR, Pedersen JF, Kresovich S, Tuinstra MR, Tesso TT, Hamblin MT, Yu J (2012) Association mapping for grain quality in a diverse sorghum collection. Plant Gen 5:126–135

    Article  CAS  Google Scholar 

  • Sungroh Y, Giovanni DM (2006) Computational identification of microRNAs and their targets. Birth Defect Res (Part C) 78:118–128

    Article  CAS  Google Scholar 

  • Sunkar R, Jagadeeswaran G (2008) In silico identification of conserved microRNAs in large number of diverse plant species. BMC Plant Biol 8:37

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Sunkar R, Zhou X, Zheng Y, Zhang W, Zhu JK (2008) Identification of novel and candidate miRNAs in rice by high throughput sequencing. BMC Plant Biol 8:25

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Swami AK, Alam SI, Sengupta N, Sarin R (2011) Differential proteomic analysis of salt stress response in Sorghum bicolor leaves. Environ Exp Bot 71:321–328

    Article  CAS  Google Scholar 

  • Takagi H, Abe A, Yoshida K et al (2013) QTL-seq: rapid mapping of quantitative trait loci in rice by whole genome resequencing of DNA from two bulked populations. Plant J 74:174–183

    Article  CAS  PubMed  Google Scholar 

  • The International Wheat Genome Sequencing Consortium (2014) A chromosome-based draft sequence of the hexaploid bread wheat (Triticum aestivum) genome. Science 345(6194):1251788

    Article  CAS  Google Scholar 

  • Thurber CS, Ma JM, Higgins RH, Brown PJ (2013) Retrospective genomic analysis of sorghum adaptation to temperate-zone grain production. Genome Biol 14:R68

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Tran RK, Henikoff JG, Zilberman D, Ditt RF, Jacobsen SE, Henikoff S (2005a) DNA methylation profiling identifies CG methylation clusters in Arabidopsis genes. Curr Biol 15:154–159

    Article  CAS  PubMed  Google Scholar 

  • Tran RK, Zilberman D, de Bustos C et al (2005b) Chromatin and siRNA pathways cooperate to maintain DNA methylation of small transposable elements in Arabidopsis. Genome Biol 6:R90

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Travella S, Klimm TE, Keller B (2006) RNA interference-based gene silencing as an efficient tool for functional genomics in hexaploid bread wheat. Plant Physiol 142:6–20

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Upadhyaya HD, Wang YH, Gowda CLL, Sharma S (2013a) Association mapping of maturity and plant height using SNP markers with the sorghum mini core collection. Theor Appl Genet 126:2003–2015

    Article  CAS  PubMed  Google Scholar 

  • Upadhyaya HD, Wang YH, Sharma R, Sharma S (2013b) Identification of genetic markers linked to anthracnose resistance in sorghum using association analysis. Theor Appl Genet 126:1649–1657

    Article  CAS  PubMed  Google Scholar 

  • van Orsouw NJ, Hogers RCJ, Janssen A et al (2007) Complexity Reduction of Polymorphic Sequences (CRoPSâ„¢): a novel approach for large-scale polymorphism discovery in complex genomes. PLoS One 2:e1172

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Varshney RK, Chen W, Li Y et al (2012) Draft genome sequence of pigeonpea (Cajanus cajan), an orphan legume crop of resource-poor farmers. Nat Biotechnol 30:83–89

    Article  CAS  Google Scholar 

  • Varshney RK, Song S, Saxena RK et al (2013) Draft genome sequence of chickpea (Cicer arietinum) provides a resource for trait improvement. Nat Biotechnol 31:240–246

    Article  CAS  PubMed  Google Scholar 

  • Wang SM (2007) Understanding SAGE data. Trends Genet 23:42–50

    Article  PubMed  CAS  Google Scholar 

  • Wang X, Zhang J, Li F, Gu J, He T, Zhang X, Li Y (2005) MicroRNA identification based on sequence and structure alignment. Bioinformatics 21:3610–3614

    Article  CAS  PubMed  Google Scholar 

  • Wang G, Wang X, Wang Y, Yang JY, Li L, Nephew KP, Edenberg HJ, Zhou FC, Liu Y (2008) Identification of transcription factor and microRNA binding sites in responsible to fetal alcohol syndrome. BMC Genom 9(Suppl 1):S19

    Article  CAS  Google Scholar 

  • Wightman B, Ha I, Ruvkun G (1993) Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans. Cell 75:855–862

    Article  CAS  PubMed  Google Scholar 

  • Wortman JR, Haas BJ, Hannick LI, Smith RK Jr, Maiti R, Ronning CM, Chan AP, Yu C, Ayele M, Whitelaw CA, White OR, Town CD (2003) Annotation of the Arabidopsis genome. Plant Physiol 132:461–468

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Xie FL, Huang SQ, Guo K, Zhu YY, Nie L, Yang ZM (2007) Computational identification of novel microRNAs and targets in Brassica napus. FEBS Lett 581:1464–1473

    Article  CAS  PubMed  Google Scholar 

  • Yan L, Liu S, Zhao S, Kang Y, Wang D, Gu T, Xin Z, Xia G, Huang Y (2012) Identification of differentially expressed genes in sorghum (Sorghum bicolor) brown midrib mutants. Physiol Plant 146:375–387

    Article  CAS  PubMed  Google Scholar 

  • Yandell M, Ence D (2012) A beginner’s guide to eukaryotic genome annotation. Nat Rev Genet 13:329–341

    Article  CAS  PubMed  Google Scholar 

  • Yang L, Liu T, Li B, Sui Y, Chen J, Shi J, Wing RA, Chen M (2012) Comparative sequence analysis of the Ghd7 orthologous regions revealed movement of Ghd7 in the grass genomes. PLoS One 7(11):e50236

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yazawa T, Kawahigashi H, Matsumoto T, Mizuno H (2013) Simultaneous transcriptome analysis of sorghum and Bipolaris sorghicola by using RNA-seq in combination with de novo transcriptome assembly. PLoS One 8:e62460

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yuan Y, SanMiguel PJ, Bennetzen JL (2003) High-Cot sequence analysis of the maize genome. Plant J 34:249–255

    Article  CAS  PubMed  Google Scholar 

  • Yuan Q, Ouyang S, Wang A et al (2005) The institute for genomic research Osa1 rice genome annotation database. Plant Physiol 138:18–26

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zhai J, Liu J, Liu B, Li P, Meyers BC, Chen X, Cao X (2008) Small RNA-directed epigenetic natural variation in Arabidopsis thaliana. PLoS Genet 4:e1000056

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Zhang B, Pan X, Cannon CH, Cobb GP, Anderson TA (2006a) Conservation and divergence of plant microRNA genes. Plant J 46:243–259

    Article  CAS  PubMed  Google Scholar 

  • Zhang X, Yazaki J, Sundaresan A et al (2006b) Genome-wide high-resolution mapping and functional analysis of DNA methylation in Arabidopsis. Cell 126:1189–1201

    Article  CAS  PubMed  Google Scholar 

  • Zhang X, Bernatavichute YV, Cokus S, Pellegrini M, Jacobsen SE (2009) Genome-wide analysis of mono-, di- and trimethylation of histone H3 lysine 4 in Arabidopsis thaliana. Genome Biol 10:R62

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Zhang L, Zheng Y, Jagadeeswaran G, Li Y, Gowdu K, Sunkar R (2011) Identification and temporal expression analysis of conserved and novel microRNAs in sorghum. Genomics 98:460–468

    Article  CAS  PubMed  Google Scholar 

  • Zheng LY, Guo XS, He B et al (2011) Genome-wide patterns of genetic variation in sweet and grain sorghum (Sorghum bicolor). Genome Biol 12:R114

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zhou J, Wang X, He K, Charron JB, Elling AA, Deng XW (2010) Genome-wide profiling of histone H3 lysine 9 acetylation and dimethylation in Arabidopsis reveals correlation between multiple histone marks and gene expression. Plant Mol Biol 72:585–595

    Article  CAS  PubMed  Google Scholar 

  • Zilberman D, Gehring M, Tran RK, Ballinger T, Henikoff S (2007) Genome-wide analysis of Arabidopsis thaliana DNA methylation uncovers an interdependence between methylation and transcription. Nat Genet 39:61–69

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. N. Ganapathy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer India

About this chapter

Cite this chapter

Ganapathy, K.N., Rajendrakumar, P. (2015). Post-genome Sequencing Developments. In: Madhusudhana, R., Rajendrakumar, P., Patil, J. (eds) Sorghum Molecular Breeding. Springer, New Delhi. https://doi.org/10.1007/978-81-322-2422-8_7

Download citation

Publish with us

Policies and ethics