Skip to main content

Advertisement

Log in

The Xenopus Cell Cycle: An Overview

  • Review Paper
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

Oocytes, eggs and embryos from the frog Xenopus laevis have been an important model system for studying cell-cycle regulation for several decades. First, progression through meiosis in the oocyte has been extensively investigated. Oocyte maturation has been shown to involve complex networks of signal transduction pathways, culminating in the cyclic activation and inactivation of Maturation Promoting Factor (MPF), composed of cyclin B and cdc2. After fertilisation, the early embryo undergoes rapid simplified cell cycles which have been recapitulated in cell-free extracts of Xenopus eggs. Experimental manipulation of these extracts has given a wealth of biochemical information about the cell cycle, particularly concerning DNA replication and mitosis. Finally, cells of older embryos adopt a more somatic-type cell cycle and have been used to study the balance between cell cycle and differentiation during development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Newport, J., & Kirschner, M. (1982). A major developmental transition in early Xenopus embryos: II. Control of the onset of transcription. Cell, 30, 687–696.

    PubMed  CAS  Google Scholar 

  2. Murray, A. W., Solomon, M. J., & Kirschner, M. W. (1989). The role of cyclin synthesis and degradation in the control of maturation promoting factor activity. Nature, 339, 280–286.

    PubMed  CAS  Google Scholar 

  3. Murray, A. W., & Kirschner, M. W. (1989). Cyclin synthesis drives the early embryonic cell cycle. Nature, 339, 275–280.

    PubMed  CAS  Google Scholar 

  4. Blow, J. J., & Laskey, R. A. (1986). Initiation of DNA replication in nuclei and purified DNA by a cell-free extract of Xenopus eggs. Cell, 47, 577–587.

    PubMed  CAS  Google Scholar 

  5. Nebreda, A. R., & Ferby, I. (2000). Regulation of the meiotic cell cycle in oocytes. Current Opinions in Cell Biology, 12, 666–675.

    CAS  Google Scholar 

  6. Tunquist, B. J., & Maller, J. L. (2003). Under arrest: Cytostatic factor (CSF)-mediated metaphase arrest in vertebrate eggs. Genes and Development, 17, 683–710.

    PubMed  CAS  Google Scholar 

  7. Masui, Y., & Markert, C. L. (1971). Cytoplasmic control of nuclear behavior during meiotic maturation of frog oocytes. Journal of Experimental Zoology, 177, 129–145.

    PubMed  CAS  Google Scholar 

  8. Gautier, J., Norbury, C., Lohka, M., Nurse, P., & Maller, J. (1988). Purified maturation-promoting factor contains the product of a Xenopus homolog of the fission yeast cell cycle control gene cdc2+. Cell, 54, 433–439.

    PubMed  CAS  Google Scholar 

  9. Gautier, J., & Maller, J. L. (1991). Cyclin B in Xenopus oocytes: Implications for the mechanism of pre-MPF activation. Embo Journal, 10, 177–182.

    PubMed  CAS  Google Scholar 

  10. Dunphy, W. G., Brizuela, L., Beach, D., & Newport, J. (1988). The Xenopus cdc2 protein is a component of MPF, a cytoplasmic regulator of mitosis. Cell, 54, 423–431.

    PubMed  CAS  Google Scholar 

  11. Lohka, M. J., Hayes, M. K., & Maller, J. L. (1988). Purification of maturation-promoting factor, an intracellular regulator of early mitotic events. Proceedings of the National Academy of Sciences USA, 85, 3009–3013.

    CAS  Google Scholar 

  12. Ferrell, J. E., Jr. (1999). Xenopus oocyte maturation: New lessons from a good egg. Bioessays, 21, 833–842.

    PubMed  Google Scholar 

  13. Ferrell, J. E., Jr., Wu, M., Gerhart, J. C., & Martin, G. S. (1991). Cell cycle tyrosine phosphorylation of p34cdc2 and a microtubule-associated protein kinase homolog in Xenopus oocytes and eggs. Molecular Cell Biology, 11, 1965–1971.

    CAS  Google Scholar 

  14. Jessus, C., Rime, H., Haccard, O., Van Lint, J., Goris, J., & Merlevede, W., Ozon, R. (1991). Tyrosine phosphorylation of p34cdc2 and p42 during meiotic maturation of Xenopus oocyte. Antagonistic action of okadaic acid and 6-DMAP. Development, 111, 813–820.

    PubMed  CAS  Google Scholar 

  15. Posada, J., Sanghera, J., Pelech, S., Aebersold, R., & Cooper, J. A. (1991). Tyrosine phosphorylation and activation of homologous protein kinases during oocyte maturation and mitogenic activation of fibroblasts. Molecular Cell Biology, 11, 2517–2528.

    CAS  Google Scholar 

  16. Mueller, P. R., Coleman, T. R., Kumagai, A., & Dunphy, W. G. (1995). Myt1: A membrane-associated inhibitory kinase that phosphorylates Cdc2 on both threonine-14 and tyrosine-15. Science, 270, 86–90.

    PubMed  CAS  Google Scholar 

  17. Strausfeld, U., Labbe, J. C., Fesquet, D., Cavadore, J. C., Picard, A., Sadhu, K., Russell, P., & Doree, M. (1991). Dephosphorylation and activation of a p34cdc2/cyclin B complex in vitro by human CDC25 protein. Nature, 351, 242–245.

    PubMed  CAS  Google Scholar 

  18. Gautier, J., Solomon, M. J., Booher, R. N., Bazan, J. F., & Kirschner, M. W. (1991). Cdc25 is a specific tyrosine phosphatase that directly activates p34cdc2. Cell, 67, 197–211.

    PubMed  CAS  Google Scholar 

  19. Nakajo, N., Oe, T., Uto, K., & Sagata, N. (1999). Involvement of Chk1 kinase in prophase I arrest of Xenopus oocytes. Developmental Biology, 207, 432–444.

    PubMed  CAS  Google Scholar 

  20. Sagata, N., Daar, I., Oskarsson, M., Showalter, S. D., & Vande Woude, G. F. (1989). The product of the mos proto-oncogene as a candidate “initiator” for oocyte maturation. Science, 245, 643–646.

    PubMed  CAS  Google Scholar 

  21. Sagata, N., Oskarsson, M., Copeland, T., Brumbaugh, J., & Vande Woude, G. F. (1988). Function of c-mos proto-oncogene product in meiotic maturation in Xenopus oocytes. Nature, 335, 519–525.

    PubMed  CAS  Google Scholar 

  22. Yew, N., Mellini, M. L., & Vande Woude, G. F. (1992). Meiotic initiation by the mos protein in Xenopus. Nature, 355, 649–652.

    PubMed  CAS  Google Scholar 

  23. Gebauer, F., Xu, W., Cooper, G. M., & Richter, J. D. (1994). Translational control by cytoplasmic polyadenylation of c-mos mRNA is necessary for oocyte maturation in the mouse. Embo Journal, 13, 5712.

    PubMed  CAS  Google Scholar 

  24. Sheets, M. D., Wu, M., & Wickens, M. (1995). Polyadenylation of c-mos mRNA as a control point in Xenopus meiotic maturation. Nature, 374, 511–516.

    PubMed  CAS  Google Scholar 

  25. Sagata, N. (1997). What does Mos do in oocytes and somatic cells? Bioessays, 19, 13–21.

    PubMed  CAS  Google Scholar 

  26. Posada, J., Yew, N., Ahn, N. G., Vande Woude, G. F., & Cooper, J. A. (1993). Mos stimulates MAP kinase in Xenopus oocytes and activates a MAP kinase kinase in vitro. Molecular Cell Biology, 13, 2546–2553.

    CAS  Google Scholar 

  27. Nebreda, A. R., & Hunt, T. (1993). The c-mos proto-oncogene protein kinase turns on and maintains the activity of MAP kinase, but not MPF, in cell-free extracts of Xenopus oocytes and eggs. Embo Journal, 12, 1979–1986.

    PubMed  CAS  Google Scholar 

  28. Shibuya, E. K., & Ruderman, J. V. (1993). Mos induces the in vitro activation of mitogen-activated protein kinases in lysates of frog oocytes and mammalian somatic cells. Molecular Biology of the Cell, 4, 781–790.

    PubMed  CAS  Google Scholar 

  29. Gotoh, Y., Masuyama, N., Dell, K., Shirakabe, K., & Nishida, E. (1995). Initiation of Xenopus oocyte maturation by activation of the mitogen-activated protein kinase cascade. Journal of Biological Chemistry, 270, 25898–25904.

    PubMed  CAS  Google Scholar 

  30. Haccard, O., Lewellyn, A., Hartley, R. S., Erikson, E., & Maller, J. L. (1995). Induction of Xenopus oocyte meiotic maturation by MAP kinase. Developmental Biology, 168, 677–682.

    PubMed  CAS  Google Scholar 

  31. Howard, E. L., Charlesworth, A., Welk, J., & MacNicol, A. M. (1999). The mitogen-activated protein kinase signaling pathway stimulates mos mRNA cytoplasmic polyadenylation during Xenopus oocyte maturation. Molecular Cell Biology, 19, 1990–1999.

    CAS  Google Scholar 

  32. Matten, W. T., Copeland, T. D., Ahn, N. G., & Vande Woude, G. F. (1996). Positive feedback between MAP kinase and Mos during Xenopus oocyte maturation. Developmental Biology, 179, 485–492.

    PubMed  CAS  Google Scholar 

  33. Nishizawa, M., Furuno, N., Okazaki, K., Tanaka, H., Ogawa, Y., & Sagata, N. (1993). Degradation of Mos by the N-terminal proline (Pro2)-dependent ubiquitin pathway on fertilization of Xenopus eggs: Possible significance of natural selection for Pro2 in Mos. Embo Journal, 12, 4021–4027.

    PubMed  CAS  Google Scholar 

  34. Bhatt, R. R., & Ferrell, J. E., Jr. (1999). The protein kinase p90 rsk as an essential mediator of cytostatic factor activity. Science, 286, 1362–1365.

    PubMed  CAS  Google Scholar 

  35. Gross, S. D., Schwab, M. S., Lewellyn, A. L., & Maller, J. L. (1999). Induction of metaphase arrest in cleaving Xenopus embryos by the protein kinase p90Rsk. Science, 286, 1365–1367.

    PubMed  CAS  Google Scholar 

  36. Gross, S. D., Schwab, M. S., Taieb, F. E., Lewellyn, A. L., Qian, Y. W., & Maller, J. L. (2000). The critical role of the MAP kinase pathway in meiosis II in Xenopus oocytes is mediated by p90(Rsk). Current Biology, 10, 430–438.

    PubMed  CAS  Google Scholar 

  37. Schwab, M. S., Roberts, B. T., Gross, S. D., Tunquist, B. J., Taieb, F. E., Lewellyn, A. L., & Maller, J. L. (2001). Bub1 is activated by the protein kinase p90(Rsk). during Xenopus oocyte maturation. Current Biology, 11, 141–150.

    PubMed  CAS  Google Scholar 

  38. Palmer, A., Gavin, A. C., & Nebreda, A. R. (1998). A link between MAP kinase and p34(cdc2)/cyclin B during oocyte maturation: p90(rsk). phosphorylates and inactivates the p34(cdc2). inhibitory kinase Myt1. Embo Journal, 17, 5037–5047.

    PubMed  CAS  Google Scholar 

  39. Kumagai, A., & Dunphy, W. G. (1996). Purification and molecular cloning of Plx1, a Cdc25-regulatory kinase from Xenopus egg extracts. Science, 273, 1377–1380.

    PubMed  CAS  Google Scholar 

  40. Takizawa, C. G., & Morgan, D. O. (2000). Control of mitosis by changes in the subcellular location of cyclin-B1-Cdk1 and Cdc25C. Current Opinions in Cell Biology, 12, 658–665.

    CAS  Google Scholar 

  41. Nebreda, A. R., Gannon, J. V., & Hunt, T. (1995). Newly synthesized protein(s) must associate with p34cdc2 to activate MAP kinase and MPF during progesterone-induced maturation of Xenopus oocytes. Embo Journal, 14, 5597–5607.

    PubMed  CAS  Google Scholar 

  42. Taieb, F. E., Gross, S. D., Lewellyn, A. L., & Maller, J. L. (2001). Activation of the anaphase-promoting complex and degradation of cyclin B is not required for progression from Meiosis I to II in Xenopus oocytes. Current Biology, 11, 508–513.

    PubMed  CAS  Google Scholar 

  43. Reimann, J. D., & Jackson, P. K. (2002). Emi1 is required for cytostatic factor arrest in vertebrate eggs. Nature, 416, 850–854.

    PubMed  CAS  Google Scholar 

  44. Schmidt, A., Rauh, N. R., Nigg, E. A., & Mayer, T. U. (2006). Cytostatic factor: An activity that puts the cell cycle on hold. Journal of Cell Science, 119, 1213–1218.

    PubMed  CAS  Google Scholar 

  45. Schmidt, A., Duncan, P. I., Rauh, N. R., Sauer, G., Fry, A. M., Nigg, E. A., & Mayer, T. U. (2005). Xenopus polo-like kinase Plx1 regulates XErp1, a novel inhibitor of APC/C activity. Genes and Development, 19, 502–513.

    PubMed  CAS  Google Scholar 

  46. Inoue, D., Ohe, M., Kanemori, Y., Nobui, T., & Sagata, N. (2007). A direct link of the Mos-MAPK pathway to Erp1/Emi2 in meiotic arrest of Xenopus laevis eggs. Nature, 446, 1100–1104.

    PubMed  CAS  Google Scholar 

  47. Nishiyama, T., Ohsumi, K., & Kishimoto, T. (2007). Phosphorylation of Erp1 by p90rsk is required for cytostatic factor arrest in Xenopus laevis eggs. Nature, 446, 1096–1099.

    PubMed  CAS  Google Scholar 

  48. Reimann, J. D., Freed, E., Hsu, J. Y., Kramer, E. R., Peters, J. M., & Jackson, P. K. (2001). Emi1 is a mitotic regulator that interacts with Cdc20 and inhibits the anaphase promoting complex. Cell, 105, 645–655.

    PubMed  CAS  Google Scholar 

  49. Philpott, A., Leno, G. H., & Laskey, R. A. (1991). Sperm decondensation in Xenopus egg cytoplasm is mediated by nucleoplasmin. Cell, 65, 569–578.

    PubMed  CAS  Google Scholar 

  50. Lohka, M. J., & Masui, Y. (1984). Roles of cytosol and cytoplasmic particles in nuclear envelope assembly and sperm pronuclear formation in cell-free preparations from amphibian eggs. Journal of Cell Biology, 98, 1222–1230.

    PubMed  CAS  Google Scholar 

  51. Coverley, D., Laman, H., & Laskey, R. A. (2002). Distinct roles for cyclins E and A during DNA replication complex assembly and activation. Nature Cell Biology, 4, 523–528.

    PubMed  CAS  Google Scholar 

  52. Laskey, R. A., & Harland, R. M. (1980). Regulated replication of DNA microinjected into eggs of Xenopus laevis. Cell, 21, 761–771.

    PubMed  Google Scholar 

  53. Tada, S., & Blow, J. J. (1998). The replication licensing system. Biological Chemistry, 379, 941–949.

    Article  PubMed  CAS  Google Scholar 

  54. Coverley, D., & Laskey, R. A. (1994). Regulation of eukaryotic DNA replication. Annual Review of Biochemistry, 63, 745–776.

    PubMed  CAS  Google Scholar 

  55. Rowles, A., Chong, J. P., Brown, L., Howell, M., Evan, G. I., & Blow, J. J. (1996). Interaction between the origin recognition complex and the replication licensing system in Xenopus. Cell, 87, 287–296.

    PubMed  CAS  Google Scholar 

  56. Diffley, J. F. (1998). Replication control: Choreographing replication origins. Current Biology, 8, R771–R773.

    PubMed  CAS  Google Scholar 

  57. Newlon, C. S. (1997). Putting it all together: Building a prereplicative complex. Cell 91, 717–720.

    PubMed  CAS  Google Scholar 

  58. Carpenter, P. B., Mueller, P. R., & Dunphy, W. G. (1996). Role for a Xenopus Orc2-related protein in controlling DNA replication. Nature, 379, 357–360.

    PubMed  CAS  Google Scholar 

  59. Coleman, T. R., Carpenter, P. B., & Dunphy, W. G. (1996). The Xenopus Cdc6 protein is essential for the initiation of a single round of DNA replication in cell-free extracts. Cell, 87, 53–63.

    PubMed  CAS  Google Scholar 

  60. Kubota, Y., Mimura, S., Nishimoto, S., Takisawa, H., & Nojima, H. (1995). Identification of the yeast MCM3-related protein as a component of Xenopus DNA replication licensing factor. Cell, 81, 601–609.

    PubMed  CAS  Google Scholar 

  61. Chong, J. P., Mahbubani, H. M., Khoo, C. Y., & Blow, J. J. (1995). Purification of an MCM-containing complex as a component of the DNA replication licensing system. Nature, 375, 418–421.

    PubMed  CAS  Google Scholar 

  62. Madine, M. A., Khoo, C. Y., Mills, A. D., & Laskey, R. A. (1995). MCM3 complex required for cell cycle regulation of DNA replication in vertebrate cells [see comments]. Nature, 375, 421–424.

    PubMed  CAS  Google Scholar 

  63. Leatherwood, J. (1998). Emerging mechanisms of eukaryotic DNA replication initiation. Current Opinions in Cell Biology, 10, 742–748.

    CAS  Google Scholar 

  64. Romanowski, P., Madine, M. A., & Laskey, R. A. (1996). XMCM7, a novel member of the Xenopus MCM family, interacts with XMCM3 and colocalizes with it throughout replication [see comments]. Proceedings of the National Academy of Sciences USA, 93, 10189–10194.

    CAS  Google Scholar 

  65. Romanowski, P., Madine, M. A., Rowles, A., Blow, J. J., & Laskey, R. A. (1996). The Xenopus origin recognition complex is essential for DNA replication and MCM binding to chromatin. Current Biology, 6, 1416–1425.

    PubMed  CAS  Google Scholar 

  66. Tada, S., Li, A., Maiorano, D., Mechali, M., & Blow, J. J. (2001). Repression of origin assembly in metaphase depends on inhibition of RLF-B/Cdt1 by geminin. Nature Cell Biology, 3, 107–113.

    PubMed  CAS  Google Scholar 

  67. Wohlschlegel, J. A., Dwyer, B. T., Dhar, S. K., Cvetic, C., Walter, J. C., & Dutta, A. (2000). Inhibition of eukaryotic DNA replication by geminin binding to Cdt1. Science, 290, 2309–2312.

    PubMed  CAS  Google Scholar 

  68. Lei, M., & Tye, B. K. (2001). Initiating DNA synthesis: From recruiting to activating the MCM complex. Journal of Cell Science, 114, 1447–1454.

    PubMed  CAS  Google Scholar 

  69. Jackson, P. K., Chevalier, S., Philippe, M., & Kirschner, M. W. (1995). Early events in DNA replication require cyclin E and are blocked by p21CIP1. Journal of Cell Biology, 130, 755–769.

    PubMed  CAS  Google Scholar 

  70. Walter, J., & Newport, J. (2000). Initiation of eukaryotic DNA replication: Origin unwinding and sequential chromatin association of Cdc45, RPA, and DNA polymerase alpha. Molecular Cell, 5, 617–627.

    PubMed  CAS  Google Scholar 

  71. Sclafani, R. A. (1998). Chromosomes in the Rocky Mountains. Yeast chromosome structure, replication and segregation, Snowmass, CO, USA, 8–13 August 1998. Trends in Genetics, 14, 441–442.

    PubMed  CAS  Google Scholar 

  72. Jackson, A. L., Pahl, P. M., Harrison, K., Rosamond, J., & Sclafani, R. A. (1993). Cell cycle regulation of the yeast Cdc7 protein kinase by association with the Dbf4 protein. Molecular Cell Biology, 13, 2899–2908.

    CAS  Google Scholar 

  73. Mimura, S., & Takisawa, H. (1998). Xenopus Cdc45-dependent loading of DNA polymerase alpha onto chromatin under the control of S-phase Cdk. Embo Journal, 17, 5699–5707.

    PubMed  CAS  Google Scholar 

  74. Wohlschlegel, J. A., Dhar, S. K., Prokhorova, T. A., Dutta, A., & Walter, J. C. (2002). Xenopus Mcm10 binds to origins of DNA replication after Mcm2-7 and stimulates origin binding of Cdc45. Molecular Cell, 9, 233–240.

    PubMed  CAS  Google Scholar 

  75. Walter, J. C. (2000). Evidence for sequential action of cdc7 and cdk2 protein kinases during initiation of DNA replication in Xenopus egg extracts. Journal of Biological Chemistry, 275, 39773–39778.

    PubMed  CAS  Google Scholar 

  76. Hubscher, U., Maga, G., & Spadari, S. (2002). Eukaryotic DNA polymerases. Annual Review of Biochemistry, 71, 133–163.

    PubMed  CAS  Google Scholar 

  77. Pagano, M., Pepperkok, R., Verde, F., Ansorge, W., & Draetta, G. (1992). Cyclin A is required at two points in the human cell cycle. Embo Journal, 11, 961–971.

    PubMed  CAS  Google Scholar 

  78. Girard, F., Strausfeld, U., Fernandez, A., & Lamb, N. J. (1991). Cyclin A is required for the onset of DNA replication in mammalian fibroblasts. Cell, 67, 1169–1179.

    PubMed  CAS  Google Scholar 

  79. Fotedar, A., Cannella, D., Fitzgerald, P., Rousselle, T., Gupta, S., Doree, M., & Fotedar, R. (1996). Role for cyclin A-dependent kinase in DNA replication in human S phase cell extracts. Journal of Biological Chemistry, 271, 31627–31637.

    PubMed  CAS  Google Scholar 

  80. Waga, S., & Stillman, B. (1998). The DNA replication fork in eukaryotic cells. Annual Review of Biochemistry, 67, 721–751.

    PubMed  CAS  Google Scholar 

  81. Bogan, J. A., Natale, D. A., & Depamphilis, M. L. (2000). Initiation of eukaryotic DNA replication: Conservative or liberal? Journal of Cell Physiology, 184, 139–150.

    CAS  Google Scholar 

  82. DePamphilis, M. L. (2000). Review: Nuclear structure and DNA replication. Journal of Structural Biology, 129, 186–197.

    PubMed  CAS  Google Scholar 

  83. Fujita, M. (1999). Cell cycle regulation of DNA replication initiation proteins in mammalian cells. Frontiers in Bioscience, 4, D816–D823.

    PubMed  CAS  Google Scholar 

  84. Waga, S., & Stillman, B. (1994). Anatomy of a DNA replication fork revealed by reconstitution of SV40 DNA replication in vitro. Nature, 369, 207–212.

    PubMed  CAS  Google Scholar 

  85. Blow, J. J., & Tada, S. (2000). Cell cycle. A new check on issuing the licence. [letter; comment]. Nature, 404, 560–561.

    PubMed  CAS  Google Scholar 

  86. Wohlschlegel, J. A., Dwyer, B. T., Dhar, S. K., Cvetic, C., Walter, J. C., & Dutta, A. (2000). Inhibition of eukaryotic DNA replication by geminin binding to Cdt1. [see comments]. Science, 290, 2309–2312.

    PubMed  CAS  Google Scholar 

  87. Lutzmann, M., Maiorano, D., & Mechali, M. (2006). A Cdt1-geminin complex licenses chromatin for DNA replication and prevents rereplication during S phase in Xenopus. Embo Journal, 25, 5764–5774.

    PubMed  CAS  Google Scholar 

  88. McGarry, T. J., & Kirschner, M. W. (1998). Geminin, an inhibitor of DNA replication, is degraded during mitosis. Cell, 93, 1043–1053.

    PubMed  CAS  Google Scholar 

  89. Madine, M., & Laskey, R. (2001). Geminin bans replication licence. Nature Cell Biology, 3, E49–E50.

    PubMed  CAS  Google Scholar 

  90. Graham, C. F., & Morgan, R. W. (1966). Changes in the cell cycle during early amphibian development. Developmental Biology, 14, 436–460.

    Google Scholar 

  91. King, R. W., Jackson, P. K., & Kirschner, M. W. (1994). Mitosis in transition [see comments]. Cell, 79, 563–571.

    PubMed  CAS  Google Scholar 

  92. Russo, A. A., Jeffrey, P. D., Patten, A. K., Massague, J., & Pavletich, N. P. (1996). Crystal structure of the p27Kip1 cyclin-dependent-kinase inhibitor bound to the cyclin A-Cdk2 complex [see comments]. Nature, 382, 325–331.

    PubMed  CAS  Google Scholar 

  93. Fesquet, D., Labbe, J. C., Derancourt, J., Capony, J. P., Galas, S., Girard, F., Lorca, T., Shuttleworth, J., Doree, M., & Cavadore, J. C. (1993). The MO15 gene encodes the catalytic subunit of a protein kinase that activates cdc2 and other cyclin-dependent kinases (CDKs) through phosphorylation of Thr161 and its homologues. Embo Journal, 12, 3111–3121.

    PubMed  CAS  Google Scholar 

  94. Solomon, M. J. (1994). The function(s) of CAK, the p34cdc2-activating kinase. Trends in Biochemical Sciences, 19, 496–500.

    PubMed  CAS  Google Scholar 

  95. Mueller, P. R., Coleman, T. R., & Dunphy, W. G. (1995). Cell cycle regulation of a Xenopus Wee1-like kinase. Molecular Biology of the Cell, 6, 119–134.

    PubMed  CAS  Google Scholar 

  96. Kumagai, A., & Dunphy, W. G. (1991). The cdc25 protein controls tyrosine dephosphorylation of the cdc2 protein in a cell-free system. Cell, 64, 903–914.

    PubMed  CAS  Google Scholar 

  97. Dunphy, W. G., & Kumagai, A. (1991). The cdc25 protein contains an intrinsic phosphatase activity. Cell, 67, 189–196.

    PubMed  CAS  Google Scholar 

  98. Galaktionov, K., & Beach, D. (1991). Specific activation of cdc25 tyrosine phosphatases by B type cyclins: Evidence for multiple roles of mitotic cyclins. Cell, 67, 1181–1194.

    PubMed  CAS  Google Scholar 

  99. Millar, J. B., & Russell, P. (1992). The cdc25 M-phase inducer: An unconventional protein phosphatase. Cell, 68, 407–410.

    Google Scholar 

  100. Dasso, M., & Newport, J. W. (1990). Completion of DNA replication is monitored by a feedback system that controls the initiation of mitosis in vitro: Studies in Xenopus. Cell, 61, 811–823.

    PubMed  CAS  Google Scholar 

  101. Kumagai, A., Guo, Z., Emami, K. H., Wang, S. X., & Dunphy, W. G. (1998). The Xenopus Chk1 protein kinase mediates a caffeine-sensitive pathway of checkpoint control in cell-free extracts. Journal of Cell Biology, 142, 1559–1569.

    PubMed  CAS  Google Scholar 

  102. Kumagai, A., & Dunphy, W. G. (1999). Binding of 14-3-3 proteins and nuclear export control the intracellular localization of the mitotic inducer Cdc25. Genes and Development, 13, 1067–1072.

    PubMed  CAS  Google Scholar 

  103. Kumagai, A., Yakowec, P. S., & Dunphy, W. G. (1998). 14-3-3 proteins act as negative regulators of the mitotic inducer Cdc25 in Xenopus egg extracts. Molecular Biology of the Cell, 9, 345–354.

    PubMed  CAS  Google Scholar 

  104. Nigg, E. A., Blangy, A., & Lane, H. A. (1996). Dynamic changes in nuclear architecture during mitosis: On the role of protein phosphorylation in spindle assembly and chromosome segregation. Experimental Cell Research, 229, 174–180.

    PubMed  CAS  Google Scholar 

  105. Nigg, E. A. (1991). The substrates of the cdc2 kinase. Seminars in Cell Biology, 2, 261–270.

    PubMed  CAS  Google Scholar 

  106. Stukenberg, P. T., Lustig, K. D., McGarry, T. J., King, R. W., Kuang, J., & Kirschner, M. W. (1997). Systematic identification of mitotic phosphoproteins. Current Biology, 7, 338–348.

    PubMed  CAS  Google Scholar 

  107. King, R. W., Deshaies, R. J., Peters, J. M., & Kirschner, M. W. (1996). How proteolysis drives the cell cycle. Science, 274, 1652–1659.

    PubMed  CAS  Google Scholar 

  108. Hershko, A., & Ciechanover, A. (1998). The ubiquitin system. Annual Review of Biochemistry, 67, 425–479.

    PubMed  CAS  Google Scholar 

  109. Ciechanover, A., Orian, A., & Schwartz, A. L. (2000). Ubiquitin-mediated proteolysis: Biological regulation via destruction. Bioessays, 22, 442–451.

    PubMed  CAS  Google Scholar 

  110. Kornitzer, D., & Ciechanover, A. (2000). Modes of regulation of ubiquitin-mediated protein degradation. Journal of Cell Physiology, 182, 1–11.

    CAS  Google Scholar 

  111. King, R. W., Peters, J. M., Tugendreich, S., Rolfe, M., Hieter, P., & Kirschner, M. W. (1995). A 20S complex containing CDC27 and CDC16 catalyzes the mitosis-specific conjugation of ubiquitin to cyclin B. Cell, 81, 279–288.

    PubMed  CAS  Google Scholar 

  112. Holloway, S. L., Glotzer, M., King, R. W., & Murray, A. W. (1993). Anaphase is initiated by proteolysis rather than by the inactivation of maturation-promoting factor. Cell, 73, 1393–1402.

    PubMed  CAS  Google Scholar 

  113. Yu, H., Peters, J. M., King, R. W., Page, A. M., Hieter, P., & Kirschner, M. W. (1998). Identification of a cullin homology region in a subunit of the anaphase-promoting complex. Science, 279, 1219–1222.

    PubMed  CAS  Google Scholar 

  114. Peters, J. M. (1999). Subunits and substrates of the anaphase-promoting complex. Experimental Cell Research, 248, 339–349.

    Google Scholar 

  115. Zachariae, W., & Nasmyth, K. (1999). Whose end is destruction: Cell division and the anaphase-promoting complex. Genes and Development, 13, 2039–2058.

    PubMed  CAS  Google Scholar 

  116. Pfleger, C. M., & Kirschner, M. W. (2000). The KEN box: An APC recognition signal distinct from the D box targeted by Cdh1. Genes and Development, 14, 655–665.

    PubMed  CAS  Google Scholar 

  117. Fang, G., Yu, H., & Kirschner, M. W. (1998). Direct binding of CDC20 protein family members activates the anaphase-promoting complex in mitosis and G1. Molecular Cell, 2, 163–171.

    PubMed  CAS  Google Scholar 

  118. Zou, H., McGarry, T. J., Bernal, T., & Kirschner, M. W. (1999). Identification of a vertebrate sister-chromatid separation inhibitor involved in transformation and tumorigenesis [see comments]. Science, 285, 418–422.

    PubMed  CAS  Google Scholar 

  119. Chen, R. H., Waters, J. C., Salmon, E. D., & Murray, A. W. (1996). Association of spindle assembly checkpoint component XMAD2 with unattached kinetochores. Science, 274, 242–246.

    PubMed  CAS  Google Scholar 

  120. Howe, J. A., Howell, M., Hunt, T., & Newport, J. W. (1995). Identification of a developmental timer regulating the stability of embryonic cyclin A and a new somatic A-type cyclin at gastrulation. Genes and Development, 9, 1164–1176.

    PubMed  CAS  Google Scholar 

  121. King, R. W., Glotzer, M., & Kirschner, M. W. (1996). Mutagenic analysis of the destruction signal of mitotic cyclins and structural characterization of ubiquitinated intermediates. Molecular Biology of the Cell, 7, 1343–1357.

    PubMed  CAS  Google Scholar 

  122. Sudakin, V., Ganoth, D., Dahan, A., Heller, H., Hershko, J., Luca, F. C., Ruderman, J. V., & Hershko, A. (1995). The cyclosome, a large complex containing cyclin-selective ubiquitin ligase activity, targets cyclins for destruction at the end of mitosis. Molecular Biology of the Cell, 6, 185–197.

    PubMed  CAS  Google Scholar 

  123. Hunt, T., Luca, F. C., & Ruderman, J. V. (1992). The requirements for protein synthesis and degradation, and the control of destruction of cyclins A and B in the meiotic and mitotic cell cycles of the clam embryo. Journal of Cell Biology, 116, 707–724.

    PubMed  CAS  Google Scholar 

  124. Walker, D. H., & Maller, J. L. (1991). Role for cyclin A in the dependence of mitosis on completion of DNA replication. Nature, 354, 314–317.

    PubMed  CAS  Google Scholar 

  125. Newport, J., & Kirschner, M. (1982). A major developmental transition in early Xenopus embryos: I. Characterization and timing of cellular changes at the midblastula stage. Cell, 30, 675–686.

    PubMed  CAS  Google Scholar 

  126. Clarke, P. R., Leiss, D., Pagano, M., & Karsenti, E. (1992). Cyclin A- and cyclin B-dependent protein kinases are regulated by different mechanisms in Xenopus egg extracts. Embo Journal, 11, 1751–1761.

    PubMed  CAS  Google Scholar 

  127. Rempel, R. E., Sleight, S. B., & Maller, J. L. (1995). Maternal Xenopus Cdk2-cyclin E complexes function during meiotic and early embryonic cell cycles that lack a G1 phase. Journal of Biological Chemistry, 270, 6843–6855.

    PubMed  CAS  Google Scholar 

  128. Hartley, R. S., Rempel, R. E., & Maller, J. L. (1996). In vivo regulation of the early embryonic cell cycle in Xenopus. Developmental Biology, 173, 408–419.

    PubMed  CAS  Google Scholar 

  129. Hensey, C., & Gautier, J. (1997). A developmental timer that regulates apoptosis at the onset of gastrulation. Mechanisms of Development, 69, 183–195.

    PubMed  CAS  Google Scholar 

  130. Stack, J. H., & Newport, J. W. (1997). Developmentally regulated activation of apoptosis early in Xenopus gastrulation results in cyclin A degradation during interphase of the cell cycle. Development, 124, 3185–3195.

    PubMed  CAS  Google Scholar 

  131. Su, J. Y., Rempel, R. E., Erikson, E., & Maller, J. L. (1995). Cloning and characterization of the Xenopus cyclin-dependent kinase inhibitor p27XIC1. Proceedings of the National Academy of Sciences USA, 92, 10187–10191.

    CAS  Google Scholar 

  132. Daniels, M., Dhokia, V., Richard-Parpaillon, L., & Ohnuma, S. (2004). Identification of Xenopus cyclin-dependent kinase inhibitors, p16Xic2 and p17Xic3. Gene, 342, 41–47.

    PubMed  CAS  Google Scholar 

  133. Vernon, A. E., & Philpott, A. (2003). A single cdk inhibitor, p27Xic1, functions beyond cell cycle regulation to promote muscle differentiation in Xenopus. Development, 130, 71–83.

    PubMed  CAS  Google Scholar 

  134. Vernon, A. E., Devine, C., & Philpott, A. (2003). The cdk inhibitor p27Xic1 is required for differentiation of primary neurones in Xenopus. Development, 130, 85–92.

    PubMed  CAS  Google Scholar 

  135. Shou, W., & Dunphy, W. G. (1996). Cell cycle control by Xenopus p28Kix1, a developmentally regulated inhibitor of cyclin-dependent kinases. Molecular Biology of the Cell, 7, 457–469.

    PubMed  CAS  Google Scholar 

  136. Chuang, L. C., & Yew, P. R. (2001). Regulation of nuclear transport and degradation of the Xenopus cyclin-dependent kinase inhibitor, p27Xic1. Journal of Biological Chemistry, 276, 1610–1617.

    PubMed  CAS  Google Scholar 

  137. You, Z., Harvey, K., Kong, L., & Newport, J. (2002). Xic1 degradation in Xenopus egg extracts is coupled to initiation of DNA replication. Genes and Development., 16, 1182–1194.

    PubMed  CAS  Google Scholar 

  138. Lin, H. R., Chuang, L. C., Boix-Perales, H., Philpott, A., & Yew, P. R. (2006). Ubiquitination of cyclin-dependent kinase inhibitor, Xic1, is mediated by the Xenopus F-box protein xSkp2. Cell Cycle, 5, 304–314.

    PubMed  CAS  Google Scholar 

  139. Vernon, A. E., & Philpott, A. (2003). The developmental expression of cell cycle regulators in Xenopus laevis. Gene Expression Patterns, 3, 179–192.

    PubMed  CAS  Google Scholar 

  140. Destree, O. H., Lam, K. T., Peterson-Maduro, L. J., Eizema, K., Diller, L., Gryka, M. A., Frebourg, T., Shibuya, E., & Friend, S. H. (1992). Structure and expression of the Xenopus retinoblastoma gene. Developmental Biology, 153, 141–149.

    PubMed  CAS  Google Scholar 

  141. Philpott, A., & Friend, S. H. (1994). E2F and its developmental regulation in Xenopus laevis. Molecular Cell Biology, 14, 5000–5009.

    CAS  Google Scholar 

  142. Suzuki, A., & Hemmati-Brivanlou, A. (2000). Xenopus embryonic E2F is required for the formation of ventral and posterior cell fates during early embryogenesis. Molecular Cell, 5, 217–229.

    PubMed  CAS  Google Scholar 

  143. Cosgrove, R. A., & Philpott, A. (2007). Cell cycling and differentiation do not require the retinoblastoma protein during early Xenopus development. Developmental Biology, 303, 311–324.

    PubMed  CAS  Google Scholar 

  144. Ohnuma, S., Philpott, A., Wang, K., Holt, C. E., & Harris, W. A. (1999). p27Xic1, a Cdk inhibitor, promotes the determination of glial cells in Xenopus retina. Cell, 99, 499–510.

    PubMed  CAS  Google Scholar 

  145. Vernon, A. E., Movassagh, M., Horan, I., Wise, H., Ohnuma, S., & Philpott, A. (2006). Notch targets the Cdk inhibitor Xic1 to regulate differentiation but not the cell cycle in neurons. EMBO Reports, 7, 643–648.

    PubMed  CAS  Google Scholar 

  146. Cremisi, F., Philpott, A., & Ohnuma, S. (2003). Cell cycle and cell fate interactions in neural development. Current Opinion in Neurobiology, 13, 26–33.

    PubMed  CAS  Google Scholar 

  147. Ohnuma, S., Philpott, A., & Harris, W. A. (2001). Cell cycle and cell fate in the nervous system. Current Opinions in Neurobiology, 11, 66–73.

    CAS  Google Scholar 

  148. Kroll, K. L., Salic, A. N., Evans, L. M., & Kirschner, M. W. (1998). Geminin, a neuralizing molecule that demarcates the future neural plate at the onset of gastrulation. Development, 125, 3247–3258.

    PubMed  CAS  Google Scholar 

  149. Aigner, S., & Gage, F. H. (2005). A small gem with great powers: Geminin keeps neural progenitors thriving. Developmental Cell, 9, 171–172.

    PubMed  CAS  Google Scholar 

  150. Goetz, S. C., Brown, D. D., & Conlon, F. L. (2006). TBX5 is required for embryonic cardiac cell cycle progression. Development, 133, 2575–2584.

    PubMed  CAS  Google Scholar 

  151. Kurth, T. (2005). A cell cycle arrest is necessary for bottle cell formation in the early Xenopus gastrula: Integrating cell shape change, local mitotic control and mesodermal patterning. Mechanisms of Development, 122, 1251–1265.

    PubMed  CAS  Google Scholar 

  152. Gestri, G., Carl, M., Appolloni, I., Wilson, S. W., Barsacchi, G., & Andreazzoli, M. (2005). Six3 functions in anterior neural plate specification by promoting cell proliferation and inhibiting Bmp4 expression. Development, 132, 2401–2413.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank Anna Git for helpful reading of the manuscript. A.P. is supported by the Medical Research Council (G050010), Biotechnology and Biological Sciences Research Council (BB/C004108/1). P.R.Y is supported by the National Institutes of Health (GM066226).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anna Philpott.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Philpott, A., Yew, P.R. The Xenopus Cell Cycle: An Overview. Mol Biotechnol 39, 9–19 (2008). https://doi.org/10.1007/s12033-008-9033-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-008-9033-z

Keywords

Navigation