Skip to main content

Advertisement

Log in

Growth response and nutrient utilization of Casuarina equisetifolia seedlings inoculated with bioinoculants under tropical nursery conditions

  • Published:
New Forests Aims and scope Submit manuscript

Abstract

We investigated the role of tetrapartite associations between an arbuscular mycorrhizal (AM) fungus (Glomus geosporum), phosphate solubilizing bacteria (Paenibacillus polymyxa), Frankia and Casuarina equisetifolia on growth, nutrient acquisition, nutrient utilization and seedling quality of C. equisetifolia. Seedlings of C. equisetifolia were grown in an Alfisol soil and inoculated with G. geosporum, P. polymyxa and Frankia either individually or in combinations. Inoculation of bioinoculants stimulated seedling growth, the efficiency of nutrient uptake and improved seedling quality. However, microbial inoculation generally reduced the efficiency of nutrient utilization in dry matter production (nutrient use efficiency). Inoculation of P. polymyxa or Frankia increased the extent of AM colonization, which resulted in the accumulation of the nutrients. Seedlings inoculated with Frankia and G. geosporum had more, and heavier nodules compared to seedlings inoculated with Frankia alone. Dual inoculation of microbes was more effective than individual inoculations. The growth response of seedlings to inoculation involving all the microbes was greater than the response to either individual or dual inoculations. The results of this study showed that the tetrapartite association could improve the growth, nutrient acquisition and seedling quality of C. equisetifolia under tropical nursery conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Allen MF, Moore TS, Christensen M (1982) Phytohormone changes in Bouteloua gracilis infected by vesicular-arbuscular mycorrhizae. II. Altered levels of gibberellin-like substances and abscisic acid in the host plant. Can J Bot 60:468–471

    CAS  Google Scholar 

  • Arnone JA III, Gordon JC (1990) Effect of nodulation, nitrogen fixation and CO2 enrichment on the physiology, growth and dry mass allocation of seedlings of Alnus rubra Bong. New Phytol 116:55–66

    Article  CAS  Google Scholar 

  • Artursson V, Finlay RD, Jansson JK (2006) Interactions between arbuscular mycorrhizal fungi and bacteria and their potential for stimulating plant growth. Environ Microbiol 8:1–10

    Article  CAS  PubMed  Google Scholar 

  • Ash C, Priest FG, Collins MD (1993) Molecular identification of rRNA group 3 bacilli using a PCR probe test. Proposal for the creation of a new genus Paenibacillus. Antonie van Leeuwenhoek 64:253–260

    Article  CAS  PubMed  Google Scholar 

  • Azcón R, Barea JM, Hayman DS (1976) Utilization of rock phosphate in alkaline soils by plants inoculated with mycorrhizal fungi and phosphate-solubilizing bacteria. Soil Biol Biochem 8:135–138

    Article  Google Scholar 

  • Barea JM, Azcón-Aguilar C (1982) Production of plant growth-regulating substances by vesicular-arbuscular mycorrhizal fungus Glomus mosseae. Appl Environ Microbiol 43:810–813

    CAS  PubMed  Google Scholar 

  • Berta G, Trotta A, Fusconi A, Hooker JE, Munro M, Atkinson D, Giovannetti M, Morini S, Fortuna P, Tisserant B, Gianinazzi-Pearson V, Gianinazzi S (1995) Arbuscular mycorrhizal induced changes to plant growth and root system morphology in Prunus cerasifera. Tree Physiol 15:281–293

    PubMed  Google Scholar 

  • Chapin FS III, Bloom AJ, Field CB, Waring RH (1987) Plant responses to multiple environmental factors. Bioscience 37:49–56

    Article  Google Scholar 

  • Davis DJ (1962) Emission and absorption spectrochemical methods. In: Peach K, Tracey MV (eds) Modern methods of plant analysis. Springer, Heidelberg, pp 1–25

    Google Scholar 

  • De Grandcourt A, Epron D, Montpied P, Louisanna E, Bèreau M, Garbaye J, Guehl JM (2004) Contrasting responses to mycorrhizal inoculation and phosphorus availability in seedlings of two tropical rainforest tree species. New Phytol 161:865–875

    Article  Google Scholar 

  • Dickson A, Leaf AL, Hosner JF (1960) Quality appraisal of white spruce and white pine seedling stock in forest nurseries. For Chronicle 36:10–13

    Google Scholar 

  • Diem HG, Arahou M (1996) A review of cluster root formation: a primary strategy of Casuarinaceae to overcome soil nutrient deficiency. In: Pinyopusarek K, Turnbull JW, Midgley SJ (eds) Recent Casuarina research and development, Proc. of the 3rd Int. Casuarina Workshop. Da Nang, Vietnam, pp 51–58

    Google Scholar 

  • Duponnois R, Diédhiou S, Chotte JL, Ourey SM (2003) Relative importance of the endomycorrhizal and (or) ectomycorrhizal associations in Allocasuarina and Casuarina genera. Can J Bot 49:281–287

    CAS  Google Scholar 

  • Founoune H, Duponnois R, Bâ AM, El Bouami F (2002) Influence of the dual arbuscular endomycorrhizal/ectomycorrhizal symbiosis on the growth of Acacia holosericea (A. Cunn. ex G. Don) in glasshouse conditions. Ann For Sci 59:93–98

    Article  Google Scholar 

  • Garbaye J (1994) Helper bacteria: a new dimension to the mycorrhizal symbiosis. New Phytol 128:197–210

    Article  Google Scholar 

  • Gehring CA (2003) Growth responses to arbuscular mycorrhizal by rainforest seedlings vary with light intensity and tree species. Plant Ecol 167:127–139

    Article  Google Scholar 

  • Gray JT, Schlesinger WH (1983) Nutrient use by evergreen and deciduous shrubs in southern California. J Ecol 71:43–56

    Article  CAS  Google Scholar 

  • Guissou T, Bâ AM, Ouadba JM, Guinko S, Duponnois R (1998) Response of Parkia biglobosa (Jacq.) Benth, Tamarindus indica L. and Zizyphus mauritiana Lam. to arbuscular mycorrhizal fungi in a phosphorus-deficient sandy soil. Biol Fertil Soils 26:194–198

    Article  CAS  Google Scholar 

  • Gupta N, Rahangdale R (1999) Response of Albizzia lebbeck and Dalbergia sissoo towards dual inoculation of Rhizobium and arbuscular mycorrhizal fungi. Indian J Exp Biol 37:1005–1011

    Google Scholar 

  • He XH, Critchley C (2008) Frankia nodulation, mycorrhization and interactions between Frankia and mycorrhizal fungi in Casuarina plants. In: Varma A (ed) Mycorrhiza 3: state of the art, genetics and molecular biology, eco function, biotechnology, ecophysiology, structure and systematics. Springer-Verlag, Berlin, Germany, pp 767–781

    Google Scholar 

  • Jackson ML (1971) Soil chemical analysis. Prentice Hall, New Delhi

    Google Scholar 

  • Jakobsen I (1999) Transport of phosphorus and carbon in arbuscular mycorrhizas. In: Varma A, Hock B (eds) Mycorrhiza: structure, function, molecular biology and biotechnology, 2nd edn. Springer-Verlag, Berlin, Germany, pp 305–332

    Google Scholar 

  • Jeffries P, Barea JM (1994) Biogeochemical cycling and arbuscular mycorrhizas in the sustainability of plant–soil systems. In: Gianinazzi S, Schüepp H (eds) Impact of arbuscular mycorrhizas on sustainable agriculture and natural ecosystems. Birkhäuser Verlag, Basel, Switzerland, pp 101–115

    Google Scholar 

  • Koide RT, Goff MD, Dickie IA (2000) Component growth efficiencies of mycorrhizal and nonmycorrhizal plants. New Phytol 148:163–168

    Article  Google Scholar 

  • Koske RE, Gemma JN (1989) A modified procedure for staining roots to detect VA mycorrhizas. Mycol Res 92:486–488

    Article  Google Scholar 

  • Kothari SK, Marschner H, Romheld V (1991) Contribution of VAM hyphae in acquisition phosphorus and zinc by maize grown in a calcareous soil. Plant Soil 131:177–185

    Article  CAS  Google Scholar 

  • Kucey RMN, Leggett ME (1989) Microbial mediated increases in plant available phosphorus. Adv Agron 42:199–228

    Article  CAS  Google Scholar 

  • Lapeyrie F, Ranger J, Vairelles D (1991) Phosphate-solubilizing activity of ectomycorrhizal fungi in vitro. Can J Bot 69:342–346

    Article  CAS  Google Scholar 

  • Lesueur D, Duponnois R (2005) Relations between rhizobial nodulation and root colonization of Acacia crassicarpa provinces by an arbuscular mycorrhizal fungus Glomus intraradices Schenck and Smith or an ectomycorrhizal fungus Pisolithus tinctorius Coker & Couch. Ann For Sci 62:467–474

    Article  Google Scholar 

  • Mansour SR (2003) Improving wood and biomass production of some Casuarina species through symbiotic association in Egypt. NFT News 6:1–2

    Google Scholar 

  • McGonigle TP, Miller MH, Evans DG, Fairchild GL, Swan JA (1990) A method which gives an objective measure of colonization of roots by vesicular–arbuscular mycorrhizal fungi. New Phytol 115:495–501

    Article  Google Scholar 

  • Muthukumar T, Udaiyan K (2002) Arbuscular mycorrhizal fungal composition in semi-arid soils of Western Ghats, southern India. Curr Sci 82:624–628

    Google Scholar 

  • Muthukumar T, Udaiyan K (2006) Growth of nursery-grown bamboo inoculated with arbuscular mycorrhizal fungi and plant growth promoting rhizobacteria in two soil types with and without fertilizer application. New For 31:469–485

    Google Scholar 

  • Muthukumar T, Udaiyan K, Rajeshkannan V (2001) Response of neem (Azadirachta indica A. Juss) to indigenous arbuscular mycorrhizal fungi, phosphate-solubilizing and symbiotic nitrogen-fixing bacteria under tropical nursery conditions. Biol Fertil Soils 34:417–426

    CAS  Google Scholar 

  • Olsen SR, Cole CE, Watanabe FS, Dean LA (1954) Estimation of available phosphorus in soil by extraction with sodium bicarbonate. USDA Circ 939:1–9

    Google Scholar 

  • Ortas I (2003) Effect of selected mycorrhizal inoculation on phosphorus sustainability in sterile and non-sterile soils in the Harran Plain in South Anatolia. J Plant Nutr 26:1–17

    Article  CAS  Google Scholar 

  • Osorio NW, Habte M (2001) Synergistic influence of an arbuscular mycorrhizal fungus as a P solubilizing fungus on growth and P uptake of Leucaena leucocephala in an Oxisol. Arid Land Res Manage 15:263–274

    Article  CAS  Google Scholar 

  • Piccini DF, Azcón R (1987) Effect of phosphate-solubilizing bacteria and vesicular–arbuscular mycorrhiza (VAM) on the utilization of bayoran rock phosphate by alfalfa plants using a sand vermiculate medium. Plant Soil 101:45–50

    Article  CAS  Google Scholar 

  • Pikovskaya RI (1948) Mobilization of phosphorus in soil in connection with vital activity of some microbial-species. Mikrobiologia 17:362–370

    CAS  Google Scholar 

  • Piper CS (1950) Soil and plant analysis. Interscience Publications, New York

    Google Scholar 

  • Porter WM (1979) The most probable number method for enumerating infective propagules of vesicular–arbuscular mycorrhizal fungi in soil. Aust J Soil Res 17:515–519

    Article  Google Scholar 

  • Pramanik K, Singh RK (2004) Effect of levels and mode of phosphorus and biofertilizers on chickpea (Cicer arietinum) under dry land conditions. Indian J Agron 48:294–296

    Google Scholar 

  • Rajendran K, Devaraj P (2004) Biomass and nutrient distribution and their return of Casuarina equisetifolia inoculated with biofertilizers in farm land. Biomass Bioenergy 26:235–249

    Article  CAS  Google Scholar 

  • Rajendran K, Sugavanam V, Devaraj P (2003) Effect of microbial inoculation on quality seedling production of Casuarina equisetifolia. J Trop For Sci 15:82–96

    Google Scholar 

  • Raju PS, Clark RB, Ellis JR (1990) Effects of species of VAM fungi on growth and mineral uptake of sorghum at different temperatures. Plant Soil 121:165–170

    Article  CAS  Google Scholar 

  • Ravikumar R, Ananthakrishnan G, Appasamy T, Ganapathi A (1997) Effect of endomycorrhizae (VAM) on bamboo seedling growth and biomass productivity. For Ecol Manage 98:205–208

    Article  Google Scholar 

  • Reddell P, Rosbrook PA, Bowen GO, Gwale D (1988) Growth response in Casuarina cunninghamiana plantings inoculation with Frankia. Plant Soil 108:76–86

    Article  Google Scholar 

  • Ritchie GA (1984) Assessing seedling quality. In: Duryea ML, Landis TD (eds) Forest nursery manual: production of bareroot seedlings. Martinus Nijhoff/Dr W. Junk, The Hague, pp 243–259

    Google Scholar 

  • Rodrìguez H, Fraga R (1999) Phosphate solubilizing bacteria and their role in plant growth promotion. Biotechnol Adv 17:319–339

    Article  PubMed  Google Scholar 

  • Rojas NS, Li CY, Perry DA, Ganio LM (2001) Frankia and nodulation of red alder and snowbrush grown on soils from Douglas-fir forests in the H.J. Andrews Experimental Forest of Oregon. Appl Soil Ecol 17:141–149

    Article  Google Scholar 

  • Rojas NS, Perry DA, Li CY, Ganio LM (2002) Interactions among soil biology, nutrition, and performance of actinorhizal plant species in the H.J. Andrews Experimental Forest of Oregon. Appl Soil Ecol 19:13–26

    Article  Google Scholar 

  • Rousseau JVD, Sylvia DM, Fox AJ (1994) Contribution of ectomycorrhiza to the potential nutrient-absorbing surface of pine. New Phytol 128:639–644

    Article  Google Scholar 

  • Sambandan K, Kannan K, Raman N (1994) Vesicular-arbuscular mycorrhizae of Casuarina equisetifolia Forst. in four different soil types in Tamil Nadu. Indian For 120:510–514

    Google Scholar 

  • Sanginga N, Danso SKA, Bowen GD (1989) Nodulation and growth response of Allocasuarina and Casuarina species to phosphorus fertilization. Plant Soil 118:125–132

    Article  Google Scholar 

  • Singh HP, Singh TA (1993) The interaction of rockphosphate, Bradyrhizobium, vesicular-arbuscular mycorrhizae and phosphate-solubilizing microbes on soybean grown in a sub-Himalayan mollisol. Mycorrhiza 4:37–43

    Article  Google Scholar 

  • Stribley DP, Tinker PB, Rayner JH (1980) Relation of internal phosphorus concentration and plant weight in plants infected by vesicular-arbuscular mycorrhizas. New Phytol 86:261–266

    Article  CAS  Google Scholar 

  • Subba Rao NS, Rodriguez Barrueco C (1995) Casuarinas. Oxford and IBH, New Delhi, India

    Google Scholar 

  • Tian C, He X, Zhong Y, Chen J (2002) Effects of VA mycorrhizae and Frankia dual inoculation on growth and nitrogen fixation of Hippophae tibetana. For Ecol Manage 170:307–312

    Article  Google Scholar 

  • Tiwari M, Singh SP, Tiwari A, Sundriyal RC (2003) Effect of symbiotic associations on growth of host Coriaria nepalensis and its facilitative impact on oak and pine seedlings in Central Himalaya. For Ecol Manage 184:141–147

    Article  Google Scholar 

  • Toro M, Azcón R, Barea JM (1997) Improvement of arbuscular mycorrhiza development by inoculation of soil with phosphate-solubilizing rhizobacteria to improve rock phosphate bioavailability (32P) and nutrient cycling. Appl Environ Microbiol 63:4408–4412

    CAS  PubMed  Google Scholar 

  • Vasanthakrishna M, Bagyaraj DJ, Nirmalnath PJ (1994) Responses of Casuarina equisetifolia to inoculation with Glomus fasciculatum and/or Frankia. For Ecol Manage 68:399–402

    Article  Google Scholar 

  • Vasanthakrishna M, Bagyaraj DJ, Nirmalnath PJ (1995) Selection of efficient VAM fungi for Casuarina equisetifolia second screening. New For 121:157–162

    Google Scholar 

  • Walker RB, Chowdappa P, Gessel SP (1993) Major element deficiencies in Casuarina equisetifolia. Fert Res 34:127–133

    Article  CAS  Google Scholar 

  • Wall LG, Huss Danell K (1996) Phosphorus and nitrogen fixation modulate auto regulation of nodulation in Alnus incana-Frankia symbiosis. Plant Physiol 111:315

    Google Scholar 

  • Wheeler CT, Hollingsworth MK, Hooker JE, McNeill JD, Mason WI, Moffat AJ, Sheppard LJ (1991) The effect of inoculation with either cultured Frankia or crushed nodules on nodulation and growth of Alnus rubra and Alnus glutinosa seedlings in forest nurseries. For Ecol Manage 43:153–166

    Article  Google Scholar 

  • Wheeler CT, Tilak M, Scrimgeour CM, Hooker JE, Handley LL (2000) Effects of symbiosis with Frankia and arbuscular mycorrhizal fungus on the natural abundance of 15N in four species of Casuarina. J Exp Bot 343:287–297

    Article  Google Scholar 

  • Williams RF (1946) The physiology of plant growth with special reference to the concept of net assimilation rate. Ann Bot 10:41–72

    CAS  Google Scholar 

  • Yamanaka T, Li CY, Bormann BT, Okabe H (2003) Tripartite associations in an alder: effects of Frankia and Alpova diplophloeus on the growth, nitrogen fixation and mineral acquisition of Alnus tenuifolia. Plant Soil 254:179–186

    Article  CAS  Google Scholar 

  • Yamanaka T, Akama A, Li CY, Okabe H (2005) Growth, nitrogen fixation and mineral acquisition of Alnus sieboldiana after inoculation of Frankia together with Gigaspora margarita and Pseudomonas putida. J For Sci 10:21–26

    CAS  Google Scholar 

  • Zaïd EH, Arahou M, Diem HG, Morabet RE (2003) Is Fe deficiency rather than P deficiency the cause of cluster root formation in Casuarina species? Plant Soil 248:229–235

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thangavelu Muthukumar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Muthukumar, T., Udaiyan, K. Growth response and nutrient utilization of Casuarina equisetifolia seedlings inoculated with bioinoculants under tropical nursery conditions. New Forests 40, 101–118 (2010). https://doi.org/10.1007/s11056-009-9186-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11056-009-9186-z

Keywords

Navigation