Skip to main content

Sex Determination and Differentiation in Frogs

  • Chapter
  • First Online:
Reproductive and Developmental Strategies

Part of the book series: Diversity and Commonality in Animals ((DCA))

Abstract

In amphibians, it is believed that sex is genetically determined. The genetic sex-determining systems of amphibians include female (ZW) and male (XY) heterogamety. Interestingly, the Japanese Wrinkled Frog (Glandirana (Rana) rugosa) has both types of heterogamety, which was caused by geographic variation. Although almost all mammalian and avian species have heteromorphic sex chromosomes, the majority of amphibians, including the African Clawed Frog Xenopus laevis, possess homomorphic sex chromosomes. Thus, there should be a variety of sex-determining genes in amphibians. However, little is known about the molecular mechanisms underlying sex determination, although a W chromosome-linked gene dm-w in X. laevis was reported in 2008 to be responsible for a case of female sex determination. In contrast to the heterogamety, gonadal sexual differentiation follows a more conservative system. In many frog species, exposure of tadpoles with undifferentiated gonads to estrogen or androgen can induce male-to-female or female-to-male sex reversal, respectively. These findings suggest that sex steroid hormones have important roles in early sex differentiation. Estrogen- and androgen-synthesizing genes cyp19a1 and cyp17a1 show sexually dimorphic expression in early differentiating gonads in some frog species. In X. laevis, the structure called ‘mass-in-line,’ consisting of cyp17a1/cyp19a1-expressing cells, is involved in ovarian cavity formation. This chapter describes these situations in detail, and co-evolution between sex-determining genes and sex chromosomes is discussed. Germ cell development including gametogenesis and its endocrine control are also described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abramyan J, Ezaz T, Graves JA, Koopman P (2009) Z and W sex chromosomes in the cane toad (Bufo Marinus). Chromosom Res 17:1015–1024

    Article  CAS  Google Scholar 

  • Barrionuevo FJ, Burgos M, Scherer G, Jiménez R (2012) Genes promoting and disturbing testis development. Histol Histopathol 27:1361–1383

    PubMed  CAS  Google Scholar 

  • Bewick AJ, Anderson DW, Evans BJ (2011) Evolution of the closely related, sex-related genes DM-W and DMRT1 in African clawed frogs (Xenopus). Evolution 65:698–712

    Article  CAS  PubMed  Google Scholar 

  • Chang CY, Witschi E (1956) Genic control and hormonal reversal of sex differentiation in Xenopus. Proc Soc Exp Biol Med 93:140

    Article  CAS  PubMed  Google Scholar 

  • Chassot AA, Gillot I, Chaboissier MC (2014) R-spondin1, WNT4, and the CTNNB1 signaling pathway: strict control over ovarian differentiation. Reproduction 148:R97–110

    Article  CAS  PubMed  Google Scholar 

  • Dagklis T, Ravanos K, Makedou K, Kourtis A, Rousso D (2015) Common features and differences of the hypothalamic-pituitary-gonadal axis in male and female. Gynecol Endocrinol 31:14–17

    Article  CAS  PubMed  Google Scholar 

  • De Almeida CG, Grafe TU, Guttenbach M, Schmid M (1990) Karyotype and chromosome banding in the reed frog Hyperolius Viridiflavus ommatostictus (Amphibia, Anura, Hyperoliidae). Experientia 46:509–511

    Article  PubMed  Google Scholar 

  • Eggert C (2004) Sex determination: the amphibian models. Reprod Nutr Dev 44:539–549

    Article  PubMed  Google Scholar 

  • Fujii J, Kodama M, Oike A, Matsuo Y, Min MS, Hasebe T, Ishizuya-Oka A, Kawakami K, Nakamura M (2014) Involvement of androgen receptor in sex determination in an amphibian species. PLoS One 9:e93655

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fujitani K, Otomo A, Wada M, Takamatsu N, Ito M (2016) Sexually dimorphic expression of Dmrt1 and γH2AX in germ stem cells during gonadal development in Xenopus laevis. FEBS Open Bio 26:276–284

    Article  CAS  Google Scholar 

  • Graves JA (2008) Weird animal genomes and the evolution of vertebrate sex and sex chromosomes. Annu Rev Genet 42:565–586

    Article  CAS  Google Scholar 

  • Guigon CJ, Coudouel N, Mazaud-Guittot S, Forest MG, Magre S (2005) Follicular cells acquire sertoli cell characteristics after oocyte loss. Endocrinology 146:2992–3004

    Article  CAS  PubMed  Google Scholar 

  • Hattori RS, Murai Y, Oura M, Masuda S, Majhi SK, Sakamoto T, Fernandino JI, Somoza GM, Yokota M, Strüssmann CA (2012) A Y-linked anti-Müllerian hormone duplication takes over a critical role in sex determination. Proc Natl Acad Sci U S A 109:2955–2959

    Article  PubMed  PubMed Central  Google Scholar 

  • Hayes TB (1998) Sex determination and primary sex differentiation in amphibians: genetic and developmental mechanisms. J Exp Zool 281:373–399

    Article  CAS  PubMed  Google Scholar 

  • Hu F, Smith EE, Carr JA (2008) Effects of larval exposure to estradiol on spermatogenesis and in vitro gonadal steroid secretion in African clawed frogs, Xenopus Laevis. Gen Comp Endocrinol 155:190–200

    Article  CAS  PubMed  Google Scholar 

  • Ito M, Mawaribuchi S (2013) Molecular evolution of genes involved in vertebrate sex determination. In: eLS. Wiley, Chichester

    Google Scholar 

  • Kiuchi T, Koga H, Kawamoto M, Shoji K, Sakai H, Arai Y, Ishihara G, Kawaoka S, Sugano S, Shimada T, Suzuki Y, Suzuki MG, Katsuma S (2014) A single female-specific piRNA is the primary determiner of sex in the silkworm. Nature 509:633–636

    Article  CAS  PubMed  Google Scholar 

  • Klinge CM (2001) Estrogen receptor interaction with estrogen response elements. Nucleic Acids Res 29:2905–2919

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kodama M, Suda M, Sakamoto D, Iwasaki T, Matsuo Y, Uno Y, Matsuda Y, Nakamura Y, Maekawa S, Katsu Y, Nakamura M (2015) Molecular cloning and characterization of anti-Müllerian hormone (AMH) from the Japanese wrinkled frog, Rana rugosa. Endocrinology 156:1914–1923

    Article  CAS  PubMed  Google Scholar 

  • Koyano S, Ito M, Takamatsu N, Takiguchi S, Shiba T (1997) The Xenopus Sox3 gene expressed in oocytes of early stages. Gene 188:101–107

    Article  CAS  PubMed  Google Scholar 

  • Krentz AD, Murphy MW, Zhang T, Sarver AL, Jain S, Griswold MD, Bardwell VJ, Zarkower D (2011) Interaction between DMRT1 function and genetic background modulates signaling and pluripotency to control tumor susceptibility in the fetal germ line. Dev Biol 377:67–78

    Article  CAS  Google Scholar 

  • Kurokawa H, Saito D, Nakamura S, Katoh-Fukui Y, Ohta K, Baba T, Morohashi K, Tanaka M (2007) Germ cells are essential for sexual dimorphism in the medaka gonad. Proc Natl Acad Sci U S A 104:16958–16963

    Article  PubMed  PubMed Central  Google Scholar 

  • Lambeth LS, Raymond CS, Roeszler KN, Kuroiwa A, Nakata T, Zarkower D, Smith CA (2014) Over-expression of DMRT1 induces the male pathway in embryonic chicken gonads. Dev Biol 389:160–172

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Malcom JW, Kudra RS, Malone JH (2014) The sex chromosomes of frogs: variability and tolerance offer clues to genome evolution and function. J Genomics 2:68–76

    Article  PubMed  PubMed Central  Google Scholar 

  • Maruo K, Suda M, Yokoyama S, Oshima Y, Nakamura M (2008) Steroidogenic gene expression during sex determination in the frog Rana Rugosa. Gen Comp Endocrinol 158:87–94

    Article  CAS  PubMed  Google Scholar 

  • Masui Y (2001) From oocyte maturation to the in vitro cell cycle: the history of discoveries of maturation-promoting factor (MPF) and cytostatic factor (CSF). Differentiation 69:1–17

    Article  CAS  PubMed  Google Scholar 

  • Masui Y, Markert CL (1971) Cytoplasmic control of nuclear behavior during meiotic maturation of frog oocytes. J Exp Zool 177:129–145

    Article  CAS  PubMed  Google Scholar 

  • Masuyama H, Yamada M, Kamei Y, Fujiwara-Ishikawa T, Todo T, Nagahama Y, Matsuda M (2012) Dmrt1 mutation causes a male-to-female sex reversal after the sex determination by Dmy in the medaka. Chromosom Res 20:163–176

    Article  CAS  Google Scholar 

  • Matson CK, Murphy MW, Griswold MD, Yoshida S, Bardwell VJ, Zarkower D (2010) The mammalian doublesex homolog DMRT1 is a transcriptional gatekeeper that controls the mitosis versus meiosis decision in male germ cells. Dev Cell 19:612–624

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matson CK, Murphy MW, Sarver AL, Griswold MD, Bardwell VJ, Zarkower D (2011) DMRT1 prevents female reprogramming in the postnatal mammalian testis. Nature 476:101–104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matsuda M, Nagahama Y, Shinomiya A, Sato T, Matsuda C, Kobayashi T, Morrey CE, Shibata N, Asakawa S, Shimizu N, Hori H, Hamaguchi S, Sakaizumi M (2002) DMY is a Y-specific DM-domain gene required for male development in the medaka fish. Nature 417:559–563

    Article  CAS  PubMed  Google Scholar 

  • Matsuda Y, Uno Y, Kondo M, Gilchrist MJ, Zorn AM, Rokhsar DS, Schmid M, Taira M (2015) A new nomenclature of Xenopus laevis chromosomes based on the phylogenetic relationship to Silurana/Xenopus tropicalis. Cytogenet Genome Res 145:187–191. (Epub ahead of print) PMID: 25871511

    Article  PubMed  Google Scholar 

  • Mawaribuchi S, Yoshimoto S, Ohashi S, Takamatsu N, Ito M (2012) Molecular evolution of vertebrate sex-determining genes. Chromosom Res 20:139–151

    Article  CAS  Google Scholar 

  • Mawaribuchi S, Musashijima M, Wada M, Izutsu Y, Kurakata E, Park MK, Takamatsu N, Ito M (2017a) Molecular evolution of two distinct dmrt1 promoters for germ and somatic cells in vertebrate gonads. Mol Biol Evol 34:724–733

    PubMed  Google Scholar 

  • Mawaribuchi S, Takahashi S, Wada M, Uno Y, Matsuda Y, Kondo M, Fukui A, Takamatsu N, Taira M, Ito M (2017b) Sex chromosome differentiation and the W- and Z-specific loci in Xenopus laevis. Dev Biol 426(2):393–400

    Article  CAS  PubMed  Google Scholar 

  • Mawaribuchi S, Ikeda N, Fujitani K, Ito Y, Onuma Y, Komiya T, Takamatsu N, Ito M (2014) Cell-mass structures expressing the aromatase gene Cyp19a1 lead to ovarian cavities in Xenopus laevis. Endocrinology 155:3996–4005

    Article  CAS  PubMed  Google Scholar 

  • Miura I (2007) An evolutionary witness: the frog rana rugosa underwent change of heterogametic sex from XY male to ZW female. Sex Dev 1:323–331

    Article  CAS  PubMed  Google Scholar 

  • Miura I, Ohtani H, Nakamura M, Ichikawa Y, Saitoh K (1998) The origin and differentiation of the heteromorphic sex chromosomes Z, W, X, and Y in the frog Rana Rugosa, inferred from the sequences of a sex-linked gene, ADP/ATP translocase. Mol Biol Evol 15:1612–1619

    Article  CAS  PubMed  Google Scholar 

  • Miura I, Kitamoto H, Koizumi Y, Ogata M, Sasaki K (2011) An X-linked body color gene of the frog Rana Rugosa and its application to the molecular analysis of gonadal sex differentiation. Sex Dev 5:250–258

    Article  CAS  PubMed  Google Scholar 

  • Nakamura S, Watakabe I, Nishimura T, Toyoda A, Taniguchi Y, Tanaka M (2012) Analysis of medaka sox9 orthologue reveals a conserved role in germ cell maintenance. PLoS One 7:e29982

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nanda I, Kondo M, Hornung U, Asakawa S, Winkler C, Shimizu A, Shan Z, Haaf T, Shimizu N, Shima A, Schmid M, Schartl M (2002) A duplicated copy of DMRT1 in the sex-determining region of the Y chromosome of the medaka, Oryzias Latipes. Proc Natl Acad Sci U S A 99:11778–11783

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nishioka M, Miura I, Saitoh K (1993) Sex chromosomes of Rana rugosa with special reference to local differences in sex determining mechanism. Sci Rep Lab Amphibian Biol Hiroshima Univ 12:55–81

    Google Scholar 

  • Nurse P (1990) Universal control mechanism regulating onset of M-phase. Nature 344:503–508

    Article  CAS  PubMed  Google Scholar 

  • Ogata M, Hasegawa Y, Ohtani H, Mineyama M, Miura I (2008) The ZZ/ZW sex-determining mechanism originated twice and independently during evolution of the frog, Rana Rugosa. Heredity (Edinb) 100:92–99

    Article  CAS  Google Scholar 

  • Ohtani H, Miura I, Ichikawa Y (2003) Role of aromatase and androgen receptor expression in gonadal sex differentiation of ZW/ZZ-type frogs, Rana Rugosa. Comp Biochem Physiol C Toxicol Pharmacol 134:215–225

    Article  PubMed  Google Scholar 

  • Okada E, Yoshimoto S, Ikeda N, Kanda H, Tamura K, Shiba T, Takamatsu N, Ito M (2009) Xenopus W-linked DM-W induces Foxl2 and Cyp19 expression during ovary formation. Sex Dev 3:38–42

    Article  CAS  PubMed  Google Scholar 

  • Oshima Y, Hayashi T, Tokunaga S, Nakamura M (2005) Wnt4 expression in the differentiating gonad of the frog Rana Rugosa. Zool Sci 22:689–693

    Article  CAS  Google Scholar 

  • Oshima Y, Uno Y, Matsuda Y, Kobayashi T, Nakamura M (2008) Molecular cloning and gene expression of Foxl2 in the frog Rana Rugosa. Gen Comp Endocrinol 159:170–177

    Article  CAS  PubMed  Google Scholar 

  • Oshima Y, Naruse K, Nakamura Y, Nakamura M (2009) Sox3: a transcription factor for Cyp19 expression in the frog Rana Rugosa. Gene 445:38–48

    Article  CAS  PubMed  Google Scholar 

  • Perrin N (2009) Sex reversal: a fountain of youth for sex chromosomes? Evolution 63:3043–3039

    Article  PubMed  Google Scholar 

  • Philpott A, Yew PR (2008) The Xenopus cell cycle: an overview. Mol Biotechnol 39:9–19

    Article  CAS  PubMed  Google Scholar 

  • Piprek RP, Pecio A, Kubiak JZ, Szymura JM (2012a) Differential effects of busulfan on gonadal development in five divergent anuran species. Reprod Toxicol 34:393–401

    Article  CAS  PubMed  Google Scholar 

  • Piprek RP, Pecio A, Kubiak JZ, Szymura JM (2012b) Differential effects of testosterone and 17β-estradiol on gonadal development in five anuran species. Reproduction 144:257–267

    Article  CAS  PubMed  Google Scholar 

  • Piprek RP, Pecio A, Laskowska-Kaszub K, Kubiak JZ, Szymura JM (2013) Sexual dimorphism of AMH, DMRT1 and RSPO1 localization in the developing gonads of six anuran species. Int J Dev Biol 57:891–895

    Article  CAS  PubMed  Google Scholar 

  • Raucci F, Di Fiore MM (2007) The c-kit receptor protein in the testis of green frog Rana Esculenta: seasonal changes in relationship to testosterone titres and spermatogonial proliferation. Reproduction 133:51–60

    Article  CAS  PubMed  Google Scholar 

  • Roco ÁS, Olmstead AW, Degitz SJ, Amano T, Zimmerman LB, Bullejos M (2015) Coexistence of Y, W, and Z sex chromosomes in Xenopus Tropicalis. Proc Natl Acad Sci U S A 112:E4752–E4761

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saotome K, Isomura T, Seki T, Nakamura Y, Nakamura M (2010) Structural changes in gonadal basement membranes during sex differentiation in the frog Rana Rugosa. J Exp Zool A Ecol Genet Physiol 313:369–380

    Article  PubMed  Google Scholar 

  • Scaia MF, Volonteri MC, Czuchlej SC, Ceballos NR (2015) Effect of estradiol on apoptosis, proliferation and steroidogenic enzymes in the testes of the toad Rhinella Arenarum (Amphibia, Anura). Gen Comp Endocrinol .(in press 221:244

    Article  CAS  PubMed  Google Scholar 

  • Schmid M, Bachmann K (1981) A frog with highly evolved sex chromosomes. Experientia 37:243–245

    Article  CAS  PubMed  Google Scholar 

  • Schmid M, Haaf T, Geile B, Sims S (1983) Chromosome banding in Amphibia. VIII. An unusual XY/XX-sex chromosome system in Gastrotheca Riobambae (Anura, Hylidae). Chromosoma 88:69–82

    Article  CAS  PubMed  Google Scholar 

  • Schmid M, Steinlein C, Bogart JP, Feichtinger W, León P, La Marca E, Díaz LM, Sanz A, Chen SH, Hedges SB (2010) The chromosomes of terraranan frogs. Insights into vertebrate cytogenetics. Cytogenet Genome Res 130–131:1–568

    Article  PubMed  Google Scholar 

  • Shibata K, Takase M, Nakamura M (2002) The Dmrt1 expression in sex-reversed gonads of amphibians. Gen Comp Endocrinol 127:232–241

    Article  CAS  PubMed  Google Scholar 

  • Slanchev K, Stebler J, de la Cueva-Méndez G, Raz E (2005) Development without germ cells: the role of the germ line in zebrafish sex differentiation. Proc Natl Acad Sci U S A 102:4074–4079

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smith LD, Ecker RE (1971) The interaction of steroids with Rana Pipiens oocytes in the induction of maturation. Dev Biol 25:232–247

    Article  CAS  PubMed  Google Scholar 

  • Smith CA, Roeszler KN, Ohnesorg T, Cummins DM, Farlie PG, Doran TJ, Sinclair AH (2009) The avian Z-linked gene DMRT1 is required for male sex determination in the chicken. Nature 461:267–271

    Article  CAS  PubMed  Google Scholar 

  • Sutton E, Hughes J, White S, Sekido R, Tan J, Arboleda V, Rogers N, Knower K, Rowley L, Eyre H, Rizzoti K, McAninch D, Goncalves J, Slee J, Turbitt E, Bruno D, Bengtsson H, Harley V, Vilain E, Sinclair A, Lovell-Badge R, Thomas P (2011) Identification of SOX3 as an XX male sex reversal gene in mice and humans. J Clin Invest 121:328–341

    Article  CAS  PubMed  Google Scholar 

  • Takehana Y, Matsuda M, Myosho T, Suster ML, Kawakami K, Shin-I T, Kohara Y, Kuroki Y, Toyoda A, Fujiyama A, Hamaguchi S, Sakaizumi M, Naruse K (2014) Co-option of Sox3 as the male-determining factor on the Y chromosome in the fish Oryzias Dancena. Nat Commun 5:4157

    Article  CAS  PubMed  Google Scholar 

  • Tsutsui K, Ubuka T (2014) Breakthrough in neuroendocrinology by discovering novel neuropeptides and neurosteroids: 1. Discovery of gonadotropin-inhibitory hormone (GnIH) across vertebrates. Gen Comp Endocrinol 205:4–10

    Article  CAS  PubMed  Google Scholar 

  • Uhlenhaut NH, Jakob S, Anlag K, Eisenberger T, Sekido R, Kress J, Treier AC, Klugmann C, Klasen C, Holter NI, Riethmacher D, Schütz G, Cooney AJ, Lovell-Badge R, Treier M (2009) Somatic sex reprogramming of adult ovaries to testes by FOXL2 ablation. Cell 139:1130–1142

    Article  CAS  PubMed  Google Scholar 

  • Uno Y, Nishida C, Oshima Y, Yokoyama S, Miura I, Matsuda Y, Nakamura M (2008) Comparative chromosome mapping of sex-linked genes and identification of sex chromosomal rearrangements in the Japanese wrinkled frog (Rana Rugosa, Ranidae) with ZW and XY sex chromosome systems. Chromosom Res 16:637–647

    Article  CAS  Google Scholar 

  • Villalpando I, Merchant-Larios H (1990) Determination of the sensitive stages forgonadal sex-reversal in Xenopus Laevis tadpoles. Int J Dev Biol 34:281–285

    PubMed  CAS  Google Scholar 

  • Wada M, Fujitani K, Tamura K, Mawaribuchi S, Kamata Y, Takamatsu N, Ito M (2017) Masculinization-related genes and cell-mass structures during early gonadal differentiation in the African clawed frog. Zool Sci 34(2):105–111

    Article  Google Scholar 

  • Yoshimoto S, Ito M (2011) A ZZ/ZW-type sex determination in Xenopus laevis. FEBS J 278:1020–1026

    Article  CAS  PubMed  Google Scholar 

  • Yoshimoto S, Okada E, Umemoto H, Tamura K, UnoY N-UC, Matsuda Y, Takamatsu N, Shiba T, Ito M (2008) A W-linked DM-domain gene, DM-W, participates in primary ovary developmentin Xenopus Laevis. Proc Natl Acad Sci U S A 105:2469–2474

    Article  PubMed  PubMed Central  Google Scholar 

  • Yoshimoto S, Ikeda N, Izutsu Y, Shiba T, Takamatsu N, Ito M (2010) Opposite roles of DMRT1 and its W-linked paralogue, DM-W, in sexual dimorphism of Xenopus laevis: implications of a ZZ/ZW-type sex-determining system. Development 137:2519–2526

    Article  CAS  PubMed  Google Scholar 

  • Zhao L, Svingen T, Ng ET, Koopman P (2015) Female-to-male sex reversal in mice caused by transgenic overexpression of Dmrt1. Development 142:1083–1088

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michihiko Ito .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Japan KK, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ito, M. (2018). Sex Determination and Differentiation in Frogs. In: Kobayashi, K., Kitano, T., Iwao, Y., Kondo, M. (eds) Reproductive and Developmental Strategies. Diversity and Commonality in Animals. Springer, Tokyo. https://doi.org/10.1007/978-4-431-56609-0_17

Download citation

Publish with us

Policies and ethics