Skip to main content

Advertisement

Log in

Comparison of circadian characteristics for cytotoxic lymphocyte subsets in non-small cell lung cancer patients versus controls

  • Original Article
  • Published:
Clinical and Experimental Medicine Aims and scope Submit manuscript

Abstract

Lymphocyte subsets are major cellular components of the adaptive immune response and in most cases show 24-h (circadian) variations in health. In order to determine overall levels and circadian characteristics of cytotoxic natural killer (NK) and T and B lymphocyte subsets, blood samples were collected every 4 h for 24 h from eleven male controls (C) without neoplastic disease and nine men with untreated non-small cell lung cancer (NSCLC) and analyzed for 3 hormones (melatonin, cortisol, and interleukin 2 [IL2]) and for 11 lymphocyte subpopulations classified by cell surface clusters of differentiation (CD) and antigen receptors. Circadian rhythmicity for each variable was evaluated by ANOVA and 24 h cosine fitting and groups compared. Rhythms in melatonin and cortisol (peaks near 01:30 and 08:00 h) indicated identical synchronization to the light–dark schedule and probable persistent entrainment of rhythms for both groups in metabolism or proliferation of healthy tissues normally tightly coupled to the sleep–wake cycle. Twenty-four hours means were significantly higher in NSCLC for CD16, CD25, cortisol, and IL2 and lower for CD8, CD8bright, and γδTCR. A significant circadian rhythm was found in C with daytime peaks for CD8, CD8dim, CD16, Vδ2TCR, and cortisol and nighttime peaks for CD3, CD4, CD20, and melatonin, and in NSCLC, with daytime peaks for CD16, γδTCR, Vδ2TCR and cortisol, and nighttime peaks for CD4, CD25, and melatonin. Thus, NSCLC was associated with significant increases or decreases in proportions for several lymphocyte subsets that may reflect disease development, but peak times were nevertheless similar between C and NSCLC for each variable, suggesting that timed circadian administration (chronotherapy) of immunotherapy and other cancer treatments may improve efficacy due to persistent circadian entrainment of healthy tissues.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. de Visser KE, Eichten A, Coussens LM (2006) Paradoxical roles of the immune system during cancer development. Nat Rev Cancer 6(1):24–37

    Article  PubMed  Google Scholar 

  2. Zhang T, Herlyn D (2009) Combination of active specific immunotherapy or adoptive antibody or lymphocyte immunotherapy with chemotherapy in the treatment of cancer. Cancer Immunol Immunother 58(4):475–492

    Article  PubMed  CAS  Google Scholar 

  3. Blank C, Mackensen A (2007) Contribution of the PD-L1/PD-1 pathway to T-cell exhaustion: an update on implications for chronic infections and tumor evasion. Cancer Immunol Immunother 56(5):739–745

    Article  PubMed  Google Scholar 

  4. Zang X, Allison JP (2007) The B7 family and cancer therapy: costimulation and coinhibition. Cancer Res 13(18 Pt 1):5271–5279

    CAS  Google Scholar 

  5. Inman BA, Frigola X, Dong H, Kwon ED (2007) Costimulation, coinhibition and cancer. Curr Cancer Drug Targets 7(1):15–30 Review

    Article  PubMed  CAS  Google Scholar 

  6. June CH, Blazar BR, Riley JL (2009) Engineering lymphocyte subsets: tools, trials and tribulations. Nat Rev Immunol 9(10):704–716

    Article  PubMed  CAS  Google Scholar 

  7. Motohashi S, Nakayama T (2008) Clinical applications of natural killer T cell-based immunotherapy for cancer. Cancer Sci 99(4):638–645

    Article  PubMed  CAS  Google Scholar 

  8. Zhang YL, Li J, Mo HY et al (2010) Different subsets of tumor infiltrating lymphocytes correlate with NPC progression in different ways. Mol Cancer 10(9):4

    Article  Google Scholar 

  9. Savas B, Kerr PE, Pross HF (2006) Lymphokine-activated killer cell susceptibility and adhesion molecule expression of multidrug resistant breast carcinoma. Cancer Cell Int 6:24–37

    Article  PubMed  Google Scholar 

  10. Kabelitz D, Wesch D, He W (2007) Perspectives of gammadelta T cells in tumor immunology. Cancer Res 67(1):5–8

    Article  PubMed  CAS  Google Scholar 

  11. Mantovani A, Bottazzi B, Colotta F, Sozzani S, Ruco L (1992) The origin and function of tumor-associated macrophages. Immunol Today 13(7):265–270

    Article  PubMed  CAS  Google Scholar 

  12. Allavena P, Sica A, Solinas G, Porta C, Mantovani A (2008) The inflammatory micro-environment in tumor progression: the role of tumor-associated macrophages. Oncol Hematol 66(1):1–9

    Google Scholar 

  13. van Ravenswaay Claasen HH, Kluin PM, Fleuren GJ (1992) Tumor infiltrating cells in human cancer. On the possible role of CD16+ macrophages in antitumor cytotoxicity. Lab Invest 67(2):166–174

    PubMed  Google Scholar 

  14. Sothern RB (2006) Clinical medicine. In: Koukkari WL, Sothern RB (eds) Introducing biological rhythms. Springer, New York, pp 426–525

    Google Scholar 

  15. Haus E (2007) Chronobiology in the endocrine system. Adv Drug Deliv Rev 59(9–10):985–1014

    Article  PubMed  CAS  Google Scholar 

  16. Edery I (2000) Circadian rhythms in a nutshell. Physiol Genomics 3(2):59–74

    PubMed  CAS  Google Scholar 

  17. Hastings MH, Reddy AB, Maywood ES (2003) A clockwork web: circadian timing in brain and periphery, in health and disease. Nat Rev Neurosci 4:649–661

    Article  PubMed  CAS  Google Scholar 

  18. Gachon F, Nagoshi E, Brown SA, Ripperger J, Schibler U (2004) The mammalian circadian timing system: from gene expression to physiology. Chromosoma 113:103–112

    Article  PubMed  Google Scholar 

  19. Ko CH, Takahashi JS (2006) Molecular components of the mammalian circadian clock. Hum Mol Genet 15:R271–R277 Review

    Article  PubMed  CAS  Google Scholar 

  20. Damiola F, Le Minh N, Preitner N, Kornmann B, Fleury-Olela F, Schibler U (2000) Restricted feeding uncouples circadian oscillators in peripheral tissues from the central pacemaker in the suprachiasmatic nucleus. Genes Dev 14:2950–2961

    Article  PubMed  CAS  Google Scholar 

  21. Stokkan KA, Yamazaki S, Tei H, Sakaki Y, Menaker M (2001) Entrainment of the circadian clock in the liver by feeding. Science 291:490–493

    Article  PubMed  CAS  Google Scholar 

  22. Fu L, Lee CC (2004) The circadian clock: pacemaker and tumour suppressor. Nature Rev Cancer 3:350–361

    Article  Google Scholar 

  23. Nagoshi E, Saini C, Bauer C, Laroche T, Naef F, Schibler U (2004) Circadian gene expression in individual fibroblasts: cell-autonomous and self-sustained oscillators pass time to daughter cells. Cell 119:693–705

    Article  PubMed  CAS  Google Scholar 

  24. Mazzoccoli G, Correra M, Bianco G et al (1997) Age-related changes of neuro-endocrine-immune interactions in healthy humans. J Biol Reg Hom Agents 11(4):143–147

    CAS  Google Scholar 

  25. Suzuki S, Toyabe S, Moroda T (1997) Circadian rhythm of leucocytes and lymphocytes subsets and its possible correlation with the function of the autonomic nervous system. Clin Exp Immunol 110(3):500–508

    Article  PubMed  CAS  Google Scholar 

  26. Mazzoccoli G, Sothern RB, De Cata A et al (2011) A timetable of 24-hour patterns for human lymphocyte subpopulations. J Biol Regul Homeost Agents (in press)

  27. Blum KS, Pabst R (2007) Lymphocyte numbers and subsets in the human blood. Do they mirror the situation in all organs? Immunol Lett 108(1):45–51

    Article  PubMed  CAS  Google Scholar 

  28. Dimitrov S, Benedict C, Heutling D, Westermann J, Born J, Lange T (2009) Cortisol and epinephrine control opposing circadian rhythms in T cell subsets. Blood 113(21):5134–5143

    Article  PubMed  CAS  Google Scholar 

  29. Dimitrov S, Lange T, Born J (2010) Selective mobilization of cytotoxic leukocytes by epinephrine. J Immunol 184(1):503–511

    Article  PubMed  CAS  Google Scholar 

  30. Mazzoccoli G, De Cata A, Greco A, Carughi S, Giuliani F, Tarquini R (2010) Circadian rhythmicity of lymphocyte subpopulations and relationship with neuro-endocrine system. J Biol Reg Homest Agents 24(3):341–350

    CAS  Google Scholar 

  31. Teboul M, Barrat-Petit M-A, Mei Li X, Claustrat B, Formento J-L, Delaunay F (2005) Atypical patterns of circadian clock gene expression in human peripheral blood mononuclear cells. J Mol Med 83(9):693–699

    Article  PubMed  CAS  Google Scholar 

  32. Fukuya H, Emoto N, Nonaka H, Yagita K, Okamura H, Yokoyama M (2007) Circadian expression of clock genes in human peripheral leukocytes. Biochem Biophys Res Commun 354(4):924–928

    Article  PubMed  CAS  Google Scholar 

  33. Borgs L, Beukelaers P, Vandenbosch R, Belachew S, Nguyen L, Malgrange B (2009) Cell “circadian” cycle: new role for mammalian core clock genes. Cell Cycle 8(6):832–837

    Article  PubMed  CAS  Google Scholar 

  34. Estrela-Lima A, Araújo MS, Costa-Neto JM et al (2010) Immunophenotypic features of tumor infiltrating lymphocytes from mammary carcinomas in female dogs associated with prognostic factors and survival rates. BMC Cancer 10:256

    Article  PubMed  Google Scholar 

  35. Mazzoccoli G, Grilli M, Carughi S et al (2003) Immune system alterations in lung cancer patients. Int J Immunopathol Pharmacol 16(2):167–174

    PubMed  CAS  Google Scholar 

  36. Sharma P (2009) Preanalytical variables and laboratory performance. Ind J Clin Biochem 24:109–110

    Article  Google Scholar 

  37. Göhde W, Cassens U, Lehman LG et al (2003) Individual patient-dependent influence of erythrocyte lysing procedures on flow-cytometric analysis of leukocyte subpopulations. Transfus Med Hemother 30:165–170

    Article  Google Scholar 

  38. Klerman EB, Gershengorn HB, Duffy JF, Kronauer RE (2002) Comparisons of the variability of three markers of the human circadian pacemaker. J Biol Rhythms 17(2):181–193

    Article  PubMed  CAS  Google Scholar 

  39. Nelson W, Tong YL, Lee YK, Halberg F (1979) Methods for cosinor rhythmometry. Chronobiologia 6(4):305–323

    PubMed  CAS  Google Scholar 

  40. Mojón A, Fernández JR, Hermida R (1992) Chronolab: an interactive software package for chronobiologic time series analysis written for the Macintosh computer. Chronobiol Intl 9(6):403–412

    Article  Google Scholar 

  41. Parmiani G (2005) Tumor-infiltrating T cells—friend or foe of neoplastic cells? N Engl J Med 353(25):2640–2641

    Article  PubMed  Google Scholar 

  42. Bindea G, Mlecnik B, Fridman WH, Pagès F, Galon J (2010) Natural immunity to cancer in humans. Curr Opin Immunol 22(2):215–222

    Article  PubMed  CAS  Google Scholar 

  43. Mantovani A (2010) Molecular pathways linking inflammation and cancer. Curr Mol Med 10(4):369–373 Review

    Article  PubMed  CAS  Google Scholar 

  44. O’Callaghan DS, O’Donnell D, O’Connell F, O’Byrne KJ (2010) The role of inflammation in the pathogenesis of non-small cell lung cancer. J Thorac Oncol 5(12):2024–2036 Review

    Article  PubMed  Google Scholar 

  45. Allavena P, Germano G, Marchesi F, Mantovani A (2011) Chemokines in cancer related inflammation. Exp Cell Res 317(5):664–673 Review

    Article  PubMed  CAS  Google Scholar 

  46. Thompson RH, Dong H, Kwon ED (2007) Implications of B7-H1 expression in clear cell carcinoma of the kidney for prognostication and therapy. Clin Cancer Res 13(2 Pt 2):709s–715s

    Article  PubMed  CAS  Google Scholar 

  47. Ghebeh H, Barhoush E, Tulbah A, Elkum N, Al-Tweigeri T, Dermime S (2008) FOXP3+ Tregs and B7-H1+/PD-1+ T lymphocytes co-infiltrate the tumor tissues of high-risk breast cancer patients: implication for immunotherapy. BMC Cancer 23(8):57

    Article  Google Scholar 

  48. Mazzoccoli G, Vendemiale G, De Cata A, Carughi S, Tarquini R (2010) Altered time structure of neuro-endocrine-immune system function in lung cancer patients. BMC Cancer 10(1):314

    Article  PubMed  Google Scholar 

  49. Hueman MT, Stojadinovic A, Storrer CE et al (2007) Analysis of naïve and memory CD4 and CD8 T cell populations in breast cancer patients receiving a HER2/neu peptide (E75) and GM-CSF vaccine. Cancer Immunol Immunother 56(2):135–146

    Article  PubMed  CAS  Google Scholar 

  50. Eckschlager T, Radvanska J, Slaby K, Prusa R, Hochova I, Radvansky J (2009) Changes of blood count, lymphocyte subpopulations and immunoglobulin levels in nephroblastoma long term survivors. Neoplasma 56(1):9–12

    Article  PubMed  CAS  Google Scholar 

  51. Ormandy LA, Hillemann T, Wedemeyer H, Manns MP, Greten TF, Korangy F (2005) Increased populations of regulatory T cells in peripheral blood of patients with hepatocellular carcinoma. Cancer Res 65(6):2457–2464

    Article  PubMed  CAS  Google Scholar 

  52. Cesana GC, DeRaffele G, Cohen S et al (2006) Characterization of CD4+CD25+ regulatory T cells in patients treated with high-dose interleukin-2 for metastatic melanoma or renal cell carcinoma. J Clin Oncol 24(7):1169–1177

    Article  PubMed  CAS  Google Scholar 

  53. Beyer M, Kochanek M, Darabi K et al (2005) Reduced frequencies and suppressive function of CD4+CD25hi regulatory T cells in patients with chronic lymphocytic leukemia after therapy with fludarabine. Blood 106(6):2018–2025

    Article  PubMed  CAS  Google Scholar 

  54. Woo EY, Chu CS, Goletz TJ et al (2001) Regulatory CD4(+)CD25(+) T cells in tumors from patients with early-stage non-small cell lung cancer and late-stage ovarian cancer. Cancer Res 61(12):4766–4772

    PubMed  CAS  Google Scholar 

  55. Meloni F, Morosini M, Solari N et al (2006) Foxp3 expressing CD4+CD25+ and CD8+CD28− T regulatory cells in the peripheral blood of patients with lung cancer and pleural mesothelioma. Hum Immunol 67(1–2):1–12

    Article  PubMed  CAS  Google Scholar 

  56. Nelson BH (2008) The impact of T-cell immunity on ovarian cancer outcomes. Immunol Rev 222:101–116 Review

    Article  PubMed  CAS  Google Scholar 

  57. Ebelt K, Babaryka G, Frankenberger B et al (2009) Prostate cancer lesions are surrounded by FOXP3+, PD-1+ and B7-H1+ lymphocyte clusters. Eur J Cancer 45(9):1664–1672

    Article  PubMed  CAS  Google Scholar 

  58. Salama P, Phillips M, Grieu F et al (2009) Tumor-infiltrating FOXP3+ T regulatory cells show strong prognostic significance in colorectal cancer. J Clin Oncol 27(2):186–192

    Article  PubMed  Google Scholar 

  59. Karagöz B, Bilgi O, Gümüs M et al (2010) CD8+CD28− cells and CD4+CD25+ regulatory T cells in the peripheral blood of advanced stage lung cancer patients. Med Oncol 27(1):29–33

    Article  PubMed  Google Scholar 

  60. Chaput N, Louafi S, Bardier A et al (2009) Identification of CD8+CD25+Foxp3+ suppressive T cells in colorectal cancer tissue. Gut 58(4):520–529

    Article  PubMed  CAS  Google Scholar 

  61. Shen LS, Wang J, Shen DF et al (2009) CD4(+)CD25(+)CD127(low/-) regulatory T cells express Foxp3 and suppress effector T cell proliferation and contribute to gastric cancers progression. Clin Immunol 131(1):109–118

    Article  PubMed  CAS  Google Scholar 

  62. Cassone VM, Natesan AK (1997) Time and time again: the phylogeny of melatonin as a transducer of biological time. J Biol Rhythms 12:489–497 Review

    Article  PubMed  CAS  Google Scholar 

  63. Reiter RJ (1991) Pineal melatonin: cell biology of its synthesis and its physiological interactions. Endocr Rev 12:151–179

    Article  PubMed  CAS  Google Scholar 

  64. Reiter RJ, Tan DX, Fuentes-Broto L (2010) Melatonin: a multitasking molecule. Prog Brain Res 181:127–151 Review

    Article  PubMed  CAS  Google Scholar 

  65. Van Cauter E (1990) Diurnal and ultradian rhythms in human endocrine function: a minireview. Horm Res 34:45–53

    Article  PubMed  Google Scholar 

  66. Gusenoff JA, Harman S, Veldhuis JD et al (2001) Cortisol and GH secretory dynamics, and their interrelationships, in healthy aged women and men. Am J Physiol Endocrinol Metab 280:E616–E625

    PubMed  CAS  Google Scholar 

  67. Haus E (2007) Chronobiology in the endocrine system. Adv Drug Deliv Rev 59:985–1014

    Article  PubMed  CAS  Google Scholar 

  68. Lévi F, Okyar A, Dulong S, Innominato PF, Clairambault J (2010) Circadian timing in cancer treatments. Annu Rev Pharmacol Toxicol 50:377–421 Review

    Article  PubMed  Google Scholar 

  69. Ohdo S (2010) Chronotherapeutic strategy: rhythm monitoring, manipulation and disruption. Adv Drug Deliv Rev 62(9–10):859–875 Review

    Article  PubMed  CAS  Google Scholar 

  70. Mazzoccoli G, Giuliani F, Sothern RB (2011) Whole body circadian phase evaluated from melatonin and cortisol sampled every 4 h over 24 h in healthy men. Cancer Epidemiol (in press)

Download references

Acknowledgments

We wish to express our gratitude and thank the control subjects and NSCLC patients that each volunteered to participate in this study.

Conflict of interest

The authors declare that they have no conflict of interest related to the publication of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gianluigi Mazzoccoli.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mazzoccoli, G., Sothern, R.B., Parrella, P. et al. Comparison of circadian characteristics for cytotoxic lymphocyte subsets in non-small cell lung cancer patients versus controls. Clin Exp Med 12, 181–194 (2012). https://doi.org/10.1007/s10238-011-0153-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10238-011-0153-6

Keywords

Navigation