Skip to main content

Arbuscular Mycorrhizal Fungal Strains and Soil Type Influence Growth, Nodulation, and Nutrient Uptake of Casuarina equisetifolia

  • Chapter
  • First Online:
Microbiological Research In Agroecosystem Management

Abstract

The effects of arbuscular mycorrhizal (AM) fungal species and strains on seedling growth and uptake of nutrients were determined for Casuarina equisetifolia under nursery conditions. Seedlings of C. equisetifolia were inoculated individually with four strains each of Acaulospora scrobiculata and Glomus aggregatum in two soil types (alfisol and vertisol). Seedling height, root collar diameter, nodulation, dry weights, nutrient contents, nutrient uptake efficiencies, mycorrhizal inoculation effect (MIE), and seedling quality were determined at harvest. Seedlings inoculated with different AM fungal strains invariably had significantly higher plant growth, and nutrient parameters measured. Nevertheless, the response was higher for seedlings inoculated with strains of G. aggregatum compared to those inoculated with strains of A. scrobiculata. The mycorrhizal response as measured by MIE was significantly affected by soil types. These results suggest the importance of selecting a specific AM fungal strain suited for a soil type in forest nurseries for the production of high-quality seedlings.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ames RN, Mihara KL, Bethlenfalvay GJ (1987) The establishment of microorganisms in vesicular-arbuscular mycorrhizal and control treatments. Biol Fertil Soils 3:217–223

    Article  Google Scholar 

  • Bâ AM, Guissou T (1996) Rock phosphate and vesicular arbuscular mycorrhiza effects on growth and nutrient uptake in Faidherbia albida (Del.) seedlings in an alkaline sandy soil. Agroforest Syst 34:129–137

    Article  Google Scholar 

  • Bâ AM, Plenchette C, Danthu P, Duponnois R, Guissou T (2000) Functional compatibility of two arbuscular mycorrhizae with thirteen fruit trees in Senegal. Agro forest Syst 50:95–105

    Article  Google Scholar 

  • Bagyaraj DJ, Manjunath A, Govinda Rao YS (1988) Mycorrhizal inoculation effect on different crops. J Soil Biol Ecol 8:98–103

    Google Scholar 

  • Berta G, Fusconi A, Trotta A, Scannerini S (1990) Morphogenetic modifications induced by the mycorrhizal fungus Glomus strain E3 in the root system of Allium porrum L. New Phytol 114:207–215

    Article  Google Scholar 

  • Berta G, Trotta A, Fusconi A, Hooker JE, Munro M, Atkinson D, Giovannetti M, Morini S, Fortuna P, Tisserant B, Gianinazzi-Pearson V, Gianinazzi S (1995) Arbuscular mycorrhizal induced changes to plant growth and root system morphology in Prunus cerasifera. Tree Physiol 15:281–293

    Article  PubMed  Google Scholar 

  • Bidondo LF, Bompadre J, Pergola M, Silvani V, Colombo R, Bracamonte F, Godeas A (2012) Differential interaction between two Glomus intraradices strains and a phosphate solubilizing bacterium in maize rhizosphere. Pedobiologia 55:227–232

    Article  Google Scholar 

  • Bouma TJ, Yanai RD, Elkin AD, Hartmond U, Flores-Alva DE, Eissenstat DM (2001) Estimating age-dependent costs and benefits of roots with contrasting life span: comparing apples and oranges. New Phytol 150:685–695

    Article  Google Scholar 

  • Davis DJ (1962) Emission and absorption spectrochemical methods. In: Peach K, Tracey MV (eds) Modern methods of plant analysis. Springer, Heidelberg, pp 1–25

    Google Scholar 

  • Dickson A, Leaf AL, Hosner JF (1960) Quality appraisal of white spruce and white pine seedling stock in forest nurseries. Forest Chron 36:10–13

    Google Scholar 

  • Feldmann F, Idczak E (1992) Inoculum production of vesicular-arbuscular mycorrhizal fungi for use in tropical nurseries. Method Microbiol 24:339–357

    Article  Google Scholar 

  • Gemma JN, Koske RE, Habte M (2002) Mycorrhizal dependency of some endemic and endangered Hawaiian plant species. Am J Bot 89:337–345

    Article  PubMed  CAS  Google Scholar 

  • Gentili F, Huss-Danell K (2002) Phosphorus modifies the effects of nitrogen on nodulation in split-root systems of Hippophaër hamnoides. New Phytol 153:53–61

    Article  CAS  Google Scholar 

  • Gentili F, Huss-Danell K (2003) Local and systemic effects of phosphorus and nitrogen on nodulation and nodule function in Alnus incana. J Exp Bot 54:2757–2767

    Article  PubMed  CAS  Google Scholar 

  • Graham JH, Abbott LK (2000) Wheat responses to aggressive and non-aggressive arbuscular mycorrhizal fungi. Plant Soil 220:207–218

    Article  CAS  Google Scholar 

  • Graham JH, Linderman RG, Menge JA (1982) Development of external hyphae by different isolates of mycorrhizal Glomus spp. in relation to root colonization and growth of troyer citrange. New Phytol 91:183–189

    Article  Google Scholar 

  • Gray JT, Schlesinger WH (1983) Nutrient use by evergreen and deciduous shrubs in southern California. J Ecol 71:43–56

    Article  CAS  Google Scholar 

  • He XH, Critchley C (2008) Frankia nodulation, mycorrhization and interactions between Frankia and mycorrhizal fungi in Casuarina plants. In: Varma A (ed) Mycorrhiza. Springer-Verlag, Berlin, pp 767–781

    Chapter  Google Scholar 

  • Jackson ML (1971) Soil chemical analysis. Prentice Hall, New Delhi

    Google Scholar 

  • Koske RE, Gemma JN (1989) A modified procedure for staining roots to detect VA mycorrhizas. Mycol Res 92:486–488

    Article  Google Scholar 

  • Kumar A (1981) Problems and prospects of establishing a plantation forestry of Casuarina, cashew and coconut in the coastal belt of India. Riv Agric Subtropic Tropic 75:317–323

    Google Scholar 

  • Leart S, Lapointe L, Piché Y, Vierheilig H (2003) Variable carbon-sink strength of different Glomus mosseae strains colonizing barley roots. Can J Bot 81:886–889

    Article  Google Scholar 

  • Masuka AJ, Makoni J (1995) Effect of Frankia, phosphate and soil type on nodulation and growth of Casuarina cunninghamiana in Zimbabwe. S Afr For J 172:13–17

    Google Scholar 

  • McGonigle TP, Miller MH, Evans DG, Fairchild GL, Swan JA (1990) A method which gives an objective measure of colonization of roots by vesicular–arbuscular mycorrhizal fungi. New Phytol 115:495–501

    Article  Google Scholar 

  • Miettinen P, Smolander A (1989) Growth requirements of Frankia strains isolated from Casuarina equisetifolia, and the influence of the isolated on the growth of the host plant. Silva Fenn 23:215–223

    Google Scholar 

  • Muthukumar T, Udaiyan K (2006) Growth of nursery-grown bamboo inoculated with arbuscular mycorrhizal fungi and plant growth promoting rhizobacteria in two soil types with and without fertilizer application. New For 31:469–485

    Article  Google Scholar 

  • Muthukumar T, Udaiyan K (2010) Growth response of Casuarina equisetifolia to bioinoculants under tropical nursery conditions. New For 40:101–118

    Article  Google Scholar 

  • Muthukumar T, Udaiyan K, Rajeshkannan V (2001) Response of neem (Azadirachta indica A. Juss) to indigenous arbuscular mycorrhizal fungi, phosphate-solubilizing and symbiotic nitrogen-fixing bacteria under tropical nursery conditions. Biol Fertil Soils 34:417–426

    CAS  Google Scholar 

  • Muthukumar T, Karthikeyan A, Udaiyan K (2012). Evaluation of the growth and nutrient uptake of Casuarina equisetifolia on alfisol soil inoculated with different arbuscular mycorrhizal fungi. In: Jayaraj RSC, Warrier RR, Nicodermus A, Krishnakumar N (eds.) Casuarina research in India: Proceedings of the 2nd National Seminar on Casuarina. IFGTB, Coimbatore, India, pp 49–58

    Google Scholar 

  • Olsen SR, Cole CE, Watanabe FS, Dean LA (1954) Estimation of available phosphorus in soil by extractionwith sodium bicarbonate. USDA Circ 939:1–9

    Google Scholar 

  • Piper CS (1950) Soil and plant analysis. Interscience Publications, New York

    Google Scholar 

  • Rajendran K, Devaraj P (2004) Biomass and nutrient distribution and their return of Casuarina equisetifolia inoculated with biofertilizers in farm land. Biomass Bioenergy 26:235–249

    Article  CAS  Google Scholar 

  • Rajendran K, Sugavanam V, Devaraj P (2003) Effect of microbial inoculation on quality seedling production of Casuarina equisetifolia. J Trop For Sci 15:82–96

    Google Scholar 

  • Reddell P, Bowen GD (1985) Do single nodules of Casuarinaceae contain more than one Frankia strain? Plant Soil 88:275–279

    Article  Google Scholar 

  • Reddell P, Rosbrook PA, Bowen GO, Gwale D (1988) Growth response in Casuarina cunninghamiana plantings inoculation with Frankia. Plant Soil 108:76–86

    Article  Google Scholar 

  • Reddell P, Yang Y, Shipton WA (1997) Do Casuarina cunninghamiana seedlings dependent on symbiotic N2 fixation have higher phosphorus requirement than those supplied with adequate fertilizer nitrogen? Plant Soil 189:213–219

    Article  CAS  Google Scholar 

  • Rosbrook PA, Bowen GD (1987) The abilities of three Frankia isolates to nodulate and fix nitrogen with four species of Casuarina. Physiol Plant 70:373–377

    Article  CAS  Google Scholar 

  • Santiago GM, Garcia Q, Scotti MR (2002) Effect of post-planting inoculation with Bradyrhizobium sp., and mycorrhizal fungi on the growth of Brazilian rosewood, Dalbergia nigra Allem., ex Benth., in two tropical soils. New For 24:15–25

    Article  Google Scholar 

  • Secilia J, Bagyaraj DJ (1987) Bacteria and actinomycetes associated with pot cultures of vesicular-arbuscular mycorrhizas. Can J Bot 33:1069–1073

    Google Scholar 

  • Sempavalan J, Wheeler CT, Hooker JE (1995) Lack of competition between Frankia and Glomus for infection and colonization of roots of Casuarina equisetifolia (L.). New Phytol 130:429–436

    Article  Google Scholar 

  • Shukla A, Kumar A, Jha A, Chaturvedi OP, Prasad R, Gupta A (2009) Effects of shade on arbuscular mycorrhizal colonization and growth of crops and tree seedlings in central India. Agroforest Syst 76:95–109

    Article  Google Scholar 

  • Shukla A, Kumar A, Jha A, Rao DVKN (2012) Phosphorus threshold for arbuscular mycorrhizal colonization of crops and tree seedlings. Biol Fertil Soils 48:109–116

    Article  CAS  Google Scholar 

  • Thoen D, Sougoufara B, Dommergues Y (1990) In vitro mycorrhization of Casuarina and Allocasuarina species by Pisolithus isolates. Can J Bot 68:2537–2542

    Article  Google Scholar 

  • Tian C, He X, Zhong Y, Chen J (2002) Effects of VA mycorrhizae and Frankia dual inoculation on growth and nitrogen fixation of Hippophae tibetana. For Ecol Manage 170:307–312

    Article  Google Scholar 

  • Toro M, Azcòn R, Barea JM (1997) Improvement of arbuscular mycorrhiza development by inoculation of soil with phosphate-solubilizing rhizobacteria to improve rock phosphate bioavailability (32P) and nutrient cycling. Appl Environ Microbiol 63:4408–4412

    PubMed  CAS  Google Scholar 

  • Valverde C, Wall LG, Huss-Danell K (2000) Regulation of nodulation and nodule mass in relation to nitrogenase activity and nitrogen demand in Discaria trinervis (Rhamnaceae) seedlings. Symbiosis 28:49–62

    CAS  Google Scholar 

  • Vasanthakrishna M, Bagyaraj DJ, Nirmalnath PJ (1994) Responses of Casuarina equisetifolia to inoculation with Glomus fasciculatum and/or Frankia. For Ecol Manage 68:399–402

    Article  Google Scholar 

  • Vasanthakrishna M, Bagyaraj DJ, Nirmalnath PJ (1995) Selection of efficient VAM fungi for Casuarina equisetifolia second screening. New For 121:157–162

    Article  Google Scholar 

  • Wheeler CT, Tilak M, Scrimgeour CM, Hooker JE, Handley LL (2000) Effects of symbiosis with Frankia and arbuscular mycorrhizal fungus on the natural abundance of 15N in four species of Casuarina. J Exp Bot 51:287–297

    Article  PubMed  CAS  Google Scholar 

  • Wilson JM, Trinick MJ (1983) Infection development and interaction between vesicular-arbuscular mycorrhizal fungi. New Phytol 93:543–553

    Article  Google Scholar 

  • Yamanaka T, Akama A, Li C-Y, Okabe H (2005) Growth, nitrogen fixation and mineral acquisition of Alnus sieboldiana after inoculation of Frankia together with Gigaspora margarita and Pseudomonas putida. J For Res 10:21–26

    Article  CAS  Google Scholar 

  • Yang Y (1995) The effect of phosphorus on nodule formation and function in Casuarina-Frankia symbiosis. Plant Soil 176:161–169

    Article  CAS  Google Scholar 

  • Zaïd EH, Arahou M, Diem HG, Morabet RE (2003) Is Fe deficiency rather than P deficiency the cause of cluster root formation in Casuarina species? Plant Soil 248:229–235

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Muthukumar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer India

About this chapter

Cite this chapter

Muthukumar, T., Uma, E., Priyadharsini, P. (2013). Arbuscular Mycorrhizal Fungal Strains and Soil Type Influence Growth, Nodulation, and Nutrient Uptake of Casuarina equisetifolia . In: Velu, R. (eds) Microbiological Research In Agroecosystem Management. Springer, India. https://doi.org/10.1007/978-81-322-1087-0_4

Download citation

Publish with us

Policies and ethics