Skip to main content

Defect Characterization in Silicon by Electron-Beam-Induced Current and Cathodoluminescence Techniques

  • Chapter
  • First Online:
Defects and Impurities in Silicon Materials

Part of the book series: Lecture Notes in Physics ((LNP,volume 916))

Abstract

This chapter describes electron-beam-induced current (EBIC) and cathodoluminescence (CL) techniques, which have been used for the electrical/optical characterization of extended defects in Si. For these purposes, we use a scanning electron microscope (SEM) for electron beam irradiation. The electric current induced at the internal circuit and light emission from the specimen are used for the imaging of EBIC and CL, respectively. Using these techniques, we have succeeded in classifying the dislocations and grain boundaries (GBs). It is found that the clean dislocations are not so electrically active, but become active after metallic decoration. Large-angle (LA) GBs behave like dislocations. The coherency of GBs and the degree of contamination are the major factors determining the electrical activity of LA-GBs. Small-angle (SA) GBs are different from the former because they have certain carrier recombination activities at room temperature. We may attribute these activities to the bundle of dislocations at the GB plane. Due to such dislocation bundles, SA-GBs emit D-lines and are distinguished in the D-line imaging in CL mode. The SA-GBs are classified by D-lines according to the character and misorientation angle. Now, EBIC/CLs have been extensively used for multicrystalline Si for photovoltaic applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Goldstein, J., Newbury, D.E., Joy, D.C., Lyman, C.E., Echlin, P., Lifshin, E.: Scanning Electron Microscopy and X-ray Microanalysis, 3rd edn. Springer, New York (2007). ISBN 13: 978-030-6472923

    Google Scholar 

  2. Joy, D.C.: Ultramicroscopy, 37, 216 (1991). doi:10.1016/0304-3991(91)90020-7; 10.1016/0304-3991(91)90020-7#doilink

  3. Yacobi, B.G., Holt, D.B.: Cathodoluminescnece Microscopy of Inorganic Solids. Springer, New York (2007). ISBN 13: 978-0306433146

    Google Scholar 

  4. Casino, http://www.gel.usherbrooke.ca/casino/What.html

  5. Kanaya, K., Okayama, S.: J. Phys. D 5, 43 (1972)

    Article  ADS  Google Scholar 

  6. Clein, C.A.: J. Appl. Phys. 26, 380 (1955)

    Article  Google Scholar 

  7. Holt, D.B., Joy, D.C. (eds.): SEM Microcharacterization of Semiconductors. Academic, New York (1989). ISBN 0-12-353855-6

    Google Scholar 

  8. Drozdov, N.A., Patlin, A.A., Tkachev, V.D.: Pis’ma Zh. Eksp. Teor. Fiz 23, 651 (1976) [JETP Lett. 23, 597 (1976)]

    Google Scholar 

  9. Drozdov, N.A., Patlin, A.A., Tkachev, V.D.: Phys. Status Solidi B 83, K137 (1977)

    Article  ADS  Google Scholar 

  10. Sekiguchi, T., Sumino, K.: Rev. Sci. Instrum. 66, 4277 (1995). doi:10.1063/1.1145382

    Article  ADS  Google Scholar 

  11. Leamy, H.J.: J. Appl. Phys. 53, R51 (1982). doi:10.1063/1.331667

    Article  ADS  Google Scholar 

  12. Wilshaw, P.R., Fell, T.S., Coteau, M.D.: J. Phys. IV1, C6-3 (1991)

    Google Scholar 

  13. Kittler, M., Seifert, W.: Phys. Stat. Sol. A 138, 687 (1993)

    Article  ADS  Google Scholar 

  14. Kusanagi, S., Sekiguchi, T., Sumino, K.: Appl. Phys. Lett. 61, 792 (1992)

    Article  ADS  Google Scholar 

  15. Radzimski, Z.J., Zhou, T.Q., Buczkovski, A., Rozgonyi, G.A., Flinnm, D., Hellwig, L.G., Ross, J.A.: Appl. Phys. Lett. 60, 1096 (1992)

    Article  ADS  Google Scholar 

  16. Kittler, M., Seifert, W.: Mater. Sci. Eng. B. 42, 260 (1996)

    Article  Google Scholar 

  17. Kusanagi, S., Sekiguchi, T., Sumino, K.: Mater. Sci. Technol. 11, 685 (1995)

    Article  ADS  Google Scholar 

  18. Blakemore, J.S.: Semiconductor Statistics. Dover, New York (2007). ISBN 0-486-65362-5

    MATH  Google Scholar 

  19. Chen, J., Sekiguchi, T., Yang, D., Yin, F., Kido, K., Tsurekawa, S.: J. Appl. Phys. 96, 5490 (2004)

    Article  ADS  Google Scholar 

  20. Suezawa, M., Sasaki, Y., Sumino, K.: Phys. Status Solidi A 79, 173 (1983)

    Article  ADS  Google Scholar 

  21. Sauer, R., Weber, J., Stolz, J., Weber, E.R., Kusters, K.-H., Alexander, H.: Appl. Phys. A 36, 1 (1985)

    Article  ADS  Google Scholar 

  22. Lerikov, Y., Rebane, Y., Ruvimov, S., Tarhin, D., Sitnikova, A., Shreter, Y.: Mater. Sci. Forum 83–87, 1321 (1992)

    Article  Google Scholar 

  23. Higgs, V., Lightowlers, E.C., Norman, C.E., Kightley, P.C.: Mater. Sci. Forum 83–87, 1309 (1992)

    Article  Google Scholar 

  24. Sekiguchi, T., Kveder, V., Sumino, K.: J. Appl. Phys. 79, 3253 (1996)

    Article  ADS  Google Scholar 

  25. Sekiguchi, T., Sumino, K.: J. Appl. Phys. 79, 3253 (1996)

    Article  ADS  Google Scholar 

  26. Kittler, M., Aguirov, T., Seifert, W., Yu, X., Gia, G., Vivenko, O.F., Mchedlidze, T., Reiche, M., Sha, J., Yang, D.: Mater. Sci. Eng. C 27, 1252 (2007). doi:10.1016/j.msec.2006.09.034

    Article  Google Scholar 

  27. Yu, X., Aguirov, T., Kittler, M., Seifert, W., Ratzke, M., Reiche, M.: Mater. Sci. Semicond. Process. 9, 96 (2006). doi:10.1016/j.mssp.2006.01.070

    Article  Google Scholar 

  28. Takagi, S., Hoyt, J.L., Welser, J.J., Gibbons, J.F.: J. Appl. Phys. 80, 1567 (1996). doi:10.1063/1.362953

    Article  ADS  Google Scholar 

  29. Yuan, X.L., Sekiguchi, T., Li, S.G., Ito, S.: Appl. Phys. Lett. 84, 3316 (2004). doi:10.1063/1.1734688

    Article  ADS  Google Scholar 

  30. Yuan, X.L., Sekiguchi, T., Niitsuma, J., Sakuma, Y., Ito, S., Li, S.G.: Appl. Phys. Lett. 86, 162102 (2005). doi:10.1063/1.1905802

    Article  ADS  Google Scholar 

  31. Kawado, S.: Jpn. J. Appl. Phys. 19, 1591 (1980)

    Article  ADS  Google Scholar 

  32. Sekiguchi, T., Shen, B., Watanabe, T., Sumino, K.: Mater. Sci. Eng. B. 42, 235 (1996). doi:10.1016/S0921-5107(96)01713-8

    Article  Google Scholar 

  33. Shen, B., Sekiguchi, T., Jabronski, J., Sumino, K.: J. Appl. Phys. 76, 4540 (1996). doi:10.1063/1.357285

    Article  ADS  Google Scholar 

  34. Shen, B., Zhang, R., Shi, Y., Sheng, Y.D., Sekiguchi, T., Sumino, K.: Appl. Phys. Lett. 68, 214 (1996). doi:10.1063/1.116464

    Article  ADS  Google Scholar 

  35. Nara, S., Sekiguchi, T., Chen, J.: Eur. Phys. J. Appl. Phys 27, 389 (2004)

    Article  ADS  Google Scholar 

  36. Chen, B., Chen, J., Sekiguchi, T., Saito, M., Kimoto, K.: J. Appl. Phys. 105, 113502 (2009)

    Article  ADS  Google Scholar 

  37. Chen, J., Yang, D.R., Xi, Z.Q., Sekiguchi, T.: Physica B 364, 162 (2005). doi:10.1016/j.physb.2005.04.008

    Article  ADS  Google Scholar 

  38. Lee, W., Chen, J., Chen, B., Kang, J., Sekiguchi, T.: Appl. Phys. Lett. 94, 112103 (2009). doi:10.1063/1.3099001

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takashi Sekiguchi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Japan

About this chapter

Cite this chapter

Sekiguchi, T., Chen, J. (2015). Defect Characterization in Silicon by Electron-Beam-Induced Current and Cathodoluminescence Techniques. In: Yoshida, Y., Langouche, G. (eds) Defects and Impurities in Silicon Materials. Lecture Notes in Physics, vol 916. Springer, Tokyo. https://doi.org/10.1007/978-4-431-55800-2_7

Download citation

Publish with us

Policies and ethics