Skip to main content

Circadian Variation of Immune Mechanisms in Lung Cancer and the Role of Melatonin

  • Chapter
  • First Online:
Melatonin and Melatonergic Drugs in Clinical Practice
  • 1555 Accesses

Abstract

New cancer immunotherapeutic strategies rely on recent advances in the knowledge of the mechanisms responsible for antitumor immunity. Immune parameters in humans show temporal variations related to circadian changes of total lymphocytes and specific lymphocyte subsets in the peripheral blood, with an inverse relationship of the total number of lymphocytes to plasma cortisol concentration and a direct correlation to plasma melatonin levels. Immune responses are characterized by nyctohemeral variations and are physiologically controlled by neuroendocrine pathways. The discoveries of the antitumor cytokine network underlay innovative anticancer immunotherapeutic approach, taking into account neuroendocrine and neuroimmune status of cancer patients. Lung cancer patients present anomalies of proportions and circadian variations of lymphocyte subsets, as well as of hormones and cytokines that may impair the interplay among different lymphocyte subpopulations and neuroendocrine system components, decisive for an efficient immune response. A chronobiologic strategy of correctly timed circadian stage-dependent sampling and/or dosing schedule taking in consideration circadian rhythmicity in biochemical, physiological, and behavioral processes will be critical in any attempts to successfully optimize and personalize decision-making when evaluating immunomodulatory effects determined by biological response modifiers and adoptive immunotherapy protocols, in addition to neuroendocrine endogenous molecules, such as the pineal indole melatonin.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

CCL20:

Chemokine (C–C motif) ligand 20

CCR6:

Chemokine (C–C motif) receptor 6

CTLA-4:

Cytotoxic T-lymphocyte antigen 4

EGF:

Epidermal growth factor

Foxp3:

Forkhead transcription factors

GH:

Growth hormone

GITR:

Glucocorticoid-induced TNF-α receptor

GVHD:

Graft-versus-host disease

HSCT:

Hematopoietic stem cell transplantation

IFN:

Interferon

IGF:

Insulin-like growth factor

IL:

Interleukin

LAK:

Lymphokine-activated killer cells

MHC:

Major histocompatibility complex

MLT-R:

Melatonin receptors

NAT:

N-acetyl-transferase

NK:

Natural killer

PD-1:

Programmed death-1

PKC:

Protein kinase C

TCR:

T-cell receptors

TNF:

Tumor necrosis factor

TRH:

Thyrotropin-releasing hormone

TSH:

Thyroid-stimulating hormone

References

  1. Lissoni P, Rovelli F. Principles of psychoneuroendocrinoimmunotherapy of cancer. Immunotherapy. 2012;4(1):77–86.

    Article  CAS  PubMed  Google Scholar 

  2. Reppert SM, Weaver DR. Coordination of circadian timing in mammals. Nature. 2002;418(6901):935–41.

    Article  CAS  PubMed  Google Scholar 

  3. Mazzoccoli G. The timing clockwork of life. J Biol Regul Homeost Agents. 2011;25(1):137–43.

    CAS  PubMed  Google Scholar 

  4. Mazzoccoli G, Giuliani F, Sothern RB. A method to evaluate dynamics and periodicity of hormone secretion. J Biol Regul Homeost Agents. 2011;25(2):231–8.

    CAS  PubMed  Google Scholar 

  5. Lambert C, Ibrahim M, Iobagiu C, Genin C. Significance of unconventional peripheral CD4+CD8dim T cell subsets. J Clin Immunol. 2005;25:418–27.

    PubMed  Google Scholar 

  6. Matis LA, Cron R, Bluestone JA. Major histocompatibility complex-linked specificity of gamma delta receptor-bearing T lymphocytes. Nature. 1987;330:262–4.

    Article  CAS  PubMed  Google Scholar 

  7. Matis LA, Bluestone JA. Specificity of gamma delta receptor bearing T cells. Semin Immunol. 1991;3:75–80.

    CAS  PubMed  Google Scholar 

  8. Pelegrí C, Vilaplana J, Castellote C, Rabanal M, Franch A, Castell M. Circadian rhythms in surface molecules of rat blood lymphocytes. Am J Physiol Cell Physiol. 2003;284:C67–76.

    Article  PubMed  Google Scholar 

  9. Suzuki S, Toyabe S, Moroda T, Tada T, Tsukahara A, Iiai T, Minagawa M, Maruyama S, Hatakeyama K, Endoh K, Abo T. Circadian rhythm of leucocytes and lymphocytes subsets and its possible correlation with the function of the autonomic nervous system. Clin Exp Immunol. 1997;110(3):500–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Mazzoccoli G, Bianco G, Correra M, Carella AM, Balzanelli M, Giuliani A, Tarquini R. Circadian variation of lymphocyte subsets in healthy subjects. Recenti Prog Med. 1998;89(11):569–72.

    CAS  PubMed  Google Scholar 

  11. Mazzoccoli G, Correra M, Bianco G, De Cata A, Balzanelli M, Giuliani A, Tarquini R. Age-related changes of neuro-endocrine-immune interactions in healthy humans. J Biol Regul Homeost Agents. 1997;11(4):143–7.

    CAS  PubMed  Google Scholar 

  12. Arjona A, Boyadjieva N, Sarkar DK. Circadian rhythms of granzyme B, perforin, IFN-gamma, and NK cell cytolytic activity in the spleen: effects of chronic ethanol. J Immunol. 2004;172:2811–7.

    CAS  PubMed  Google Scholar 

  13. Arjona A, Sarkar DK. Circadian oscillations of clock genes, cytolytic factors, and cytokines in rat NK cells. J Immunol. 2005;174:7618–24.

    CAS  PubMed  Google Scholar 

  14. Arjona A, Sarkar DK. Are circadian rhythms the code of hypothalamic-immune communication? Insights from natural killer cells. Neurochem Res. 2008;33(4):708–18.

    Article  CAS  PubMed  Google Scholar 

  15. Mazzoccoli G, Sothern RB, De Cata A, Giuliani F, Fontana A, Copetti M, Pellegrini F, Tarquini R. A timetable of 24-hour patterns for human lymphocyte subpopulations. J Biol Regul Homeost Agents. 2011;25(3):387–95.

    CAS  PubMed  Google Scholar 

  16. Maasho K, Opoku-Anane J, Marusina AI, Coligan JE, Borrego F. Source. Naive CD8+ T cells costimulatory receptor for human cutting edge: NKG2D is a costimulatory receptor for human naive CD8+ T cells. J Immunol. 2005;174:4480–4.

    CAS  PubMed  Google Scholar 

  17. Cerboni C, Ardolino M, Santoni A, Zingoni A. Detuning CD8+ T lymphocytes by down-regulation of the activating receptor NKG2D: role of NKG2D ligands released by activated T cells. Blood. 2009;113:2955–64.

    Article  CAS  PubMed  Google Scholar 

  18. Maccalli C, Scaramuzza S, Permiani G. TNK cells (NKG2D+ CD8+ or CD4+ T lymphocytes) in the control of human tumors. Cancer Immunol Immunother. 2009;58:801–8.

    Article  CAS  PubMed  Google Scholar 

  19. von Andrian UH, Mempel TR. Homing and cellular traffic in lymph nodes. Nat Rev Immunol. 2003;3:867–78.

    Article  Google Scholar 

  20. Kabelitz D, Wesch D, He W. Perspectives of gamma delta T cells in tumor immunology. Cancer Res. 2007;67:5–8.

    Article  CAS  PubMed  Google Scholar 

  21. Parmiani G. Tumor-infiltrating T, cells-friend or foe of neoplastic cells? N Engl J Med. 2005;353:2640–1.

    Article  PubMed  Google Scholar 

  22. Mazzoccoli G, Balzanelli M, Giuliani A, De Cata A, La Viola M, Carella AM, Bianco G, Tarquini R. Lymphocyte subpopulations anomalies in lung cancer patients and relationship to the stage of disease. In Vivo. 1999;13(3):205–9.

    CAS  PubMed  Google Scholar 

  23. Mazzoccoli G, Muscarella LA, Fazio VM, Piepoli A, Pazienza V, Dagostino MP, Giuliani F, Polyakova VO, Kvetnoy I. Antiphase signalling in the neuroendocrine-immune system in healthy humans. Biomed Pharmacother. 2011;65(4):275–9.

    Article  CAS  PubMed  Google Scholar 

  24. Dimitrov S, Benedict C, Heutling D. Cortisol and epinephrine control opposing circadian rhythms in T cell subsets. Blood. 2009;113:5134–43.

    Article  CAS  PubMed  Google Scholar 

  25. Lange T, Dimitrov S, Born J. Effects of sleep and circadian rhythm on the human immune system. Ann N Y Acad Sci. 2010;1193:48–59.

    Article  CAS  PubMed  Google Scholar 

  26. Mazzoccoli G, De Cata A, Greco A, Carughi S, Giuliani F, Tarquini R. Circadian rhythmicity of lymphocyte subpopulations and relationship with neuro-endocrine system. J Biol Regul Homeost Agents. 2010;24(3):341–50.

    CAS  PubMed  Google Scholar 

  27. Dimitrov S, Lange T, Born J. Selective mobilization of cytotoxic leukocytes by epinephrine. J Immunol. 2010;184(1):503–11.

    Article  CAS  PubMed  Google Scholar 

  28. Bollinger T, Bollinger A, Naujoks J, Lange T, Solbach W. The influence of regulatory T cells and diurnal hormone rhythms on T helper cell activity. Immunology. 2010;131(4):488–500.

    Article  CAS  PubMed  Google Scholar 

  29. Mazzoccoli G, Giuliani A, Carughi S, De Cata A, Puzzolante F, La Viola M, Urbano N, Perfetto F, Tarquini R. The hypothalamic-pituitary-thyroid axis and melatonin in humans: possible interactions in the control of body temperature. Neuro Endocrinol Lett. 2004;25(5):368–72.

    CAS  PubMed  Google Scholar 

  30. Mazzoccoli G, Carughi S, Sperandeo M, Pazienza V, Giuliani F, Tarquini R. Neuro-endocrine correlations of hypothalamic-pituitary-thyroid axis in healthy humans. J Biol Regul Homeost Agents. 2011;25(2):249–57.

    CAS  PubMed  Google Scholar 

  31. Mazzoccoli G, Giuliani F, Inglese M, Marzulli N, Dagostino MP, De Cata A, Greco A, Carughi S, Tarquini R. Chronobiologic study of the GH-IGF1 axis and the aging immune system. J Appl Biomed. 2010;8(4):213–26.

    Article  CAS  Google Scholar 

  32. Mazzoccoli G, Sothern RB, Pazienza V, Piepoli A, Muscarella LA, Giuliani F. Chronobiologic study of neuro-endocrine axis hormone sequence signalling in healthy men. Biomed Aging Pathol. 2011;1:129–37.

    Article  CAS  Google Scholar 

  33. Logan RW, Zhang C, Murugan S, O’Connell S, Levitt D, Rosenwasser AM, Sarkar DK. Chronic shift-lag alters the circadian clock of NK cells and promotes lung cancer growth in rats. J Immunol. 2012;188(6):2583–91.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Mazzoccoli G, Grilli M, Carughi S, Puzzolante F, De Cata A, La Viola M, Giuliani A, Urbano N, Tarquini R, Perfetto F. Immune system alterations in lung cancer patients. Int J Immunopathol Pharmacol. 2003;16(2):167–74.

    CAS  PubMed  Google Scholar 

  35. Mazzoccoli G, Fontana A, Copetti M, Pellegrini F, Piepoli A, Muscarella LA, Pazienza V, Giuliani F, Tarquini R. Stage dependent destructuration of neuro-endocrine-immune system components in lung cancer patients. Biomed Pharmacother. 2011;65(1):69–76.

    Article  CAS  PubMed  Google Scholar 

  36. Mazzoccoli G, Vendemiale G, De Cata A, Carughi S, Tarquini R. Altered time structure of neuro-endocrine-immune system function in lung cancer patients. BMC Cancer. 2010;10:314.

    Article  PubMed Central  PubMed  Google Scholar 

  37. Mazzoccoli G, Sothern RB, Parrella P, Muscarella LA, Fazio VM, Giuliani F, Polyakova V, Kvetnoy IM. Comparison of circadian characteristics for cytotoxic lymphocyte subsets in non-small cell lung cancer patients versus controls. Clin Exp Med. 2012;12:181–94.

    Article  CAS  PubMed  Google Scholar 

  38. Mazzoccoli G, Tarquini R, Durfort T, Francois JC. Chronodisruption in lung cancer and possible therapeutic approaches. Biomed Pharmacother. 2011;65(7):500–8.

    Article  CAS  PubMed  Google Scholar 

  39. Martin-Orozco N, Muranski P, Chung Y, Yang XO, Yamazaki T, Lu S, Hwu P, Restifo NP, Overwijk WW, Dong C. T helper 17 cells promote cytotoxic T cell activation in tumor immunity. Immunity. 2009;31(5):787–98.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Jetten AM. Retinoid-related orphan receptors (RORs): critical roles in development, immunity, circadian rhythm, and cellular metabolism. Nucl Recept Signal. 2009;7:e003.

    PubMed Central  PubMed  Google Scholar 

  41. Solt LA, Kumar N, Nuhant P, Wang Y, Lauer JL, Liu J, Istrate MA, Kamenecka TM, Roush WR, Vidović D, Schürer SC, Xu J, Wagoner G, Drew PD, Griffin PR, Burris TP. Suppression of TH17 differentiation and autoimmunity by a synthetic ROR ligand. Nature. 2011;472:491–4.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  42. Lardone PJ, Guerrero JM, Fernández-Santos JM, Rubio A, Martín-Lacave I, Carrillo-Vico A. Melatonin synthesized by T lymphocytes as a ligand of the retinoic acid-related orphan receptor. J Pineal Res. 2011;51:454–62.

    Article  CAS  PubMed  Google Scholar 

  43. Hu S, Shen G, Yin S, Xu W, Hu B. Melatonin and tryptophan circadian profiles in patients with advanced non-small cell lung cancer. Adv Ther. 2009;26(9):886–92.

    Article  CAS  PubMed  Google Scholar 

  44. Mazzoccoli G, Carughi S, De Cata A, La Viola M, Giuliani A, Tarquini R, Perfetto F. Neuroendocrine alterations in lung cancer patients. Neuro Endocrinol Lett. 2003;24(1–2):77–82.

    CAS  PubMed  Google Scholar 

  45. Mazzoccoli G, Carughi S, De Cata A, La Viola M, Vendemiale G. Melatonin and cortisol serum levels in lung cancer patients at different stages of disease. Med Sci Monit. 2005;11(6):CR284–8.

    CAS  PubMed  Google Scholar 

  46. Mazzoccoli G, Francavilla M, De Petris MP, Giuliani F, Sothern RB. Comparison of whole body circadian phase evaluated from melatonin and cortisol secretion profiles in healthy humans. Biomed Aging Pathol. 2011;1:112–22.

    Article  CAS  Google Scholar 

  47. Mazzoccoli G, Giuliani F, Sothern RB. Determination of whole body circadian phase in lung cancer patients: melatonin vs. cortisol. Cancer Epidemiol. 2012;36(1):e46–53.

    Article  CAS  PubMed  Google Scholar 

  48. Mazzoccoli G, Giuliani A, Bianco G, De Cata A, Balzanelli M, Carella AM, La Viola M, Tarquini R. Decreased serum levels of insulin-like growth factor (IGF)-I in patients with lung cancer: temporal relationship with growth hormone (GH) levels. Anticancer Res. 1999;19(2B):1397–9.

    CAS  PubMed  Google Scholar 

  49. Mazzoccoli G, Sothern RB, Pazienza V, Piepoli A, Muscarella LA, Giuliani F, Tarquini R. Circadian aspects of growth hormone-insulin-like growth factor axis function in patients with lung cancer. Clin Lung Cancer. 2012;13(1):68–74.

    Article  CAS  PubMed  Google Scholar 

  50. Mazzoccoli G, Pazienza V, Piepoli A, Muscarella LA, Giuliani F, Sothern RB. Alteration of hypothalamic-pituitary-thyroid axis function in non-small-cell lung cancer patients. Integr Cancer Ther. 2012;11(4):327–36.

    Article  CAS  PubMed  Google Scholar 

  51. Mazzoccoli G, Vinciguerra M, Muscarella LA, Fazio VM, Parrella P, Tarquini R. Hormone and cytokine circadian alteration in non small cell lung cancer patients. Int J Immunopathol Pharmacol. 2012;25(3):691–702.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gianluigi Mazzoccoli MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer India

About this chapter

Cite this chapter

Mazzoccoli, G. (2014). Circadian Variation of Immune Mechanisms in Lung Cancer and the Role of Melatonin. In: Srinivasan, V., Brzezinski, A., Oter, S., Shillcutt, S. (eds) Melatonin and Melatonergic Drugs in Clinical Practice. Springer, New Delhi. https://doi.org/10.1007/978-81-322-0825-9_10

Download citation

  • DOI: https://doi.org/10.1007/978-81-322-0825-9_10

  • Published:

  • Publisher Name: Springer, New Delhi

  • Print ISBN: 978-81-322-0824-2

  • Online ISBN: 978-81-322-0825-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics