Skip to main content

Quorum-Sensing Systems in Pseudomonas

  • Chapter
  • First Online:
Quorum Sensing vs Quorum Quenching: A Battle with No End in Sight

Abstract

Quorum sensing (QS) or cell-to-cell communication is a mechanism used by bacteria to control a broad range of activities in bacteria. The modulation of gene expression by quorum sensing causes phenotypic changes in bacteria leading to their better adjustment to environmental conditions and stress during growth (Turovskiy et al. 2007). Quorum sensing involves the production, secretion, and response to small diffusible signaling molecules also known as autoinducers. Bacteria produce signaling molecules at a basal level during the stationary phase of their growth, and with the increase in cell density, the concentration of the signaling molecule in the environmental medium increases; and on reaching a threshold level, it induces phenotypic effects by regulating quorum-sensing-dependent target gene expression (Czajkowski and Jafra 2009). Quorum sensing is involved mainly in the regulation of virulence, development of genetic competence, transfer of conjugative plasmids, sporulation, biofilm formation, antimicrobial peptide synthesis, and symbiosis (Bai and Rai 2011).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bai AJ, Rai VR (2011) Bacterial quorum sensing and food industry. Compr Rev Food Sci Food Saf 10:183–193

    Article  Google Scholar 

  • Bertani I, Venturi V (2004) Regulation of the N-acyl homoserine lactone-dependent quorum-sensing system in rhizosphere Pseudomonas putida WCS358 and cross-talk with the stationary-phase RpoS sigma factor and the global regulator GacA. Appl Environ Microbiol 70:5493–5502

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Cha C, Gao P, Chen YC, Shaw PD, Farrand S (1998) Production of acyl-homoserine lactone quorum-sensing signals by gram-negative plant-associated bacteria. Mol Plant Microbe 11:1119–1129

    Article  CAS  Google Scholar 

  • Chatterjee A, Cui Y, Yang H, Collmer A, Alfano JR, Chatterjee AK (2003) GacA, the response regulator of a two-component system, acts as a master regulator in Pseudomonas syringae pv. tomato DC3000 by controlling regulatory RNA, transcriptional activators, and alternate sigma factors. Mol Plant Microbe Interact 16:1106–1117

    Article  PubMed  CAS  Google Scholar 

  • Chin AWTF, van den Broek D, de Voer G, van der Drift KM, Tuinman S, Thomas-Oates JE, Lugtenberg BJ, Bloemberg GV (2001) Phenazine-1-carboxamide production in the biocontrol strain Pseudomonas chlororaphis PCL1391 is regulated by multiple factors secreted into the growth medium. Mol Plant Microbe Interact 14:969–979

    Article  Google Scholar 

  • Chin AWTF, van den Broek D, Lugtenberg BJ, Bloemberg GV (2005) The Pseudomonas chlororaphis PCL1391 sigma regulator psrA represses the production of the antifungal metabolite phenazine-1-carboxamide. Mol Plant Microbe Interact 18:244–253

    Article  Google Scholar 

  • Choi Y, Park HY, Park SJ, Kim SK, Ha C, Im SJ, Lee JH (2011) Growth phase-differential quorum sensing regulation of anthranilate metabolism in Pseudomonas aeruginosa. Mol Cell 32:57–65

    Article  CAS  Google Scholar 

  • Chugani S, Greenberg EP (2010) LuxR homolog-independent gene regulation by acyl-homoserine lactones in Pseudomonas aeruginosa. Proc Natl Acad Sci USA 107:10673–10678

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Chugani SA, Whiteley M, Lee KM, D’Argenio D, Manoil C, Greenberg EP (2001) QscR, a modulator of quorum-sensing signal synthesis and virulence in Pseudomonas aeruginosa. Proc Natl Acad Sci USA 98:2752–2757

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Cui X (2004) Regulation of biosurfactant production by quorum sensing in Pseudomonas fluorescens 5064, the Cause of Broccoli Head Rot Disease. PhD thesis, The University of Edinburgh

    Google Scholar 

  • Czajkowski R, Jafra S (2009) Quenching of acyl-homoserine lactone-dependent quorum sensing by enzymatic disruption of signal molecules. Acta Biochim Pol 56:1–16

    PubMed  CAS  Google Scholar 

  • de Kievit TR, Iglewski BH (2000) Bacterial quorum sensing in pathogenic relationships. Infect Immun 68:4839–4849

    Article  PubMed  PubMed Central  Google Scholar 

  • Diggle SP, Matthijs S, Wright VI, Fletcher MP, Chhabra SR, Lamvont IL, Kong X, Hider RC, Cornelis P, Camara M (2007) The Pseudomonas aeruginosa 4-quinolone signal molecules HHQ and PQS play multifunctional roles in quorum sensing and iron entrapment. Chem Biol 14:87–96

    Article  PubMed  CAS  Google Scholar 

  • Dong YH, Zhang XF, Soo LHM, Greenberg EP, Zhang LH (2005) The two-component response regulator PprB modulates quorum-sensing signal production and global gene expression in Pseudomonas aeruginosa. Mol Microbiol 56:1287–1301

    Article  PubMed  CAS  Google Scholar 

  • Duan K, Dammel C, Stein J, Rabin H, Surette MG (2003) Modulation of Pseudomonas aeruginosa gene expression by host microflora through interspecies communication. Mol Microbiol 50:1477–1491

    Article  PubMed  CAS  Google Scholar 

  • Dubern JF, Diggle SP (2008) Quorum sensing by 2-alkyl-4-quinolones in Pseudomonas aeruginosa and other bacterial species. Mol Biosyst 4:882–888

    Article  PubMed  CAS  Google Scholar 

  • EI-Sayed AK, Hothersall J, Thomas CM (2001) Quorum sensing-dependent regulation of biosynthesis of the polyketide antibiotic mupirocin in Pseudomonas fluorescens NCIMB 10586. Microbiology 147:2127–2139

    Google Scholar 

  • Gallagher LA, McKnight SL, Kuzntesova MS, Pesci EC, Manoil C (2002) Functions required for extracellular quinolone signaling by Pseudomonas aeruginosa. J Bacteriol 184:6472–6480

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Ha C, Park SJ, Im SJ, Lee JH (2012) Interspecies signaling through QscR, a quorum receptor of Pseudomonas aeruginosa. Mol Cell 33:53–59

    Article  CAS  Google Scholar 

  • Laue BE, Jiang Y, Chhabra SR, Jacob S, Stewart GSAB, Hardman A, Downie JA, O’Gara F, Williams P (2000) The biocontrol strain Pseudomonas fluorescens F113 produces the Rhizobium small bacteriocin, N-(3-hydroxy-7-cistetradecenoyl) homoserine lactone, via HdtS, a putative novel N-acylhomoserine lactone synthase. Microbiology 146:2469–2480

    PubMed  CAS  Google Scholar 

  • Lee JH, Lequette Y, Greenberg EP (2006) Activity of purified QscR, a Pseudomonas aeruginosa orphan quorum-sensing transcription factor. Mol Microbiol 59:602–609

    Article  PubMed  CAS  Google Scholar 

  • Lequette Y, Lee JH, Ledgahm F, Lazdunski A, Greenberg EP (2006) A distinct QscR regulon in the Pseudomonas aeruginosa quorum-sensing circuit. J Bacteriol 188:3365–3370

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Licciardello G, Bertani I, Steindler L, Bella P, Venturi V, Catara V (2009) The transcriptional activator rfiA is Quorum Sensing regulated by cotranscription with the luxI homolog pcoI essential for plant virulence in Pseudomonas corrugate. Mol Plant Microbe Interact 22:1514–1522

    Article  PubMed  CAS  Google Scholar 

  • Licciardello G, Cinzia PS, Bertani I, Bella P, Fiore A, Fogliano V, Venturi V, Catara V (2012) N-acyl-homoserine-lactone quorum sensing in tomato phytopathogenic Pseudomonas spp. is involved in the regulation of lipodepsipeptide production. J Biotechnol 159:274–282

    Article  PubMed  CAS  Google Scholar 

  • Lintz MJ, Oinuma KI, Wysoczynski CL, Greenberg EP, Churchill MEA (2011) Crystal structure of QscR, a Pseudomonas aeruginosa quorum sensing signal receptor. Proc Natl Acad Sci USA 108:15763–15768

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Liu M, Wang H, Griffiths MW (2007) Regulation of alkaline metalloprotease promoter by N-acyl homoserine lactone quorum sensing in Pseudomonas fluorescens. J Appl Microbiol 103:2174–2184

    Article  PubMed  CAS  Google Scholar 

  • Liu HB, Koh KP, Lee JH, Kim JS, Park S (2009) Characterization of LasR protein involved in bacterial quorum sensing mechanism of Pseudomonas aeruginosa. Biotechnol Bioprocess Eng 14:146–154

    Article  CAS  Google Scholar 

  • McKnight SL, Iglewski BH, Pesci EC (2000) The Pseudomonas quinolone signal regulates rhl quorum sensing in Pseudomonas aeruginosa. J Bacteriol 182:2702–2708

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Park SJ, Liu HB, Park S, Lee JH (2013) Modulation of QscR, a quorum sensing receptor of Pseudomonas aeruginosa, by truncation of a signal binding domain. Res Microbiol 164:375–381

    Article  PubMed  CAS  Google Scholar 

  • Quinones B, Pujol CJ, Lindow SE (2004) Regulation of AHL production and its contribution to epiphytic fitness in Pseudomonas syringae. Mol Plant Microbe Interact 17:521–531

    Article  PubMed  CAS  Google Scholar 

  • Roy V, Adams BL, Bentley WE (2011) Developing next generation antimicrobials by intercepting AI-2 mediated quorum sensing. Enzyme Microb Technol 49:113–123

    Article  PubMed  CAS  Google Scholar 

  • Schuster M, Greenberg EP (2006) A network of networks: quorum-sensing gene regulation in Pseudomonas aeruginosa. Int J Med Microbiol 296:73–81

    Article  PubMed  CAS  Google Scholar 

  • Schuster M, Urbanowski ML, Greenberg EP (2004) Promoter specificity in Pseudomonas aeruginosa quorum sensing revealed by DNA binding of purified LasR. Proc Natl Acad Sci USA 101:15833–15839

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Shaw PD, Ping G, Daly S, Cronan JE, Rhinehart K, Farrand SK (1997) Detecting and characterizing acyl-homoserine lactone signal molecules by thin layer chromatography. Proce Natl Acad Sci USA 94:6036–6041

    Article  CAS  Google Scholar 

  • Sio FC, Otten LG, Cool RH, Diggle SP, Braun PG, Bos R, Daykin M, Camara M, Williams P, Quax WJ (2012) Quorum Quenching by an N-Acyl-Homoserine Lactone Acylase from Pseudomonas aeruginosa PAO. Infect Immun 74:1673–1682

    Article  Google Scholar 

  • Turovskiy Y, Kashtanov D, Paskhover B, Chikindas ML (2007) Quorum sensing: fact, fiction, and everything in between. Adv Appl Microbiol 62:191–234

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Venturi V (2006) Regulation of quorum sensing in Pseudomonas. FEMS Microbiol Rev 30:274–291

    Article  PubMed  CAS  Google Scholar 

  • Wade SD, Calfee MW, Rocha RE, Ling EA, Engstrom E, Coleman JP, Pesci EC (2005) Regulation of Pseudomonas quinolone signal synthesis in Pseudomonas aeruginosa. J Bacteriol 187:4372–4380

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Willcox MDP, Zhu H, Conibear TCR, Hume EBH, Givskov M, Kjelleberg S, Rice SA (2008) Role of quorum sensing by Pseudomonas aeruginosa in microbial keratitis and cystic fibrosis. Microbiology 154:2184–2194

    Article  PubMed  CAS  Google Scholar 

  • Williams P, Camara M (2009) Quorum sensing and environmental adaptation in Pseudomonas aeruginosa: a tale of regulatory networks and multifunctional signal molecules. Curr Opin Microbiol 12:182–191

    Article  PubMed  CAS  Google Scholar 

  • Winzer K, Falconer C, Garber NC, Diggle SP, Camara M, Williams P (2000) The Pseudomonas aeruginosa lectins PA-IL and PA-IIL are controlled by quorum sensing and by RpoS. J Bacteriol 182:6401–6411

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Zhang Z, Pierson LS (2001) A second quorum-sensing system regulates cell surface properties but not phenazine antibiotic production in Pseudomonas aureofaciens. Appl Environ Microbiol 67:4305–4315

    Article  PubMed  CAS  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Ravishankar Rai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer India

About this chapter

Cite this chapter

Aswathanarayan, J.B., Ravishankar Rai, V. (2015). Quorum-Sensing Systems in Pseudomonas . In: Kalia, V. (eds) Quorum Sensing vs Quorum Quenching: A Battle with No End in Sight. Springer, New Delhi. https://doi.org/10.1007/978-81-322-1982-8_8

Download citation

Publish with us

Policies and ethics