Skip to main content
  • 551 Accesses

Abstract

Long airborne fibers such as asbestos and carbon nanotubes (CNTs) are more potent activators of carcinogenesis, inflammation, and genotoxicity than short or tangled fibers. It has recently been reported that fibrous particles trigger the secretion of proinflammatory cytokines such as interleukin (IL)-1β and IL-18 and cause inflammatory diseases through the NOD-like receptor pyrin domain containing 3 (NLRP3) inflammasome. The NLRP3 inflammasome is a major component of the innate immune system in responses to infection and tissue injury in phagocytotic cells. The shape, size, charge, and biopersistence of particulate substances are the most important factors affecting their ability to cause NLRP3 inflammasome-mediated proinflammatory responses. In this review, the current understandings are summarized and discussed regarding the mechanisms of NLRP3 inflammasome induction by various fibrous particles. In addition, the review demonstrates the potential mechanism of IL-1β secretion through the NLRP3 inflammasome, with a focus on the role of the GTPase effector Rho kinases (ROCK1 and 2), which are known to be involved in a wide range of cellular functions including adhesion, regulation of the cytoskeleton, and phagocytosis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Graber JM, Stayner LT, Cohen RA, Conroy LM, Attfield MD. Respiratory disease mortality among US coal miners; results after 37 years of follow-up. Occup Environ Med. 2014;71(1):30–9. doi:10.1136/oemed-2013-101597.

    Article  PubMed Central  PubMed  Google Scholar 

  2. Sioutas C, Delfino RJ, Singh M. Exposure assessment for atmospheric ultrafine particles (UFPs) and implications in epidemiologic research. Environ Health Perspect. 2005;113(8):947–55.

    Article  PubMed Central  PubMed  Google Scholar 

  3. Schroder K, Tschopp J. The inflammasomes. Cell. 2010;140(6):821–32. doi:10.1016/j.cell.2010.01.040.

    Article  CAS  PubMed  Google Scholar 

  4. Abderrazak A, Syrovets T, Couchie D, El Hadri K, Friguet B, Simmet T, et al. NLRP3 inflammasome: from a danger signal sensor to a regulatory node of oxidative stress and inflammatory diseases. Redox Biol. 2015;4C:296–307. doi:10.1016/j.redox.2015.01.008.

    Article  Google Scholar 

  5. Qu Y, Franchi L, Nunez G, Dubyak GR. Nonclassical IL-1 beta secretion stimulated by P2X7 receptors is dependent on inflammasome activation and correlated with exosome release in murine macrophages. J Immunol. 2007;179(3):1913–25. doi:179/3/1913 [pii].

    Google Scholar 

  6. Dostert C, Petrilli V, Van Bruggen R, Steele C, Mossman BT, Tschopp J. Innate immune activation through Nalp3 inflammasome sensing of asbestos and silica. Science. 2008;320(5876):674–7. doi:10.1126/science.1156995 1156995 [pii].

  7. Li M, Gunter ME, Fukagawa NK. Differential activation of the inflammasome in THP-1 cells exposed to chrysotile asbestos and Libby “six-mix” amphiboles and subsequent activation of BEAS-2B cells. Cytokine. 2012;60(3):718–30. doi:10.1016/j.cyto.2012.08.025 S1043-4666(12)00666-7 [pii].

  8. Hornung V, Bauernfeind F, Halle A, Samstad EO, Kono H, Rock KL, et al. Silica crystals and aluminum salts activate the NALP3 inflammasome through phagosomal destabilization. Nat Immunol. 2008;9(8):847–56. doi:10.1038/ni.1631.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Meunier E, Coste A, Olagnier D, Authier H, Lefevre L, Dardenne C et al. Double-walled carbon nanotubes trigger IL-1beta release in human monocytes through Nlrp3 inflammasome activation. Nanomedicine. 2012;8(6):987–95. doi:S1549-9634(11)00524-7 [pii] 10.1016/j.nano.2011.11.004.

  10. Palomaki J, Valimaki E, Sund J, Vippola M, Clausen PA, Jensen KA, et al. Long, needle-like carbon nanotubes and asbestos activate the NLRP3 inflammasome through a similar mechanism. ACS Nano. 2011;5(9):6861–70. doi:10.1021/nn200595c.

    Article  CAS  PubMed  Google Scholar 

  11. Kanno S, Hirano S, Chiba S, Takeshita H, Nagai T, Takada M, et al. The role of Rho-kinases in IL-1beta release through phagocytosis of fibrous particles in human monocytes. Arch Toxicol. 2015;89(1):73–85. doi:10.1007/s00204-014-1238-2.

    Article  CAS  PubMed  Google Scholar 

  12. Ishizaki T, Maekawa M, Fujisawa K, Okawa K, Iwamatsu A, Fujita A, et al. The small GTP-binding protein Rho binds to and activates a 160 kDa Ser/Thr protein kinase homologous to myotonic dystrophy kinase. EMBO J. 1996;15(8):1885–93.

    PubMed Central  CAS  PubMed  Google Scholar 

  13. Kanno S, Hirano S, Sagi M, Chiba S, Takeshita H, Ikawa T, et al. Sulfide induces apoptosis and Rho kinase-dependent cell blebbing in Jurkat cells. Arch Toxicol. 2013;87(7):1245–56. doi:10.1007/s00204-013-1027-3.

    Article  CAS  PubMed  Google Scholar 

  14. Olazabal IM, Caron E, May RC, Schilling K, Knecht DA, Machesky LM. Rho-kinase and myosin-II control phagocytic cup formation during CR, but not FcgammaR, phagocytosis. Curr Biol. 2002;12(16):1413–18. doi:S0960982202010692 [pii].

    Google Scholar 

  15. Mossman BT, Lippmann M, Hesterberg TW, Kelsey KT, Barchowsky A, Bonner JC. Pulmonary endpoints (lung carcinomas and asbestosis) following inhalation exposure to asbestos. J Toxicol Environ Health B Crit Rev. 2011;14(1–4):76–121. doi:10.1080/10937404.2011.556047 936997411 [pii].

  16. Donaldson K, Murphy FA, Duffin R, Poland CA. Asbestos, carbon nanotubes and the pleural mesothelium: a review of the hypothesis regarding the role of long fibre retention in the parietal pleura, inflammation and mesothelioma. Part Fibre Toxicol. 2010;7:5. doi:10.1186/1743-8977-7-5.

    Article  PubMed Central  PubMed  Google Scholar 

  17. Wylie AG, Virta RL, Segreti JM. Characterization of mineral population by index particle: implication for the Stanton hypothesis. Environ Res. 1987;43(2):427–39.

    Article  CAS  PubMed  Google Scholar 

  18. Stanton MF, Layard M, Tegeris A, Miller E, May M, Morgan E, et al. Relation of particle dimension to carcinogenicity in amphibole asbestoses and other fibrous minerals. J Natl Cancer Inst. 1981;67(5):965–75.

    CAS  PubMed  Google Scholar 

  19. Adamson IY, Bowden DH. Pulmonary reaction to long and short asbestos fibers is independent of fibroblast growth factor production by alveolar macrophages. Am J Pathol. 1990;137(3):523–9.

    PubMed Central  CAS  PubMed  Google Scholar 

  20. Adamson IY, Bakowska J, Bowden DH. Mesothelial cell proliferation after instillation of long or short asbestos fibers into mouse lung. Am J Pathol. 1993;142(4):1209–16.

    PubMed Central  CAS  PubMed  Google Scholar 

  21. Goodglick LA, Kane AB. Cytotoxicity of long and short crocidolite asbestos fibers in vitro and in vivo. Cancer Res. 1990;50(16):5153–63.

    CAS  PubMed  Google Scholar 

  22. Blake DJ, Bolin CM, Cox DP, Cardozo-Pelaez F, Pfau JC. Internalization of Libby amphibole asbestos and induction of oxidative stress in murine macrophages. Toxicol Sci. 2007;99(1):277–88. doi:10.1093/toxsci/kfm166.

    Article  CAS  PubMed  Google Scholar 

  23. Donaldson K, Golyasnya N. Cytogenetic and pathogenic effects of long and short amosite asbestos. J Pathol. 1995;177(3):303–7. doi:10.1002/path.1711770313.

    Article  CAS  PubMed  Google Scholar 

  24. Warheit DB. Inhaled amorphous silica particulates: what do we know about their toxicological profiles? J Environ Pathol Toxicol Oncol. 2001;20 Suppl 1:133–41.

    PubMed  Google Scholar 

  25. Ryu HJ, Seong NW, So BJ, Seo HS, Kim JH, Hong JS, et al. Evaluation of silica nanoparticle toxicity after topical exposure for 90 days. Int J Nanomedicine. 2014;9 Suppl 2:127–36. doi:10.2147/IJN.S57929.

    PubMed Central  CAS  PubMed  Google Scholar 

  26. Cho WS, Choi M, Han BS, Cho M, Oh J, Park K, et al. Inflammatory mediators induced by intratracheal instillation of ultrafine amorphous silica particles. Toxicol Lett. 2007;175(1–3):24–33. doi:10.1016/j.toxlet.2007.09.008.

    Article  CAS  PubMed  Google Scholar 

  27. Mossman BT, Glenn RE. Bioreactivity of the crystalline silica polymorphs, quartz and cristobalite, and implications for occupational exposure limits (OELs). Crit Rev Toxicol. 2013;43(8):632–60. doi:10.3109/10408444.2013.818617.

    Article  CAS  PubMed  Google Scholar 

  28. Otsuki T, Maeda M, Murakami S, Hayashi H, Miura Y, Kusaka M, et al. Immunological effects of silica and asbestos. Cell Mol Immunol. 2007;4(4):261–8.

    CAS  PubMed  Google Scholar 

  29. Rabolli V, Lo Re S, Uwambayinema F, Yakoub Y, Lison D, Huaux F. Lung fibrosis induced by crystalline silica particles is uncoupled from lung inflammation in NMRI mice. Toxicol Lett. 2011;203(2):127–34. doi:10.1016/j.toxlet.2011.03.009.

    Article  CAS  PubMed  Google Scholar 

  30. Re SL, Yakoub Y, Devosse R, Uwambayinema F, Couillin I, Ryffel B, et al. Uncoupling between inflammatory and fibrotic responses to silica: evidence from MyD88 knockout mice. PLoS One. 2014;9(7):e99383. doi:10.1371/journal.pone.0099383.

    Article  PubMed Central  PubMed  Google Scholar 

  31. Barbarin V, Arras M, Misson P, Delos M, McGarry B, Phan SH, et al. Characterization of the effect of interleukin-10 on silica-induced lung fibrosis in mice. Am J Respir Cell Mol Biol. 2004;31(1):78–85. doi:10.1165/rcmb.2003-0299OC.

    Article  CAS  PubMed  Google Scholar 

  32. Porter DW, Ye J, Ma J, Barger M, Robinson VA, Ramsey D, et al. Time course of pulmonary response of rats to inhalation of crystalline silica: NF-kappa B activation, inflammation, cytokine production, and damage. Inhal Toxicol. 2002;14(4):349–67. doi:10.1080/08958370252870998.

    Article  CAS  PubMed  Google Scholar 

  33. Porter DW, Millecchia L, Robinson VA, Hubbs A, Willard P, Pack D, et al. Enhanced nitric oxide and reactive oxygen species production and damage after inhalation of silica. Am J Physiol Lung Cell Mol Physiol. 2002;283(2):L485–93. doi:10.1152/ajplung.00427.2001.

    Article  CAS  PubMed  Google Scholar 

  34. Ding M, Shi X, Lu Y, Huang C, Leonard S, Roberts J, et al. Induction of activator protein-1 through reactive oxygen species by crystalline silica in JB6 cells. J Biol Chem. 2001;276(12):9108–14. doi:10.1074/jbc.M007666200.

    Article  CAS  PubMed  Google Scholar 

  35. Desaki M, Takizawa H, Kasama T, Kobayashi K, Morita Y, Yamamoto K. Nuclear factor-kappa b activation in silica-induced interleukin 8 production by human bronchial epithelial cells. Cytokine. 2000;12(8):1257–60. doi:10.1006/cyto.2000.0704.

    Article  CAS  PubMed  Google Scholar 

  36. Zhang Z, Shen HM, Zhang QF, Ong CN. Involvement of oxidative stress in crystalline silica-induced cytotoxicity and genotoxicity in rat alveolar macrophages. Environ Res. 2000;82(3):245–52. doi:10.1006/enrs.1999.4025.

    Article  CAS  PubMed  Google Scholar 

  37. Stoehr LC, Gonzalez E, Stampfl A, Casals E, Duschl A, Puntes V, et al. Shape matters: effects of silver nanospheres and wires on human alveolar epithelial cells. Part Fibre Toxicol. 2011;8:36. doi:10.1186/1743-8977-8-36.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  38. Hamilton RF, Wu N, Porter D, Buford M, Wolfarth M, Holian A. Particle length-dependent titanium dioxide nanomaterials toxicity and bioactivity. Part Fibre Toxicol. 2009;6:35. doi:10.1186/1743-8977-6-35.

    Article  PubMed Central  PubMed  Google Scholar 

  39. Ji Z, Wang X, Zhang H, Lin S, Meng H, Sun B, et al. Designed synthesis of CeO2 nanorods and nanowires for studying toxicological effects of high aspect ratio nanomaterials. ACS Nano. 2012;6(6):5366–80. doi:10.1021/nn3012114.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  40. Hirano S, Fujitani Y, Furuyama A, Kanno S. Macrophage receptor with collagenous structure (MARCO) is a dynamic adhesive molecule that enhances uptake of carbon nanotubes by CHO-K1 cells. Toxicol Appl Pharmacol. 2012;259(1):96–103. doi:S0041-008X(11)00469-8 [pii] 10.1016/j.taap.2011.12.012.

  41. Pacurari M, Castranova V, Vallyathan V. Single- and multi-wall carbon nanotubes versus asbestos: are the carbon nanotubes a new health risk to humans? J Toxicol Environ Health A. 2010;73(5):378–95. doi:919250926 [pii] 10.1080/15287390903486527.

  42. Nagai H, Toyokuni S. Biopersistent fiber-induced inflammation and carcinogenesis: lessons learned from asbestos toward safety of fibrous nanomaterials. Arch Biochem Biophys. 2010;502(1):1–7. doi:10.1016/j.abb.2010.06.015 S0003-9861(10)00234-1 [pii].

  43. Dong J, Ma Q. Advances in mechanisms and signaling pathways of carbon nanotube toxicity. Nanotoxicology. 2015;13:1–19. doi:10.3109/17435390.2015.1009187.

    Article  Google Scholar 

  44. Mercer RR, Hubbs AF, Scabilloni JF, Wang L, Battelli LA, Friend S, et al. Pulmonary fibrotic response to aspiration of multi-walled carbon nanotubes. Part Fibre Toxicol. 2011;8:21. doi:10.1186/1743-8977-8-21.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  45. Lindberg HK, Falck GC, Suhonen S, Vippola M, Vanhala E, Catalan J, et al. Genotoxicity of nanomaterials: DNA damage and micronuclei induced by carbon nanotubes and graphite nanofibres in human bronchial epithelial cells in vitro. Toxicol Lett. 2009;186(3):166–73. doi:10.1016/j.toxlet.2008.11.019.

    Article  CAS  PubMed  Google Scholar 

  46. Ema M, Imamura T, Suzuki H, Kobayashi N, Naya M, Nakanishi J. Genotoxicity evaluation for single-walled carbon nanotubes in a battery of in vitro and in vivo assays. J Appl Toxicol. 2013;33(9):933–9. doi:10.1002/jat.2772.

    Article  CAS  PubMed  Google Scholar 

  47. Kim JS, Song KS, Yu IJ. Evaluation of in vitro and in vivo genotoxicity of single-walled carbon nanotubes. Toxicol Ind Health. 2013. doi:10.1177/0748233713483201.

    PubMed  Google Scholar 

  48. Mrakovcic M, Meindl C, Leitinger G, Roblegg E, Frohlich E. Carboxylated short single-walled carbon nanotubes but not plain and multi-walled short carbon nanotubes show in vitro genotoxicity. Toxicol Sci. 2014. doi:10.1093/toxsci/kfu260.

    PubMed Central  PubMed  Google Scholar 

  49. Siegrist KJ, Reynolds SH, Kashon ML, Lowry DT, Dong C, Hubbs AF, et al. Genotoxicity of multi-walled carbon nanotubes at occupationally relevant doses. Part Fibre Toxicol. 2014;11:6. doi:10.1186/1743-8977-11-6.

    Article  PubMed Central  PubMed  Google Scholar 

  50. Lam CW, James JT, McCluskey R, Hunter RL. Pulmonary toxicity of single-wall carbon nanotubes in mice 7 and 90 days after intratracheal instillation. Toxicol Sci. 2004;77(1):126–34. doi:10.1093/toxsci/kfg243.

    Article  CAS  PubMed  Google Scholar 

  51. Shvedova AA, Kisin E, Murray AR, Johnson VJ, Gorelik O, Arepalli S et al. Inhalation vs. aspiration of single-walled carbon nanotubes in C57BL/6 mice: inflammation, fibrosis, oxidative stress, and mutagenesis. Am J Physiol Lung Cell Mol Physiol. 2008;295(4):L552-65. doi:90287.2008 [pii] 10.1152/ajplung.90287.2008.

  52. Inoue K, Yanagisawa R, Koike E, Nishikawa M, Takano H. Repeated pulmonary exposure to single-walled carbon nanotubes exacerbates allergic inflammation of the airway: Possible role of oxidative stress. Free Radic Biol Med. 2010;48(7):924–34. doi:S0891-5849(10)00018-3 [pii] 10.1016/j.freeradbiomed.2010.01.013.

  53. Shvedova AA, Kisin ER, Mercer R, Murray AR, Johnson VJ, Potapovich AI et al. Unusual inflammatory and fibrogenic pulmonary responses to single-walled carbon nanotubes in mice. Am J Physiol Lung Cell Mol Physiol. 2005;289(5):L698-708. doi:00084.2005 [pii] 10.1152/ajplung.00084.2005.

  54. Andon FT, Kapralov AA, Yanamala N, Feng W, Baygan A, Chambers BJ, et al. Biodegradation of single-walled carbon nanotubes by eosinophil peroxidase. Small. 2013;9(16):2721–9. doi:10.1002/smll.201202508. 16.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  55. Shvedova AA, Kapralov AA, Feng WH, Kisin ER, Murray AR, Mercer RR, et al. Impaired clearance and enhanced pulmonary inflammatory/fibrotic response to carbon nanotubes in myeloperoxidase-deficient mice. PLoS One. 2012;7(3):e30923. doi:10.1371/journal.pone.0030923.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  56. Hirano S, Kanno S, Furuyama A. Multi-walled carbon nanotubes injure the plasma membrane of macrophages. Toxicol Appl Pharmacol. 2008;232(2):244–51. doi:S0041-008X(08)00271-8 [pii] 10.1016/j.taap.2008.06.016.

  57. Hirano S, Fujitani Y, Furuyama A, Kanno S. Uptake and cytotoxic effects of multi-walled carbon nanotubes in human bronchial epithelial cells. Toxicol Appl Pharmacol. 2010;249(1):8–15. doi:S0041-008X(10)00307-8 [pii] 10.1016/j.taap.2010.08.019.

  58. Nagai H, Okazaki Y, Chew SH, Misawa N, Yamashita Y, Akatsuka S, et al. Diameter and rigidity of multiwalled carbon nanotubes are critical factors in mesothelial injury and carcinogenesis. Proc Natl Acad Sci U S A. 2011;108(49):E1330–8. doi:10.1073/pnas.1110013108.

    Article  PubMed Central  PubMed  Google Scholar 

  59. Pulskamp K, Diabate S, Krug HF. Carbon nanotubes show no sign of acute toxicity but induce intracellular reactive oxygen species in dependence on contaminants. Toxicol Lett. 2007;168(1):58–74. doi:10.1016/j.toxlet.2006.11.001.

    Article  CAS  PubMed  Google Scholar 

  60. Montes-Fonseca SL, Orrantia-Borunda E, Aguilar-Elguezabal A, Gonzalez Horta C, Talamas-Rohana P, Sanchez-Ramirez B. Cytotoxicity of functionalized carbon nanotubes in J774A macrophages. Nanomedicine. 2012;8(6):853–9. doi:10.1016/j.nano.2011.10.002.

    Article  CAS  PubMed  Google Scholar 

  61. Ursini CL, Cavallo D, Fresegna AM, Ciervo A, Maiello R, Buresti G, et al. Differences in cytotoxic, genotoxic, and inflammatory response of bronchial and alveolar human lung epithelial cells to pristine and COOH-functionalized multiwalled carbon nanotubes. Biomed Res Int. 2014;2014:359506. doi:10.1155/2014/359506.

    Article  PubMed Central  PubMed  Google Scholar 

  62. Hamilton Jr RF, Wu Z, Mitra S, Shaw PK, Holian A. Effect of MWCNT size, carboxylation, and purification on in vitro and in vivo toxicity, inflammation and lung pathology. Part Fibre Toxicol. 2013;10(1):57. doi:10.1186/1743-8977-10-57.

    Article  PubMed Central  PubMed  Google Scholar 

  63. Ravichandran P, Baluchamy S, Sadanandan B, Gopikrishnan R, Biradar S, Ramesh V, et al. Multiwalled carbon nanotubes activate NF-kappaB and AP-1 signaling pathways to induce apoptosis in rat lung epithelial cells. Apoptosis. 2010;15(12):1507–16. doi:10.1007/s10495-010-0532-6.

    Article  CAS  PubMed  Google Scholar 

  64. Ye SF, Wu YH, Hou ZQ, Zhang QQ. ROS and NF-kappaB are involved in upregulation of IL-8 in A549 cells exposed to multi-walled carbon nanotubes. Biochem Biophys Res Commun. 2009;379(2):643–8. doi:10.1016/j.bbrc.2008.12.137.

    Article  CAS  PubMed  Google Scholar 

  65. Moller P, Christophersen DV, Jensen DM, Kermanizadeh A, Roursgaard M, Jacobsen NR, et al. Role of oxidative stress in carbon nanotube-generated health effects. Arch Toxicol. 2014;88(11):1939–64. doi:10.1007/s00204-014-1356-x.

    Article  PubMed  Google Scholar 

  66. Porter DW, Hubbs AF, Chen BT, McKinney W, Mercer RR, Wolfarth MG, et al. Acute pulmonary dose-responses to inhaled multi-walled carbon nanotubes. Nanotoxicology. 2013;7(7):1179–94. doi:10.3109/17435390.2012.719649.

    Article  CAS  PubMed  Google Scholar 

  67. Ryman-Rasmussen JP, Cesta MF, Brody AR, Shipley-Phillips JK, Everitt JI, Tewksbury EW, et al. Inhaled carbon nanotubes reach the subpleural tissue in mice. Nat Nanotechnol. 2009;4(11):747–51. doi:10.1038/nnano.2009.305.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  68. Xu J, Alexander DB, Futakuchi M, Numano T, Fukamachi K, Suzui M, et al. Size- and shape-dependent pleural translocation, deposition, fibrogenesis, and mesothelial proliferation by multiwalled carbon nanotubes. Cancer Sci. 2014;105(7):763–9. doi:10.1111/cas.12437.

    Article  CAS  PubMed  Google Scholar 

  69. Lamkanfi M, Dixit VM. Mechanisms and functions of inflammasomes. Cell. 2014;157(5):1013–22. doi:10.1016/j.cell.2014.04.007.

    Article  CAS  PubMed  Google Scholar 

  70. Freche B, Reig N, van der Goot FG. The role of the inflammasome in cellular responses to toxins and bacterial effectors. Semin Immunopathol. 2007;29(3):249–60. doi:10.1007/s00281-007-0085-0.

    Article  CAS  PubMed  Google Scholar 

  71. Thompson JK, Westbom CM, MacPherson MB, Mossman BT, Heintz NH, Spiess P, et al. Asbestos modulates thioredoxin-thioredoxin interacting protein interaction to regulate inflammasome activation. Part Fibre Toxicol. 2014;11:24. doi:10.1186/1743-8977-11-24.

    Article  PubMed Central  PubMed  Google Scholar 

  72. Hillegass JM, Miller JM, MacPherson MB, Westbom CM, Sayan M, Thompson JK, et al. Asbestos and erionite prime and activate the NLRP3 inflammasome that stimulates autocrine cytokine release in human mesothelial cells. Part Fibre Toxicol. 2013;10:39. doi:10.1186/1743-8977-10-39.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  73. Jung HJ, Pak PJ, Park SH, Ju JE, Kim JS, Lee HS, et al. Silver wire amplifies the signaling mechanism for IL-1beta production more than silver submicroparticles in human monocytic THP-1 cells. PLoS One. 2014;9(11):e112256. doi:10.1371/journal.pone.0112256.

    Article  PubMed Central  PubMed  Google Scholar 

  74. Baron L, Gombault A, Fanny M, Villeret B, Savigny F, Guillou N, et al. The NLRP3 inflammasome is activated by nanoparticles through ATP, ADP and adenosine. Cell Death Dis. 2015;6:e1629. doi:10.1038/cddis.2014.576.

    Article  CAS  PubMed  Google Scholar 

  75. Sandberg WJ, Lag M, Holme JA, Friede B, Gualtieri M, Kruszewski M et al. Comparison of non-crystalline silica nanoparticles in IL-1beta release from macrophages. Part Fibre Toxicol. 2012;9:32. doi:10.1186/1743-8977-9-32 1743-8977-9-32 [pii].

    Google Scholar 

  76. Provoost S, Maes T, Pauwels NS, Vanden Berghe T, Vandenabeele P, Lambrecht BN, et al. NLRP3/caspase-1-independent IL-1beta production mediates diesel exhaust particle-induced pulmonary inflammation. J Immunol. 2011;187(6):3331–7. doi:10.4049/jimmunol.1004062.

    Article  CAS  PubMed  Google Scholar 

  77. Martinon F, Petrilli V, Mayor A, Tardivel A, Tschopp J. Gout-associated uric acid crystals activate the NALP3 inflammasome. Nature. 2006;440(7081):237–41. doi:nature04516 [pii] 10.1038/nature04516.

  78. Tyberghein A, Deroost K, Schwarzer E, Arese P, Van den Steen PE. Immunopathological effects of malaria pigment or hemozoin and other crystals. Biofactors. 2014;40(1):59–78. doi:10.1002/biof.1119.

    Article  CAS  PubMed  Google Scholar 

  79. Duewell P, Kono H, Rayner KJ, Sirois CM, Vladimer G, Bauernfeind FG, et al. NLRP3 inflammasomes are required for atherogenesis and activated by cholesterol crystals. Nature. 2010;464(7293):1357–61. doi:10.1038/nature08938.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  80. Halle A, Hornung V, Petzold GC, Stewart CR, Monks BG, Reinheckel T, et al. The NALP3 inflammasome is involved in the innate immune response to amyloid-beta. Nat Immunol. 2008;9(8):857–65. doi:10.1038/ni.1636.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  81. Shio MT, Eisenbarth SC, Savaria M, Vinet AF, Bellemare MJ, Harder KW, et al. Malarial hemozoin activates the NLRP3 inflammasome through Lyn and Syk kinases. PLoS Pathog. 2009;5(8):e1000559. doi:10.1371/journal.ppat.1000559.

    Article  PubMed  Google Scholar 

  82. Franchi L, Eigenbrod T, Nunez G. Cutting edge: TNF-alpha mediates sensitization to ATP and silica via the NLRP3 inflammasome in the absence of microbial stimulation. J Immunol. 2009;183(2):792–6. doi:10.4049/jimmunol.0900173.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  83. Maslanik T, Mahaffey L, Tannura K, Beninson L, Greenwood BN, Fleshner M. The inflammasome and danger associated molecular patterns (DAMPs) are implicated in cytokine and chemokine responses following stressor exposure. Brain Behav Immun. 2013;28:54–62. doi:10.1016/j.bbi.2012.10.014.

    Article  CAS  PubMed  Google Scholar 

  84. Niemi K, Teirila L, Lappalainen J, Rajamaki K, Baumann MH, Oorni K et al. Serum amyloid A activates the NLRP3 inflammasome via P2X7 receptor and a cathepsin B-sensitive pathway. J Immunol. 2011;186(11):6119–28. doi:10.4049/jimmunol.1002843 jimmunol.1002843 [pii].

  85. Wen H, Gris D, Lei Y, Jha S, Zhang L, Huang MT, et al. Fatty acid-induced NLRP3-ASC inflammasome activation interferes with insulin signaling. Nat Immunol. 2011;12(5):408–15. doi:10.1038/ni.2022.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  86. Oberdorster G, Maynard A, Donaldson K, Castranova V, Fitzpatrick J, Ausman K, et al. Principles for characterizing the potential human health effects from exposure to nanomaterials: elements of a screening strategy. Part Fibre Toxicol. 2005;2:8. doi:10.1186/1743-8977-2-8.

    Article  PubMed Central  PubMed  Google Scholar 

  87. Palecanda A, Paulauskis J, Al-Mutairi E, Imrich A, Qin G, Suzuki H, et al. Role of the scavenger receptor MARCO in alveolar macrophage binding of unopsonized environmental particles. J Exp Med. 1999;189(9):1497–506.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  88. Elomaa O, Sankala M, Pikkarainen T, Bergmann U, Tuuttila A, Raatikainen-Ahokas A, et al. Structure of the human macrophage MARCO receptor and characterization of its bacteria-binding region. J Biol Chem. 1998;273(8):4530–8.

    Article  CAS  PubMed  Google Scholar 

  89. van der Laan LJ, Dopp EA, Haworth R, Pikkarainen T, Kangas M, Elomaa O, et al. Regulation and functional involvement of macrophage scavenger receptor MARCO in clearance of bacteria in vivoin vivo. J Immunol. 1999;162(2):939–47.

    PubMed  Google Scholar 

  90. Hamilton Jr RF, Thakur SA, Mayfair JK, Holian A. MARCO mediates silica uptake and toxicity in alveolar macrophages from C57BL/6 mice. J Biol Chem. 2006;281(45):34218–26. doi:10.1074/jbc.M605229200.

    Article  CAS  PubMed  Google Scholar 

  91. Kanno S, Furuyama A, Hirano S. A murine scavenger receptor MARCO recognizes polystyrene nanoparticles. Toxicol Sci. 2007;97(2):398–406. doi:kfm050 [pii] 10.1093/toxsci/kfm050.

  92. Biswas R, Hamilton Jr RF, Holian A. Role of lysosomes in silica-induced inflammasome activation and inflammation in absence of MARCO. J Immunol Res. 2014;2014:304180. doi:10.1155/2014/304180.

    Article  PubMed Central  PubMed  Google Scholar 

  93. Schinwald A, Murphy FA, Prina-Mello A, Poland CA, Byrne F, Movia D et al. The threshold length for fiber-induced acute pleural inflammation: shedding light on the early events in asbestos-induced mesothelioma. Toxicol Sci. 2012;128(2):461–70. doi:10.1093/toxsci/kfs171 kfs171 [pii].

  94. Misawa T, Takahama M, Kozaki T, Lee H, Zou J, Saitoh T et al. Microtubule-driven spatial arrangement of mitochondria promotes activation of the NLRP3 inflammasome. Nat Immunol. 2013;14(5):454–60. doi:10.1038/ni.2550 ni.2550 [pii].

  95. Munoz-Planillo R, Kuffa P, Martinez-Colon G, Smith BL, Rajendiran TM, Nunez G. K(+) efflux is the common trigger of NLRP3 inflammasome activation by bacterial toxins and particulate matter. Immunity. 2013;38(6):1142–53. doi:10.1016/j.immuni.2013.05.016.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  96. Tschopp J, Schroder K. NLRP3 inflammasome activation: The convergence of multiple signalling pathways on ROS production? Nat Rev Immunol. 2010;10(3):210–15. doi:10.1038/nri2725.

    Article  CAS  PubMed  Google Scholar 

  97. Kahlenberg JM, Dubyak GR. Mechanisms of caspase-1 activation by P2X7 receptor-mediated K+ release. Am J Physiol Cell Physiol. 2004;286(5):C1100-8. doi:10.1152/ajpcell.00494.2003 00494.2003 [pii].

  98. Zhou R, Tardivel A, Thorens B, Choi I, Tschopp J. Thioredoxin-interacting protein links oxidative stress to inflammasome activation. Nat Immunol. 2010;11(2):136–40. doi:10.1038/ni.1831.

    Article  CAS  PubMed  Google Scholar 

  99. Cassel SL, Eisenbarth SC, Iyer SS, Sadler JJ, Colegio OR, Tephly LA et al. The Nalp3 inflammasome is essential for the development of silicosis. Proc Natl Acad Sci U S A. 2008;105(26):9035–40. doi:0803933105 [pii] 10.1073/pnas.0803933105.

  100. Heid ME, Keyel PA, Kamga C, Shiva S, Watkins SC, Salter RD. Mitochondrial reactive oxygen species induces NLRP3-dependent lysosomal damage and inflammasome activation. J Immunol. 2013;191(10):5230–8. doi:10.4049/jimmunol.1301490.

    Article  CAS  PubMed  Google Scholar 

  101. Baroja-Mazo A, Martin-Sanchez F, Gomez AI, Martinez CM, Amores-Iniesta J, Compan V, et al. The NLRP3 inflammasome is released as a particulate danger signal that amplifies the inflammatory response. Nat Immunol. 2014;15(8):738–48. doi:10.1038/ni.2919.

    Article  CAS  PubMed  Google Scholar 

  102. Franklin BS, Bossaller L, De Nardo D, Ratter JM, Stutz A, Engels G, et al. The adaptor ASC has extracellular and ‘prionoid’ activities that propagate inflammation. Nat Immunol. 2014;15(8):727–37. doi:10.1038/ni.2913.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  103. Chi X, Wang S, Huang Y, Stamnes M, Chen JL. Roles of rho GTPases in intracellular transport and cellular transformation. Int J Mol Sci. 2013;14(4):7089–108. doi:10.3390/ijms14047089.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  104. Coleman ML, Sahai EA, Yeo M, Bosch M, Dewar A, Olson MF. Membrane blebbing during apoptosis results from caspase-mediated activation of ROCK I. Nat Cell Biol. 2001;3(4):339–45. doi:10.1038/35070009 35070009 [pii].

  105. Yoneda A, Multhaupt HA, Couchman JR. The Rho kinases I and II regulate different aspects of myosin II activity. J Cell Biol. 2005;170(3):443–53. doi:jcb.200412043 [pii] 10.1083/jcb.200412043.

  106. Martinon F, Mayor A, Tschopp J. The inflammasomes: guardians of the body. Annu Rev Immunol. 2009;27:229–65. doi:10.1146/annurev.immunol.021908.132715.

    Article  CAS  PubMed  Google Scholar 

  107. Kitase Y, Shuler CF. Multi-layered hypertrophied MEE formation by microtubule disruption via GEF-H1/RhoA/ROCK signaling pathway. Dev Dyn. 2012;241(7):1169–82. doi:10.1002/dvdy.23800.

    Article  CAS  PubMed  Google Scholar 

  108. Etienne-Manneville S, Hall A. Rho GTPases in cell biology. Nature. 2002;420(6916):629–35. doi:10.1038/nature01148.

    Article  CAS  PubMed  Google Scholar 

  109. Takesono A, Heasman SJ, Wojciak-Stothard B, Garg R, Ridley AJ. Microtubules regulate migratory polarity through Rho/ROCK signaling in T cells. PLoS One. 2010;5(1):e8774. doi:10.1371/journal.pone.0008774.

    Article  PubMed Central  PubMed  Google Scholar 

  110. Aldieri E, Riganti C, Silvagno F, Orecchia S, Betta PG, Doublier S et al. Antioxidants prevent the RhoA inhibition evoked by crocidolite asbestos in human mesothelial and mesothelioma cells. Am J Respir Cell Mol Biol. 2011;45(3):625–31. doi:2010-0089OC [pii] 10.1165/rcmb.2010-0089OC.

  111. Qu G, Zhang C, Yuan L, He J, Wang Z, Wang L, et al. Quantum dots impair macrophagic morphology and the ability of phagocytosis by inhibiting the Rho-associated kinase signaling. Nanoscale. 2012;4(7):2239–44. doi:10.1039/c2nr30243h.

    Article  CAS  PubMed  Google Scholar 

  112. Labbe K, Saleh M. Cell death in the host response to infection. Cell Death Differ. 2008;15(9):1339–49. doi:10.1038/cdd.2008.91.

    Article  CAS  PubMed  Google Scholar 

  113. Sollberger G, Strittmatter GE, Garstkiewicz M, Sand J, Beer HD. Caspase-1: the inflammasome and beyond. Innate Immun. 2014;20(2):115–25. doi:10.1177/1753425913484374.

    Article  PubMed  Google Scholar 

  114. Lamkanfi M, Dixit VM. Inflammasomes and their roles in health and disease. Annu Rev Cell Dev Biol. 2012;28:137–61. doi:10.1146/annurev-cellbio-101011-155745.

    Article  CAS  PubMed  Google Scholar 

  115. Hussain S, Sangtian S, Anderson SM, Snyder RJ, Marshburn JD, Rice AB, et al. Inflammasome activation in airway epithelial cells after multi-walled carbon nanotube exposure mediates a profibrotic response in lung fibroblasts. Part Fibre Toxicol. 2014;11:28. doi:10.1186/1743-8977-11-28.

    Article  PubMed Central  PubMed  Google Scholar 

  116. Reisetter AC, Stebounova LV, Baltrusaitis J, Powers L, Gupta A, Grassian VH et al. Induction of inflammasome-dependent pyroptosis by carbon black nanoparticles. J Biol Chem. 2011;286(24):21844–52. doi:M111.238519 [pii] 10.1074/jbc.M111.238519.

Download references

Acknowledgments

This work was supported in part by JSPS KAKENHI (Grant Number 24590868).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanae Kanno Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Japan

About this chapter

Cite this chapter

Kanno, S. (2016). NLRP3 Inflammasome-Mediated Toxicity of Fibrous Particles. In: Otsuki, T., Yoshioka, Y., Holian, A. (eds) Biological Effects of Fibrous and Particulate Substances. Current Topics in Environmental Health and Preventive Medicine. Springer, Tokyo. https://doi.org/10.1007/978-4-431-55732-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-55732-6_2

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-55731-9

  • Online ISBN: 978-4-431-55732-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics