Skip to main content

Advertisement

Log in

Are Circadian Rhythms the Code of Hypothalamic-Immune Communication? Insights from Natural Killer Cells

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Circadian rhythms in physiology and behavior are ultimately regulated at the hypothalamic level by the suprachiasmatic nuclei (SCN). This central oscillator transduces photic information to the cellular clocks in the periphery through the autonomic nervous system and the neuroendocrine system. The fact that these two systems have been shown to modulate leukocyte physiology supports the concept that the circadian component is an important aspect of hypothalamic-immune communication. Circadian disruption has been linked to immune dysregulation, and recent reports suggest that several circadian clock genes, in addition to their time-keeping role, are involved in the immune response. In this overview, we summarize the findings demonstrating that Natural Killer (NK) cell function is under circadian control.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dimitrov S, Lange T, Fehm HL, Born J (2004) A regulatory role of prolactin, growth hormone, and corticosteroids for human T-cell production of cytokines. Brain Behav Immun 18:368–374

    PubMed  CAS  Google Scholar 

  2. Carrillo-Vico A, Guerrero JM, Lardone PJ, Reiter RJ (2005) A review of the multiple actions of melatonin on the immune system. Endocrine 27:189–200

    PubMed  CAS  Google Scholar 

  3. Ohdo S, Koyanagi S, Suyama H, Higuchi S, Aramaki H (2001) Changing the dosing schedule minimizes the disruptive effects of interferon on clock function. Nat Med 7:356–360

    PubMed  CAS  Google Scholar 

  4. Filipski E, King VM, Li X, Granda TG, Mormont MC, Claustrat B, Hastings MH, Levi F (2003) Disruption of circadian coordination accelerates malignant growth in mice. Pathol Biol (Paris) 51:216–219

    Google Scholar 

  5. Filipski E, Delaunay F, King VM, Wu MW, Claustrat B, Grechez-Cassiau A, Guettier C, Hastings MH, Francis L (2004) Effects of chronic jet lag on tumor progression in mice. Cancer Res 64:7879–7885

    PubMed  CAS  Google Scholar 

  6. Schernhammer ES, Laden F, Speizer FE, Willett WC, Hunter DJ, Kawachi I, Colditz GA (2001) Rotating night shifts and risk of breast cancer in women participating in the nurses’ health study. J Natl Cancer Inst 93:1563–1568

    Article  PubMed  CAS  Google Scholar 

  7. Schernhammer ES, Laden F, Speizer FE, Willett WC, Hunter DJ, Kawachi I, Fuchs CS, Colditz GA (2003) Night-shift work and risk of colorectal cancer in the nurses’ health study. J Natl Cancer Inst 95:825–828

    PubMed  Google Scholar 

  8. Pukkala E, Aspholm R, Auvinen A, Eliasch H, Gundestrup M, Haldorsen T, Hammar N, Hrafnkelsson J, Kyyronen P, Linnersjo A, Rafnson V, Storm H, Tveten U (2002) Incidence of cancer among Nordic airline pilots over five decades: occupational cohort study. BMJ 325:567

    PubMed  Google Scholar 

  9. Reynolds P, Cone J, Layefsky M, Goldberg DE, Hurley S (2002) Cancer incidence in California flight attendants (United States). Cancer Causes Control 13:317–324

    PubMed  Google Scholar 

  10. Mormont MC, Waterhouse J, Bleuzen P, Giacchetti S, Jami A, Bogdan A, Lellouch J, Misset JL, Touitou Y, Levi F (2000) Marked 24-h rest/activity rhythms are associated with better quality of life, better response, and longer survival in patients with metastatic colorectal cancer and good performance status. Clin Cancer Res 6:3038–3045

    PubMed  CAS  Google Scholar 

  11. Sephton SE, Sapolsky RM, Kraemer HC, Spiegel D (2000) Diurnal cortisol rhythm as a predictor of breast cancer survival. J Natl Cancer Inst 92:994–1000

    PubMed  CAS  Google Scholar 

  12. Pizzio GA, Hainich EC, Ferreyra GA, Coso OA, Golombek DA (2003) Circadian and photic regulation of ERK, JNK and p38 in the hamster SCN. Neuroreport 14:1417–1419

    PubMed  CAS  Google Scholar 

  13. Hardin PE (2004) Transcription regulation within the circadian clock: the E-box and beyond. J Biol Rhythms 19:348–360

    PubMed  CAS  Google Scholar 

  14. Reppert SM, Weaver DR (2002) Coordination of circadian timing in mammals. Nature 418:935–941

    PubMed  CAS  Google Scholar 

  15. Preitner N, Damiola F, Lopez-Molina L, Zakany J, Duboule D, Albrecht U, Schibler U (2002) The orphan nuclear receptor REV-ERBalpha controls circadian transcription within the positive limb of the mammalian circadian oscillator. Cell 110:251–260

    PubMed  CAS  Google Scholar 

  16. Hastings MH, Herzog ED (2004) Clock genes, oscillators, and cellular networks in the suprachiasmatic nuclei. J Biol Rhythms 19:400–413

    PubMed  CAS  Google Scholar 

  17. Jin X, Shearman LP, Weaver DR, Zylka MJ, de Vries GJ, Reppert SM (1999) A molecular mechanism regulating rhythmic output from the suprachiasmatic circadian clock. Cell 96:57–68

    PubMed  CAS  Google Scholar 

  18. Lavery DJ, Lopez-Molina L, Margueron R, Fleury-Olela F, Conquet F, Schibler U, Bonfils C (1999) Circadian expression of the steroid 15 alpha-hydroxylase (Cyp2a4) and coumarin 7-hydroxylase (Cyp2a5) genes in mouse liver is regulated by the PAR leucine zipper transcription factor DBP. Mol Cell Biol 19:6488–6499

    PubMed  CAS  Google Scholar 

  19. Panda S, Antoch MP, Miller BH, Su AI, Schook AB, Straume M, Schultz PG, Kay SA, Takahashi JS, Hogenesch JB (2002) Coordinated transcription of key pathways in the mouse by the circadian clock. Cell 109:307–320

    PubMed  CAS  Google Scholar 

  20. Morse D, Sassone-Corsi P (2002) Time after time: inputs to and outputs from the mammalian circadian oscillators. Trends Neurosci 25:632–637

    PubMed  CAS  Google Scholar 

  21. Storch KF, Lipan O, Leykin I, Viswanathan N, Davis FC, Wong WH, Weitz CJ (2002) Extensive and divergent circadian gene expression in liver and heart. Nature 417:78–83

    PubMed  CAS  Google Scholar 

  22. Hastings MH, Reddy AB, Maywood ES (2003) A clockwork web: circadian timing in brain and periphery, in health and disease. Nat Rev Neurosci 4:649–661

    PubMed  CAS  Google Scholar 

  23. Yamazaki S, Numano R, Abe M, Hida A, Takahashi R, Ueda M, Block GD, Sakaki Y, Menaker M, Tei H (2000) Resetting central and peripheral circadian oscillators in transgenic rats. Science 288:682–685

    PubMed  CAS  Google Scholar 

  24. Balsalobre A, Marcacci L, Schibler U (2000) Multiple signaling pathways elicit circadian gene expression in cultured Rat-1 fibroblasts. Curr Biol 10:1291–1294

    PubMed  CAS  Google Scholar 

  25. Yoo SH, Yamazaki S, Lowrey PL, Shimomura K, Ko CH, Buhr ED, Siepka SM, Hong HK, Oh WJ, Yoo OJ, Menaker M, Takahashi JS (2004) PERIOD2::LUCIFERASE real-time reporting of circadian dynamics reveals persistent circadian oscillations in mouse peripheral tissues. Proc Natl Acad Sci USA 101:5339–5346

    PubMed  CAS  Google Scholar 

  26. Ralph MR, Foster RG, Davis FC, Menaker M (1990) Transplanted suprachiasmatic nucleus determines circadian period. Science 247:975–978

    PubMed  CAS  Google Scholar 

  27. Meijer JH, Schwartz WJ (2003) In search of the pathways for light-induced pacemaker resetting in the suprachiasmatic nucleus. J Biol Rhythms 18:235–249

    PubMed  Google Scholar 

  28. Hattar S, Liao HW, Takao M, Berson DM, Yau KW (2002) Melanopsin-containing retinal ganglion cells: architecture, projections, and intrinsic photosensitivity. Science 295:1065–1070

    PubMed  CAS  Google Scholar 

  29. Travnickova-Bendova Z, Cermakian N, Reppert SM, Sassone-Corsi P (2002) Bimodal regulation of mPeriod promoters by CREB-dependent signaling and CLOCK/BMAL1 activity. Proc Natl Acad Sci USA 99:7728–7733

    PubMed  CAS  Google Scholar 

  30. Silver R, LeSauter J, Tresco PA, Lehman MN (1996) A diffusible coupling signal from the transplanted suprachiasmatic nucleus controlling circadian locomotor rhythms. Nature 382:810–813

    PubMed  CAS  Google Scholar 

  31. Buijs RM, van Eden CG, Goncharuk VD, Kalsbeek A (2003) The biological clock tunes the organs of the body: timing by hormones and the autonomic nervous system. J Endocrinol 177:17–26

    PubMed  CAS  Google Scholar 

  32. Larsen PJ, Kristensen P (1998) Distribution of neuropeptide Y receptor expression in the rat suprachiasmatic nucleus. Brain Res Mol Brain Res 60:69–76

    PubMed  CAS  Google Scholar 

  33. Damiola F, Le Minh N, Preitner N, Kornmann B, Fleury-Olela F, Schibler U (2000) Restricted feeding uncouples circadian oscillators in peripheral tissues from the central pacemaker in the suprachiasmatic nucleus. Genes Dev 14:2950–2961

    PubMed  CAS  Google Scholar 

  34. Hirota T, Okano T, Kokame K, Shirotani-Ikejima H, Miyata T, Fukada Y (2002) Glucose down-regulates Per1 and Per2 mRNA levels and induces circadian gene expression in cultured Rat-1 fibroblasts. J Biol Chem 277:44244–44251

    PubMed  CAS  Google Scholar 

  35. Stehle JH, von Gall C, Korf HW (2003) Melatonin: a clock-output, a clock-input. J Neuroendocrinol 15:383–389

    PubMed  CAS  Google Scholar 

  36. Herberman RB, Nunn ME, Holden HT, Lavrin DH (1975) Natural cytotoxic reactivity of mouse lymphoid cells against syngeneic and allogeneic tumors. II. Characterization of effector cells. Int J Cancer 16:230–239

    PubMed  CAS  Google Scholar 

  37. Janeway CA Jr, Medzhitov R (2002) Innate immune recognition. Annu Rev Immunol 20:197–216

    PubMed  CAS  Google Scholar 

  38. Colucci F, Caligiuri MA, Di Santo JP (2003) What does it take to make a natural killer? Nat Rev Immunol 3:413–425

    PubMed  CAS  Google Scholar 

  39. Albertsson PA, Basse PH, Hokland M, Goldfarb RH, Nagelkerke JF, Nannmark U, Kuppen PJ (2003) NK cells and the tumour microenvironment: implications for NK-cell function and anti-tumour activity. Trends Immunol 24:603–609

    PubMed  CAS  Google Scholar 

  40. Degli-Esposti MA, Smyth MJ (2005) Close encounters of different kinds: dendritic cells and NK cells take centre stage. Nat Rev Immunol 5:112–124

    PubMed  CAS  Google Scholar 

  41. Martin MP, Gao X, Lee JH, Nelson GW, Detels R, Goedert JJ, Buchbinder S, Hoots K, Vlahov D, Trowsdale J, Wilson M, O’Brien SJ, Carrington M (2002) Epistatic interaction between KIR3DS1 and HLA-B delays the progression to AIDS. Nat Genet 31:429–434

    PubMed  CAS  Google Scholar 

  42. O’Connor GM, Hart OM, Gardiner CM (2006) Putting the natural killer cell in its place. Immunology 117:1–10

    PubMed  CAS  Google Scholar 

  43. Raulet DH (2004) Interplay of natural killer cells and their receptors with the adaptive immune response. Nat Immunol 5:996–1002

    PubMed  CAS  Google Scholar 

  44. Snyder MR, Weyand CM, Goronzy JJ (2004) The double life of NK receptors: stimulation or co-stimulation? Trends Immunol 25:25–32

    PubMed  CAS  Google Scholar 

  45. Guma M, Angulo A, Lopez-Botet M (2006) NK cell receptors involved in the response to human cytomegalovirus infection. Curr Top Microbiol Immunol 298:207–223

    PubMed  CAS  Google Scholar 

  46. Schmidt KN, Leung B, Kwong M, Zarember KA, Satyal S, Navas TA, Wang F, Godowski PJ (2004) APC-independent activation of NK cells by the Toll-like receptor 3 agonist double-stranded RNA. J Immunol 172:138–143

    PubMed  CAS  Google Scholar 

  47. Sivori S, Falco M, Della Chiesa M, Carlomagno S, Vitale M, Moretta L, Moretta A (2004) CpG and double-stranded RNA trigger human NK cells by Toll-like receptors: induction of cytokine release and cytotoxicity against tumors and dendritic cells. Proc Natl Acad Sci USA 101:10116–10121

    PubMed  CAS  Google Scholar 

  48. Biron CA, Nguyen KB, Pien GC, Cousens LP, Salazar-Mather TP (1999) Natural killer cells in antiviral defense: function and regulation by innate cytokines. Annu Rev Immunol 17:189–220

    PubMed  CAS  Google Scholar 

  49. Austin Taylor M, Bennett M, Kumar V, Schatzle JD (2000) Functional defects of NK cells treated with chloroquine mimic the lytic defects observed in perforin-deficient mice. J Immunol 165:5048–5053

    PubMed  CAS  Google Scholar 

  50. Barry M, Bleackley RC (2002) Cytotoxic T lymphocytes: all roads lead to death. Nat Rev Immunol 2:401–409

    PubMed  CAS  Google Scholar 

  51. Raja SM, Wang B, Dantuluri M, Desai UR, Demeler B, Spiegel K, Metkar SS, Froelich CJ (2002) Cytotoxic cell granule-mediated apoptosis. Characterization of the macromolecular complex of granzyme B with serglycin. J Biol Chem 277:49523–49530

    PubMed  CAS  Google Scholar 

  52. Trinchieri G (1989) Biology of natural killer cells. Adv Immunol 47:187–376

    Article  PubMed  CAS  Google Scholar 

  53. Moretta L, Bottino C, Pende D, Mingari MC, Biassoni R, Moretta A (2002) Human natural killer cells: their origin, receptors and function. Eur J Immunol 32:1205–1211

    PubMed  CAS  Google Scholar 

  54. Sutton VR, Davis JE, Cancilla M, Johnstone RW, Ruefli AA, Sedelies K, Browne KA, Trapani JA (2000) Initiation of apoptosis by granzyme B requires direct cleavage of bid, but not direct granzyme B-mediated caspase activation. J Exp Med 192:1403–1414

    PubMed  CAS  Google Scholar 

  55. Kagi D, Ledermann B, Burki K, Seiler P, Odermatt B, Olsen KJ, Podack ER, Zinkernagel RM, Hengartner H (1994) Cytotoxicity mediated by T cells and natural killer cells is greatly impaired in perforin-deficient mice. Nature 369:31–37

    PubMed  CAS  Google Scholar 

  56. Lowin B, Beermann F, Schmidt A, Tschopp J (1994) A null mutation in the perforin gene impairs cytolytic T lymphocyte- and natural killer cell-mediated cytotoxicity. Proc Natl Acad Sci USA 91:11571–11575

    PubMed  CAS  Google Scholar 

  57. Portales P, Reynes J, Pinet V, Rouzier-Panis R, Baillat V, Clot J, Corbeau P (2003) Interferon-alpha restores HIV-induced alteration of natural killer cell perforin expression in vivo. AIDS 17:495–504

    PubMed  CAS  Google Scholar 

  58. Street SE, Hayakawa Y, Zhan Y, Lew AM, MacGregor D, Jamieson AM, Diefenbach A, Yagita H, Godfrey DI, Smyth MJ (2004) Innate immune surveillance of spontaneous B cell lymphomas by natural killer cells and gammadelta T cells. J Exp Med 199:879–884

    PubMed  CAS  Google Scholar 

  59. Trapani JA, Smyth MJ (2002) Functional significance of the perforin/granzyme cell death pathway. Nat Rev Immunol 2:735–747

    PubMed  CAS  Google Scholar 

  60. Motyka B, Korbutt G, Pinkoski MJ, Heibein JA, Caputo A, Hobman M, Barry M, Shostak I, Sawchuk T, Holmes CF, Gauldie J, Bleackley RC (2000) Mannose 6-phosphate/insulin-like growth factor II receptor is a death receptor for granzyme B during cytotoxic T cell-induced apoptosis. Cell 103:491–500

    PubMed  CAS  Google Scholar 

  61. Shi L, Mai S, Israels S, Browne K, Trapani JA, Greenberg AH (1997) Granzyme B (GraB) autonomously crosses the cell membrane and perforin initiates apoptosis and GraB nuclear localization. J Exp Med 185:855–866

    PubMed  CAS  Google Scholar 

  62. van den Broek MF, Muller U, Huang S, Aguet M, Zinkernagel RM (1995) Antiviral defense in mice lacking both alpha/beta and gamma interferon receptors. J Virol 69:4792–4796

    PubMed  Google Scholar 

  63. Ikeda H, Old LJ, Schreiber RD (2002) The roles of IFN gamma in protection against tumor development and cancer immunoediting. Cytokine Growth Factor Rev 13:95–109

    PubMed  CAS  Google Scholar 

  64. Hayakawa Y, Takeda K, Yagita H, Smyth MJ, Van Kaer L, Okumura K, Saiki I (2002) IFN-gamma-mediated inhibition of tumor angiogenesis by natural killer T-cell ligand, alpha-galactosylceramide. Blood 100:1728–1733

    PubMed  CAS  Google Scholar 

  65. Biron CA, Brossay L (2001) NK cells and NKT cells in innate defense against viral infections. Curr Opin Immunol 13:458–464

    PubMed  CAS  Google Scholar 

  66. Street SE, Cretney E, Smyth MJ (2001) Perforin and interferon-gamma activities independently control tumor initiation, growth, and metastasis. Blood 97:192–197

    PubMed  CAS  Google Scholar 

  67. Cifone MG, D’Alo S, Parroni R, Millimaggi D, Biordi L, Martinotti S, Santoni A (1999) Interleukin-2-activated rat natural killer cells express inducible nitric oxide synthase that contributes to cytotoxic function and interferon-gamma production. Blood 93:3876–3884

    PubMed  CAS  Google Scholar 

  68. Tamada K, Chen L (2006) Renewed interest in cancer immunotherapy with the tumor necrosis factor superfamily molecules. Cancer Immunol Immunother 55:355–362

    PubMed  CAS  Google Scholar 

  69. Aggarwal BB, Shishodia S, Ashikawa K, Bharti AC (2002) The role of TNF and its family members in inflammation and cancer: lessons from gene deletion. Curr Drug Targets Inflamm Allergy 1:327–341

    PubMed  CAS  Google Scholar 

  70. Papamichail M, Perez SA, Gritzapis AD, Baxevanis CN (2004) Natural killer lymphocytes: biology, development, and function. Cancer Immunol Immunother 53:176–186

    PubMed  Google Scholar 

  71. Lee RK, Spielman J, Zhao DY, Olsen KJ, Podack ER (1996) Perforin, Fas ligand, and tumor necrosis factor are the major cytotoxic molecules used by lymphokine-activated killer cells. J Immunol 157:1919–1925

    PubMed  CAS  Google Scholar 

  72. Kalinski P, Giermasz A, Nakamura Y, Basse P, Storkus WJ, Kirkwood JM, Mailliard RB (2005) Helper role of NK cells during the induction of anticancer responses by dendritic cells. Mol Immunol 42:535–539

    PubMed  CAS  Google Scholar 

  73. Arjona A, Sarkar DK (2005) Circadian oscillations of clock genes, cytolytic factors, and cytokines in rat NK cells. J Immunol 174:7618–7624

    PubMed  CAS  Google Scholar 

  74. Arjona A, Sarkar DK (2006) Evidence supporting a circadian control of natural killer cell function. Brain Behav Immun 20:469–476

    PubMed  CAS  Google Scholar 

  75. Baxevanis CN, Voutsas IF, Tsitsilonis OE, Tsiatas ML, Gritzapis AD, Papamichail M (2000) Compromised anti-tumor responses in tumor necrosis factor-alpha knockout mice. Eur J Immunol 30:1957–1966

    PubMed  CAS  Google Scholar 

  76. Arjona A, Boyadjieva N, Sarkar DK (2004) Circadian rhythms of granzyme B, perforin, IFN-gamma, and NK cell cytolytic activity in the spleen: effects of chronic ethanol. J Immunol 172:2811–2817

    PubMed  CAS  Google Scholar 

  77. Esquifino AI, Selgas L, Arce A, Maggiore VD, Cardinali DP (1996) Twenty-four-hour rhythms in immune responses in rat submaxillary lymph nodes and spleen: effect of cyclosporine. Brain Behav Immun 10:92–102

    PubMed  CAS  Google Scholar 

  78. Fernandes G, Carandente F, Halberg E, Halberg F, Good RA (1979) Circadian rhythm in activity of lympholytic natural killer cells from spleens of Fischer rats. J Immunol 123:622–625

    PubMed  CAS  Google Scholar 

  79. McNulty JA, Relfson M, Fox LM, Kus L, Handa RJ, Schneider GB (1990) Circadian analysis of mononuclear cells in the rat following pinealectomy and superior cervical ganglionectomy. Brain Behav Immun 4:292–307

    PubMed  CAS  Google Scholar 

  80. Shakhar G, Bar-Ziv I, Ben-Eliyahu S (2001) Diurnal changes in lung tumor clearance and their relation to NK cell cytotoxicity in the blood and spleen. Int J Cancer 94:401–406

    PubMed  CAS  Google Scholar 

  81. Gatti G, Del Ponte D, Cavallo R, Sartori ML, Salvadori A, Carignola R, Carandente F, Angeli A (1987) Circadian changes in human natural killer-cell activity. Prog Clin Biol Res 227A:399–409

    PubMed  CAS  Google Scholar 

  82. Angeli A (1992) Circadian rhythms of human NK cell activity. Chronobiologia 19:195–198

    PubMed  CAS  Google Scholar 

  83. Kronfol Z, Nair M, Zhang Q, Hill EE, Brown MB (1997) Circadian immune measures in healthy volunteers: relationship to hypothalamic-pituitary-adrenal axis hormones and sympathetic neurotransmitters. Psychosom Med 59:42–50

    PubMed  CAS  Google Scholar 

  84. Mormont MC, Levi F (1997) Circadian-system alterations during cancer processes: a review. Int J Cancer 70:241–247

    PubMed  CAS  Google Scholar 

  85. Motzkus D, Albrecht U, Maronde E (2002) The human PER1 gene is inducible by interleukin-6. J Mol Neurosci 18:105–109

    PubMed  CAS  Google Scholar 

  86. Lundkvist GB, Robertson B, Mhlanga JD, Rottenberg ME, Kristensson K (1998) Expression of an oscillating interferon-gamma receptor in the suprachiasmatic nuclei. Neuroreport 9:1059–1063

    PubMed  CAS  Google Scholar 

  87. Sadki A, Bentivoglio M, Kristensson K, Nygard M (2006) Suppressors, receptors and effects of cytokines on the aging mouse biological clock. Neurobiol Aging 2006 Jan 17; [Epub ahead of print]

  88. Grechez-Cassiau A, Panda S, Lacoche S, Teboul M, Azmi S, Laudet V, Hogenesch JB, Taneja R, Delaunay F (2004) The transcriptional repressor STRA13 regulates a subset of peripheral circadian outputs. J Biol Chem 279:1141–1150

    PubMed  CAS  Google Scholar 

  89. Ripperger JA, Shearman LP, Reppert SM, Schibler U (2000) CLOCK, an essential pacemaker component, controls expression of the circadian transcription factor DBP. Genes Dev 14:679–689

    PubMed  CAS  Google Scholar 

  90. Young ME, Razeghi P, Taegtmeyer H (2001) Clock genes in the heart: characterization and attenuation with hypertrophy. Circ Res 88:1142–1150

    PubMed  CAS  Google Scholar 

  91. Oishi K, Fukui H, Sakamoto K, Miyazaki K, Kobayashi H, Ishida N (2002) Differential expressions of mPer1 and mPer2 mRNAs under a skeleton photoperiod and a complete light-dark cycle. Brain Res Mol Brain Res 109:11–17

    PubMed  CAS  Google Scholar 

  92. Iwasaki T, Nakahama K, Nagano M, Fujioka A, Ohyanagi H, Shigeyoshi Y (2004) A partial hepatectomy results in altered expression of clock-related and cyclic glyceraldehyde 3-phosphate dehydrogenase (GAPDH) genes. Life Sci 74:3093–3102

    PubMed  CAS  Google Scholar 

  93. Muhlbauer E, Wolgast S, Finckh U, Peschke D, Peschke E (2004) Indication of circadian oscillations in the rat pancreas. FEBS Lett 564:91–96

    PubMed  CAS  Google Scholar 

  94. Oishi K, Sakamoto K, Okada T, Nagase T, Ishida N (1998) Antiphase circadian expression between BMAL1 and period homologue mRNA in the suprachiasmatic nucleus and peripheral tissues of rats. Biochem Biophys Res Commun 253:199–203

    PubMed  CAS  Google Scholar 

  95. Allaman-Pillet N, Roduit R, Oberson A, Abdelli S, Ruiz J, Beckmann JS, Schorderet DF, Bonny C (2004) Circadian regulation of islet genes involved in insulin production and secretion. Mol Cell Endocrinol 226:59–66

    PubMed  CAS  Google Scholar 

  96. Lopez-Molina L, Conquet F, Dubois-Dauphin M, Schibler U (1997) The DBP gene is expressed according to a circadian rhythm in the suprachiasmatic nucleus and influences circadian behavior. Embo J 16:6762–6771

    PubMed  CAS  Google Scholar 

  97. Yagita K, Okamura H (2000) Forskolin induces circadian gene expression of rPer1, rPer2 and dbp in mammalian rat-1 fibroblasts. FEBS Lett 465:79–82

    PubMed  CAS  Google Scholar 

  98. Boivin DB, James FO, Wu A, Cho-Park PF, Xiong H, Sun ZS (2003) Circadian clock genes oscillate in human peripheral blood mononuclear cells. Blood 102:4143–4145

    PubMed  CAS  Google Scholar 

  99. Kusanagi H, Mishima K, Satoh K, Echizenya M, Katoh T, Shimizu T (2004) Similar profiles in human period1 gene expression in peripheral mononuclear and polymorphonuclear cells. Neurosci Lett 365:124–127

    PubMed  CAS  Google Scholar 

  100. Takata M, Burioka N, Ohdo S, Takane H, Terazono H, Miyata M, Sako T, Suyama H, Fukuoka Y, Tomita K, Shimizu E (2002) Daily expression of mRNAs for the mammalian Clock genes Per2 and clock in mouse suprachiasmatic nuclei and liver and human peripheral blood mononuclear cells. Jpn J Pharmacol 90:263–269

    PubMed  CAS  Google Scholar 

  101. Oishi K, Sakamoto K, Okada T, Nagase T, Ishida N (1998) Humoral signals mediate the circadian expression of rat period homologue (rPer2) mRNA in peripheral tissues. Neurosci Lett 256:117–119

    PubMed  CAS  Google Scholar 

  102. Rudic RD, McNamara P, Curtis AM, Boston RC, Panda S, Hogenesch JB, Fitzgerald GA (2004) BMAL1 and CLOCK, two essential components of the circadian clock, are involved in glucose homeostasis. PLoS Biol 2:e377

    PubMed  Google Scholar 

  103. Lincoln GA, Andersson H, Hazlerigg D (2003) Clock genes and the long-term regulation of prolactin secretion: evidence for a photoperiod/circannual timer in the pars tuberalis. J Neuroendocrinol 15:390–397

    PubMed  CAS  Google Scholar 

  104. Shimba S, Ishii N, Ohta Y, Ohno T, Watabe Y, Hayashi M, Wada T, Aoyagi T, Tezuka M (2005) Brain and muscle Arnt-like protein-1 (BMAL1), a component of the molecular clock, regulates adipogenesis. Proc Natl Acad Sci USA 102:12071–12076

    PubMed  CAS  Google Scholar 

  105. Turek FW, Joshu C, Kohsaka A, Lin E, Ivanova G, McDearmon E, Laposky A, Losee-Olson S, Easton A, Jensen DR, Eckel RH, Takahashi JS, Bass J (2005) Obesity and metabolic syndrome in circadian Clock mutant mice. Science 308:1043–1045

    PubMed  CAS  Google Scholar 

  106. Chappell PE, White RS, Mellon PL (2003) Circadian gene expression regulates pulsatile gonadotropin-releasing hormone (GnRH) secretory patterns in the hypothalamic GnRH-secreting GT1-7 cell line. J Neurosci 23:11202–11213

    PubMed  CAS  Google Scholar 

  107. Zheng B, Larkin DW, Albrecht U, Sun ZS, Sage M, Eichele G, Lee CC, Bradley A (1999) The mPer2 gene encodes a functional component of the mammalian circadian clock. Nature 400:169–173

    PubMed  CAS  Google Scholar 

  108. Oster H, Yasui A, van der Horst GT, Albrecht U (2002) Disruption of mCry2 restores circadian rhythmicity in mPer2 mutant mice. Genes Dev 16:2633–2638

    PubMed  CAS  Google Scholar 

  109. Fu L, Pelicano H, Liu J, Huang P, Lee C (2002) The circadian gene Period2 plays an important role in tumor suppression and DNA damage response in vivo. Cell 111:41–50

    PubMed  CAS  Google Scholar 

  110. Beatty GL, Paterson Y (2001) Regulation of tumor growth by IFN-gamma in cancer immunotherapy. Immunol Res 24:201–210

    PubMed  CAS  Google Scholar 

  111. Arjona A, Sarkar DK (2006) The circadian gene mPer2 regulates the daily rhythm of IFN-gamma. J Interferon Cytokine Res 26:645–649

    PubMed  CAS  Google Scholar 

  112. Liu J, Mankani G, Shi X, Meyer M, Cunningham-Runddles S, Ma X, Sun ZS (2006) The circadian clock Period 2 gene regulates gamma interferon production of NK cells in host response to lipopolysaccharide-induced endotoxic shock. Infect Immun 74:4750–4756

    PubMed  CAS  Google Scholar 

  113. Sun Y, Yang Z, Niu Z, Peng J, Li Q, Xiong W, Langnas AN, Ma MY, Zhao Y (2006) MOP3, a component of the molecular clock, regulates the development of B cells. Immunology (2006) Aug 22; [Epub ahead of print]

  114. Oishi K, Ohkura N, Kadota K, Kasamatsu M, Shibusawa K, Matsuda J, Machida, K, Horie S, Ishida N (2006) Clock mutation affects circadian regulation of circulating blood cells. J Circadian Rhythms 4:13

    PubMed  Google Scholar 

  115. Oishi K, Miyazaki K, Kadota K, Kikuno R, Nagase T, Atsumi G, Ohkura N, Azama T, Mesaki M, Yukimasa S, Kobayashi H, Iitaka C, Umehara T, Horikoshi M, Kudo T, Shimizu Y, Yano M, Monden M, Machida K, Matsuda J, Horie S, Todo T, Ishida N (2003) Genome-wide expression analysis of mouse liver reveals CLOCK-regulated circadian output genes. J Biol Chem 278:41519–41527

    PubMed  CAS  Google Scholar 

  116. Buijs RM, Chun SJ, Niijima A, Romijn HJ, Nagai K (2001) Parasympathetic and sympathetic control of the pancreas: a role for the suprachiasmatic nucleus and other hypothalamic centers that are involved in the regulation of food intake. J Comp Neurol 431:405–423

    PubMed  CAS  Google Scholar 

  117. Buijs RM, Wortel J, Van Heerikhuize JJ, Feenstra MG, Ter Horst GJ, Romijn HJ, Kalsbeek A (1999) Anatomical and functional demonstration of a multisynaptic suprachiasmatic nucleus adrenal (cortex) pathway. Eur J Neurosci 11:1535–1544

    PubMed  CAS  Google Scholar 

  118. Kalsbeek A, van Heerikhuize JJ, Wortel J, Buijs RM (1996) A diurnal rhythm of stimulatory input to the hypothalamo-pituitary-adrenal system as revealed by timed intrahypothalamic administration of the vasopressin V1 antagonist. J Neurosci 16:5555–5565

    PubMed  CAS  Google Scholar 

  119. Felten SY, Felten DL (1994) Neural-immune interactions. Prog Brain Res 100:157–162

    PubMed  CAS  Google Scholar 

  120. Straub RH (2004) Complexity of the bi-directional neuroimmune junction in the spleen. Trends Pharmacol Sci 25:640–646

    PubMed  CAS  Google Scholar 

  121. Katafuchi T, Ichijo T, Take S, Hori T (1993) Hypothalamic modulation of splenic natural killer cell activity in rats. J Physiol 471:209–221

    PubMed  CAS  Google Scholar 

  122. Terazono H, Mutoh T, Yamaguchi S, Kobayashi M, Akiyama M, Udo R, Ohdo S, Okamura H, Shibata S (2003) Adrenergic regulation of clock gene expression in mouse liver. Proc Natl Acad Sci USA 100:6795–6800

    PubMed  CAS  Google Scholar 

  123. Boyadjieva N, Dokur M, Advis JP, Meadows GG, Sarkar DK (2001) Chronic ethanol inhibits NK cell cytolytic activity: role of opioid peptide beta-endorphin. J Immunol 167:5645–5652

    PubMed  CAS  Google Scholar 

  124. Currier NL, Sun LZ, Miller SC (2000) Exogenous melatonin: quantitative enhancement in vivo of cells mediating non-specific immunity. J Neuroimmunol 104:101–108

    PubMed  CAS  Google Scholar 

  125. Gan X, Zhang L, Solomon GF, Bonavida B (2002) Mechanism of norepinephrine-mediated inhibition of human NK cytotoxic functions: inhibition of cytokine secretion, target binding, and programming for cytotoxicity. Brain Behav Immun 16:227–246

    PubMed  CAS  Google Scholar 

  126. Sun R., Wei H, Zhang J, Li A, Zhang W, Tian Z (2002–2003) Recombinant human prolactin improves antitumor effects of murine natural killer cells in vitro and in vivo. Neuroimmunomodulation 10:169–176

    PubMed  CAS  Google Scholar 

  127. Zhou J, Olsen S, Moldovan J, Fu X, Sarkar FH, Moudgil VK, Callewaert DM (1997) Glucocorticoid regulation of natural cytotoxicity: effects of cortisol on the phenotype and function of a cloned human natural killer cell line. Cell Immunol 178:108–116

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by NIH grant AA08757 to DKS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dipak K. Sarkar.

Additional information

Special issue article in honor of George Fink.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Arjona, A., Sarkar, D.K. Are Circadian Rhythms the Code of Hypothalamic-Immune Communication? Insights from Natural Killer Cells. Neurochem Res 33, 708–718 (2008). https://doi.org/10.1007/s11064-007-9501-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-007-9501-z

Keywords

Navigation