Skip to main content
Log in

Characterization of LasR protein involved in bacterial quorum sensing mechanism of Pseudomonas aeruginosa

  • Articles
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

The quorum sensing (QS) mechanism of Pseudomonas aeruginosa has been studied extensively due to its involvement in cystic fibrosis, a deadly disease that is responsible for the death of more than a thousand people annually. In order to develop biochemical assay method for screening QS inhibitor, we have studied the production and characterization of recombinant LasR protein, which is a transcriptional activator for the QS mechanism in P. aeruginosa. In recombinant Escherichia coli BL21, LasR was produced as functionally-active proteins when the cells were cultivated in the presence of a proper signaling molecule (acyl homoserine lactone, AHL) only. Some soluble LasR proteins could be obtained from the cells which were grown in AHL-deficient medium, but they did not show binding affinity to the promoter sequence OP1 (lasB elastase promoter). Furthermore, the active LasR, presumably produced as LasR-AHL complex, was not dissociated into its components (LasR and AHLs) in vitro. The current results indicate that the production of pure and active LasR devoid of AHL is very difficult. It can be concluded that the development of biochemical assay method for screening AHL competitive inhibitors which requires pure and active LasR proteins might not be possible unless the structure of LasR and/or its folding processes is modified.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Fuqua, W. C., S. C. Winans, and E. P. Greenberg (1994) Quorum sensing in bacteria: the LuxR-LuxI family of cell density-responsive transcriptional regulators. J. Bacteriol. 176: 269–275.

    CAS  Google Scholar 

  2. Bassler, B. L. (2002) Small talk cell-to-cell communication in bacteria. Cell 109: 421–424.

    Article  CAS  Google Scholar 

  3. Venturi, V. (2006) Regulation of quorum sensing in Pseudomonas. FEMS Microbiol. Rev. 30: 274–291.

    Article  CAS  Google Scholar 

  4. Fuqua, C. and E. P. Greenberg (2002) Listening in on bacteria: acyl-homoserine lactone signaling. Nat. Rev. Mol. Cell. Biol. 3: 685–695.

    Article  CAS  Google Scholar 

  5. Costerton J. W., P. S. Stewart, and E. P. Greenberg (1999) Bacterial biofilms: a common cause of persistent infections. Science 284: 1318–1322.

    Article  CAS  Google Scholar 

  6. Bassler, B. L. and R. Losick (2006) Bacterially speaking. Cell 125: 237–246.

    Article  CAS  Google Scholar 

  7. Fuqua, C., M. R. Parsek, and E. P. Greenberg (2001) Regulation of gene expression by cell-to-cell communication: acyl-homoserine lactone quorum sensing. Annu. Rev. Genet. 35: 439–468.

    Article  CAS  Google Scholar 

  8. Costerton, J. W. (2001) Cystic fibrosis pathogenesis and the role of biofilms in persistent infection. Trends in Microbiol. 9: 50–52.

    Article  CAS  Google Scholar 

  9. Lyczak, J. B., C. L. Cannon, and G. B. Pier (2000) Establishment of Pseudomonas aeruginosa infection: lessons from a versatile opportunist. Microbes Infect. 2: 1051–1060.

    Article  CAS  Google Scholar 

  10. Gambello, M. J., S. Kaye, and B. H. Iglewski (1993) LasR of Pseudomonas aeruginosa is a transcriptional activator of the alkaline protease gene (apr) and an enhancer of exotoxin A expression. Infect. Immun. 61: 1180–1184.

    CAS  Google Scholar 

  11. Smith, R. S. and B. H. Iglewski (2003) Pseudomonas aeruginosa quorum-sensing systems and virulence. Curr. Opin. Microbiol. 6: 56–60.

    Article  CAS  Google Scholar 

  12. Camara, M., A. Latifi, M. Foglino, S. R. Chhabra, M. Daykin, M. Bally, V. Chapon, G. P. Salmond, and B. W. Bycroft (1995) Multiple N-acyl-L-homoserine lactone signal molecules regulate production of virulence determinants and secondary metabolites in Pseudomonas aeruginosa. Proc. Natl. Acad. Sci. USA 92: 9427–9431.

    Article  Google Scholar 

  13. Kiratisin, P., K. D. Tucker, and L. Passador (2002) LasR, a transcriptional activator of Pseudomonas aeruginosa virulence genes, functions as a multimer. J. Bacteriol. 184: 4912–4919.

    Article  CAS  Google Scholar 

  14. Schuster, M., M. L. Urbanowski, and E. P. Greenberg (2004) Promoter specificity in Pseudomonas aeruginosa quorum sensing revealed by DNA binding of purified LasR. PNAS 101: 15833–15839.

    Article  CAS  Google Scholar 

  15. Gambello, M. J. and B. H. Iglewski. (1991) Cloning and characterization of the Pseudomonas aeruginosa lasR gene, a transcriptional activator of elastase expression. J. Bacteriol. 173: 3000–3009.

    CAS  Google Scholar 

  16. Wu, H., Z. J. Song, M. Givskov, G. Doring, D. Worlitzsch, K. Mathee, J. Rygaard, and N. Høiby (2001) Pseudomonas aeruginosa mutations in lasI and rhlI quorum sensing systems result in milder chronic lung infection. Microbiol. 147: 1105–1113.

    CAS  Google Scholar 

  17. Passador, L., J. M. Cook, M. J. Gambello, L. Rust, and B. H. Iglewski (1993) Expression of Pseudomonas aeruginosa virulence genes requires cell to cell communication. Science 260: 1127–1130.

    Article  CAS  Google Scholar 

  18. Rust, L., E. C. Pesci, and B. H. Iglewski (1996) Analysis of the Pseudomonas aeruginosa elastase (lasB) regulatory region. J. Bacteriol. 178: 1134–1140.

    CAS  Google Scholar 

  19. Toder, D. S., M. J. Gambello, and B. H. Iglewski (1991) Pseudomonas aeruginosa LasA: a second elastase gene under transcriptional control of lasR. Mol. Microbiol. 5: 2003–2010.

    Article  CAS  Google Scholar 

  20. Shirtliff, M. E., J. T. Mader, and A. K. Camper (2002) Molecular interactions in biofilms. Chem. Biol. 9: 859–871.

    Article  CAS  Google Scholar 

  21. Persson, T., T. H. Hansen, T. B. Rasmussen, M. E. Skinderso, M. Givskov, and J. Nielsen (2005) Rational design and synthesis of new quorum-sensing inhibitors derived from acylated homoserine lactones and natural products from garlic. Org. Biomol. Chem. 3: 253–262.

    Article  CAS  Google Scholar 

  22. Tateda, K., R. Comte, J. C. Pechere, T. Köhler, K. Yamaguchi, and C. V. Delden (2001) Azithromycin inhibits quorum sensing in Pseudomonas aeruginosa. Antimicrob. Agents Chemother. 45: 1930–1933.

    Article  CAS  Google Scholar 

  23. Kim, Y. H., Y. H. Kim, J. S. Kim, and S. H. Park (2005) Development of a sensitive bioassay method for quorum sensing inhibitor screening using a recombinant Agrobacterium tumefaciens. Biotechnol. Bioprocess Eng. 10: 322–328.

    Article  CAS  Google Scholar 

  24. Kim, J. S., Y. H. Kim, Y. W. Seo, and S. H. Park (2007) Quorum sensing inhibitors from red alga, Ahnfeltiopsis flabelliformis. Biotechnol. Bioprocess. Eng. 12: 308–311.

    Article  CAS  Google Scholar 

  25. Liu, H. B., K. P. Koh, J. S. Kim, Y. W. Seo, and S. H. Park (2008) The effects of betonicine, floridoside, and isethionic acid from the red alga Ahnfeltiopsis flabelliformis on quorum-sensing activity. Biotechnol. Bioprocess. Eng. 13: 458–463.

    Article  CAS  Google Scholar 

  26. Manny, A. J., S. Kjelleberg, N. Kumar, R. de Nys, R. W. Read, and P. Steinberg (1997) Reinvestigation of the sulfuric acid-catalyzed cyclisation of brominated 2-alkyllevulinic acids to 3-alkyl-5-methylene-2(5H)-furanones. Tetrahedron 53: 15813–15826.

    Article  CAS  Google Scholar 

  27. Bradford, M. (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248–254.

    Article  CAS  Google Scholar 

  28. Urbanowski, M. L., C. P. Lostroh, and E. P. Greenberg (2004) Reversible acyl-homoserine lactone binding to purified Vibrio fischeri LuxR protein. J. Bacteriol. 186: 631–637.

    Article  CAS  Google Scholar 

  29. Manefield, M., T. B. Rasmussen, M. Henzter, J. B. Andersen, P. Steinberg, S. Kjelleberg, and M. Givskov (2002) Halogenated furanones inhibit quorum sensing through accelerated LuxR turnover. Microbiol. 148: 1119–1127.

    CAS  Google Scholar 

  30. Zhu, J., J. W. Beaber, M. I. More, C. Fuqua, A. Eberhard, and S. C. Winans (1998) Analogs of the autoinducer 3-oxooctanoyl-homoserine lactone strongly inhibit activity of the TraR protein of Agrobacterium tumefaciens. J. Bacteriol. 180: 5398–5405.

    CAS  Google Scholar 

  31. Fuqua, C. and S. C. Winans (1996) Conserved cis-acting promoter elements are required for density-dependent transcription of Agrobacterium tumefaciens conjugal transfer genes. J. Bacteriol. 178: 435–440.

    CAS  Google Scholar 

  32. Anderson, R. M., C. A. Zimprich, and L. Rust (1999) A second operator is involved in Pseudomonas aeruginosa elastase (lasB) activation. J. Bacteriol. 181: 6264–6270.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sunghoon Park.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, H.B., Koh, K.P., Lee, J.H. et al. Characterization of LasR protein involved in bacterial quorum sensing mechanism of Pseudomonas aeruginosa . Biotechnol Bioproc E 14, 146–154 (2009). https://doi.org/10.1007/s12257-008-0188-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-008-0188-z

Keywords

Navigation