Skip to main content

Advertisement

Log in

The role of the inflammasome in cellular responses to toxins and bacterial effectors

  • Review
  • Published:
Seminars in Immunopathology Aims and scope Submit manuscript

Abstract

Invading pathogens are recognized by mammalian cells through dedicated receptors found either at the cell surface or in the cytoplasm. These receptors, like the trans-membrane Toll-like Receptors (TLR) or the cytosolic Nod-like Receptors (NLR), initiate innate immunity after recognition of molecular patterns found in bacteria or viruses, such as LPS, flagellin, or double-stranded RNA. Recognition of molecules produced only by a specific pathogen, such as a viral envelop protein or a bacterial adhesin does not appear to occur. Bacterial protein toxins, however, might compose an intermediate class. Considering the diversity of toxins in terms of structure, it is unlikely that cells respond to them via specific molecular recognition. It rather appears that different classes of toxins trigger cellular changes that are sensed by the cells as danger signals, such as changes in cellular ion composition after membrane perforation by pore-forming toxins or type III secretion systems. The signaling pathways triggered through toxin-induced cell alterations will likely play a role in modulating host responses to virulent bacteria. We will here describe the few studied cases in which detection of the toxin by the host cell was addressed. The review will include not only toxins but also bacteria effectors secreted by the bacterium in to the host cell cytoplasm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Abrami L, Fivaz M et al (2000) Adventures of a pore-forming toxin at the target cell surface. Trends Microbiol 8(4):168–172

    Article  PubMed  CAS  Google Scholar 

  2. Abrami L, Reig N et al (2005) Anthrax toxin: the long and winding road that leads to the kill. Trends Microbiol 13(2):72–78

    Article  PubMed  CAS  Google Scholar 

  3. Akira S, Uematsu S et al (2006) Pathogen recognition and innate immunity. Cell 124(4):783–801

    Article  PubMed  CAS  Google Scholar 

  4. Alouf JE, Freer JH (eds) (2005) The comprehensive sourcebook of bacterial protein toxins. Academic Press, London

    Google Scholar 

  5. Amer A, Franchi L et al (2006) Regulation of Legionella phagosome maturation and infection through flagellin and host Ipaf. J Biol Chem 281(46):35217–35223

    Article  PubMed  CAS  Google Scholar 

  6. Arbibe L, Kim DW et al (2007) An injected bacterial effector targets chromatin access for transcription factor NF-kappaB to alter transcription of host genes involved in immune responses. Nat Immunol 8(1):47–56

    Article  PubMed  CAS  Google Scholar 

  7. Aroian R, van der Goot FG (2007) Pore-forming toxins and cellular non-immune defenses (CNIDs). Curr Opin Microbiol 10(1):57–61

    Article  PubMed  CAS  Google Scholar 

  8. Baldari CT, Tonello F et al (2006) Anthrax toxins: a paradigm of bacterial immune suppression. Trends Immunol 27(9):434–440

    Article  PubMed  CAS  Google Scholar 

  9. Boyden ED, WF Dietrich (2006) Nalp1b controls mouse macrophage susceptibility to anthrax lethal toxin. Nat Genet 38(2):240–244

    Article  PubMed  CAS  Google Scholar 

  10. Bradley KA, Mogridge J et al (2001) Identification of the cellular receptor for anthrax toxin. Nature 414(6860):225–229

    Article  PubMed  CAS  Google Scholar 

  11. Chaowagul W, White NJ et al (1989) Melioidosis: a major cause of community-acquired septicemia in northeastern Thailand. J Infect Dis 159(5):890–899

    PubMed  CAS  Google Scholar 

  12. Chen LM, Kaniga K et al (1996) Salmonella spp. are cytotoxic for cultured macrophages. Mol Microbiol 21(5):1101–1115

    Article  PubMed  CAS  Google Scholar 

  13. Chen Y, Smith MR et al (1996) A bacterial invasin induces macrophage apoptosis by binding directly to ICE. Embo J 15(15):3853–3860

    PubMed  CAS  Google Scholar 

  14. Collier RJ (1990) Diphtheria toxin: Structure and function of a cytocidal protein. ADP-ribosylating toxins and G proteins: Insights into signal transduction. J. M. a. M. Vaughan. Washington DC, American Society of Microbiology: 3–19

  15. Cordoba-Rodriguez R, Fang H et al (2004) Anthrax lethal toxin rapidly activates caspase-1/ICE and induces extracellular release of interleukin (IL)-1beta and IL-18. J Biol Chem 279(20):20563–20566

    Article  PubMed  CAS  Google Scholar 

  16. Cossart P, Sansonetti PJ (2004) Bacterial invasion: the paradigms of enteroinvasive pathogens. Science 304(5668):242–248

    Article  PubMed  CAS  Google Scholar 

  17. Dinarello CA (1998) Interleukin-1 beta, interleukin-18, and the interleukin-1 beta converting enzyme. Ann N Y Acad Sci 856:1–11

    Article  PubMed  CAS  Google Scholar 

  18. Ding Z, Atmakuri K et al (2003) The outs and ins of bacterial type IV secretion substrates. Trends Microbiol 11(11):527–535

    Article  PubMed  CAS  Google Scholar 

  19. Faustin B, Lartigue L et al (2007) Reconstituted Nalp1 inflammasome reveals two-step mechanism of caspase-1 activation. Mol Cell 25:713–724

    Article  PubMed  CAS  Google Scholar 

  20. Fink SL, Cookson BT (2005) Apoptosis, pyroptosis, and necrosis: mechanistic description of dead and dying eukaryotic cells. Infect Immun 73(4):1907–1916

    Article  PubMed  CAS  Google Scholar 

  21. Fink SL, Cookson BT (2006) Caspase-1-dependent pore formation during pyroptosis leads to osmotic lysis of infected host macrophages. Cell Microbiol 8(11):1812–1825

    Article  PubMed  CAS  Google Scholar 

  22. Franchi L, Amer A et al (2006) Cytosolic flagellin requires Ipaf for activation of caspase-1 and interleukin 1beta in salmonella-infected macrophages. Nat Immunol 7(6):576–582

    Article  PubMed  CAS  Google Scholar 

  23. Geny B, Popoff MR (2006) Bacterial protein toxins and lipids: Pore formation or toxin entry into cells. Biol Cell 98(11):667–678

    Article  PubMed  CAS  Google Scholar 

  24. Giddings KS, Zhao J et al (2004) Human CD59 is a receptor for the cholesterol dependent cytolysin intermedilysin. Nat Struct Mol Biol 11:1173–1178

    Article  PubMed  CAS  Google Scholar 

  25. Griffitts JS, Haslam SM et al (2005) Glycolipids as receptors for Bacillus thuringiensis crystal toxin. Science 307:922–925

    Article  PubMed  CAS  Google Scholar 

  26. Goldstein JL, DeBose-Boyd RA et al (2006) Protein sensors for membrane sterols. Cell 124(1):35–46

    Article  PubMed  CAS  Google Scholar 

  27. Gurcel L, Abrami L et al (2006) Caspase-1 dependent activation of SREBPS promotes cell survival in response to bacterial pore-forming toxins. Cell 126:1135–1145

    Article  PubMed  CAS  Google Scholar 

  28. Gurcel L, Iacovache I et al (2005) Aerolysin and related Aeromonas toxins. The comprehensive sourcebook of bacterial protein toxins. JE Alouf, JH Freer, Academic, London

  29. Haugwitz U, Bobkiewicz W et al (2006) Pore-forming Staphylococcus aureusalpha-toxin triggers epidermal growth factor receptor-dependent proliferation. Cell Microbiol 8(10):1591–1600

    Article  PubMed  CAS  Google Scholar 

  30. Hernandez LD, Hueffer K et al (2004) Salmonella modulates vesicular traffic by altering phosphoinositide metabolism. Science 304(5678):1805–1807

    Article  PubMed  CAS  Google Scholar 

  31. Hersh D, Monack DM et al (1999) The Salmonella invasin SipB induces macrophage apoptosis by binding to caspase-1. Proc Natl Acad Sci USA 96(5):2396–2401

    Article  PubMed  CAS  Google Scholar 

  32. Heuck AP, Tweten RK et al (2001) Beta-barrel pore-forming toxins: intriguing dimorphic proteins. Biochemistry 40(31):9065–9073

    Article  PubMed  CAS  Google Scholar 

  33. Hilbi H, Chen Y et al (1997) The interleukin 1beta-converting enzyme, caspase 1, is activated during Shigella flexneri-induced apoptosis in human monocyte-derived macrophages. Infect Immun 65(12):5165–5170

    PubMed  CAS  Google Scholar 

  34. Hilbi H, Moss JE et al (1998) Shigella-induced apoptosis is dependent on caspase-1 which binds to IpaB. J Biol Chem 273(49):32895–32900

    Article  PubMed  CAS  Google Scholar 

  35. Huffman DL, Abrami L et al (2004) Mitogen-activated protein kinase pathways defend against bacterial pore-forming toxins. Proc Natl Acad Sci USA 101(30):10995–11000

    Article  PubMed  CAS  Google Scholar 

  36. Husmann M, Dersch K et al (2006) Differential role of p38 mitogen activated protein kinase for cellular recovery from attack by pore-forming S. aureus alpha-toxin or streptolysin O. Biochem Biophys Res Commun 344(4):1128–1134

    Article  CAS  Google Scholar 

  37. Kanneganti TD, Lamkanfi M et al (2007) Pannexin-1-mediated recognition of bacterial molecules activates the Cryopyrin inflammasome independent of Toll-like receptor signaling. Immunity 26(4):433–443

    Article  PubMed  CAS  Google Scholar 

  38. Lemaitre B, Nicolas E et al (1996) The dorsoventral regulatory gene cassette spatzle/Toll/cactus controls the potent antifungal response in Drosophila adults. Cell 86(6):973–983

    Article  PubMed  CAS  Google Scholar 

  39. Lencer WI, Tsai B (2003) The intracellular voyage of cholera toxin: going retro. Trends Biochem Sci 28(12):639–645

    Article  PubMed  CAS  Google Scholar 

  40. Madden JC, Ruiz N et al (2001) Cytolysin-mediated translocation (CMT): A functional equivalent of type III secretion in gram-positive bacteria. Cell 104(1):143–152

    Article  PubMed  CAS  Google Scholar 

  41. Mariathasan S (2007) ASC, Ipaf and Cryopyrin/Nalp3: Bona fide intracellular adapters of the caspase-1 inflammasome. Microbes Infect 9(5):664–671

    Article  PubMed  CAS  Google Scholar 

  42. Mariathasan S, Monack DM (2007) Inflammasome adaptors and sensors: intracellular regulators of infection and inflammation. Nat Rev Immunol 7(1):31–40

    Article  PubMed  CAS  Google Scholar 

  43. Mariathasan S, Newton K et al (2004) Differential activation of the inflammasome by caspase-1 adaptors ASC and Ipaf. Nature 430(6996):213–218

    Article  PubMed  CAS  Google Scholar 

  44. Mariathasan S, Weiss DS et al (2006) Cryopyrin activates the inflammasome in response to toxins and ATP. Nature 440(7081):228–232

    Article  PubMed  CAS  Google Scholar 

  45. Martinon F, Burns K et al (2002) The inflammasome: a molecular platform triggering activation of inflammatory caspases and processing of proIL-beta. Mol Cell 10(2):417–426

    Article  PubMed  CAS  Google Scholar 

  46. Martinon F, Tschopp J (2005) NLRs join TLRs as innate sensors of pathogens. Trends Immunol 26(8):447–454

    Article  PubMed  CAS  Google Scholar 

  47. Miao EA, Alpuche-Aranda CM et al (2006) Cytoplasmic flagellin activates caspase-1 and secretion of interleukin 1beta via Ipaf. Nat Immunol 7(6):569–575

    Article  PubMed  CAS  Google Scholar 

  48. Miggin SM, O’Neill LA (2006) New insights into the regulation of TLR signaling. J Leukoc Biol 80(2):220–226

    Article  PubMed  CAS  Google Scholar 

  49. Miggin SM, Palsson-McDermott E et al (2007) NF-kappaB activation by the Toll-IL-1 receptor domain protein MyD88 adapter-like is regulated by caspase-1. Proc Natl Acad Sci USA 104(9):3372–3377

    Article  PubMed  CAS  Google Scholar 

  50. Mota LJ, Sorg I et al (2005) Type III secretion: The bacteria-eukaryotic cell express. FEMS Microbiol Lett 252(1):1–10

    Article  PubMed  CAS  Google Scholar 

  51. Muehlbauer SM, Evering TH et al (2007) Anthrax lethal toxin kills macrophages in a strain-specific manner by apoptosis or caspase-1-mediated necrosis. Cell Cycle 6(6):758–766

    PubMed  CAS  Google Scholar 

  52. Mukherjee S, Keitany G et al (2006) Yersinia YopJ acetylates and inhibits kinase activation by blocking phosphorylation. Science 312(5777):1211–1214

    Article  PubMed  CAS  Google Scholar 

  53. Nicolaou KC, Frederick MO (2007) On the Structure of Maitotoxin. Angew Chem Int Ed Engl

  54. Ozoren N, Masumoto J et al (2006) Distinct roles of TLR2 and the adaptor ASC in IL-1beta/IL-18 secretion in response to Listeria monocytogenes. J Immunol 176(7):4337–4342

    PubMed  Google Scholar 

  55. Parker MW, Feil SC (2005) Pore-forming protein toxins: From structure to function. Prog Biophys Mol Biol 88(1):91–142

    Article  PubMed  CAS  Google Scholar 

  56. Pelegrin P, Surprenant A (2006) Pannexin-1 mediates large pore formation and interleukin-1beta release by the ATP-gated P2X7 receptor. Embo J 25(21):5071–5082

    Article  PubMed  CAS  Google Scholar 

  57. Pelegrin P, Surprenant A (2007) Pannexin-1 couples to maitotoxin- and nigericin-induced interleukin-1beta release through a dye uptake-independent pathway. J Biol Chem 282(4):2386–2394

    Article  PubMed  CAS  Google Scholar 

  58. Perregaux D, Gabel CA (1994) Interleukin-1 beta maturation and release in response to ATP and nigericin. Evidence that potassium depletion mediated by these agents is a necessary and common feature of their activity. J Biol Chem 269(21):15195–15203

    PubMed  CAS  Google Scholar 

  59. Petrilli V, Papin S, Dostert C, Mayor A, Martinon F, Tschopp J (2007) Activation of the NALP3 inflammasome is triggered by low intracellular potassium concentration. Cell Death Differ (in press)

  60. Ratner AJ, Hippe KR et al (2006) Epithelial cells are sensitive detectors of bacterial pore-forming toxins. J Biol Chem

  61. Reig N, van der Goot FG (2006) About lipids and toxins. FEBS Lett 580(23):5572–5579

    Article  PubMed  CAS  Google Scholar 

  62. Ren T, Zamboni DS et al (2006) Flagellin-deficient Legionella mutants evade caspase-1- and Naip5-mediated macrophage immunity. PLoS Pathog 2(3):e18

    Article  PubMed  CAS  Google Scholar 

  63. Rosch J, Caparon M (2004) A microdomain for protein secretion in Gram-positive bacteria. Science 304(5676):1513–1515

    Article  PubMed  CAS  Google Scholar 

  64. Sandvig K, van Deurs B (2002) Transport of protein toxins into cells: Pathways used by ricin, cholera toxin and Shiga toxin. FEBS Lett 529(1):49–53

    Article  PubMed  CAS  Google Scholar 

  65. Sansonetti PJ, Phalipon A et al (2000) Caspase-1 activation of IL-1beta and IL-18 are essential for Shigella flexneri-induced inflammation. Immunity 12(5):581–590

    Article  PubMed  CAS  Google Scholar 

  66. Sarkar A, Duncan M et al (2006) ASC directs NF-kappaB activation by regulating receptor interacting protein-2 (RIP2) caspase-1 interactions. J Immunol 176(8):4979–4986

    PubMed  CAS  Google Scholar 

  67. Scobie HM, Rainey GJ et al (2003) Human capillary morphogenesis protein 2 functions as an anthrax toxin receptor. Proc Natl Acad Sci USA 100(9):5170–5174

    Article  PubMed  CAS  Google Scholar 

  68. Scobie HM, Young JA (2005) Interactions between anthrax toxin receptors and protective antigen. Curr Opin Microbiol 8(1):106–112

    Article  PubMed  CAS  Google Scholar 

  69. Shin H, Cornelis GR (2007) Type III secretion translocation pores of Yersinia enterocolitica trigger maturation and release of Pro-inflammatory IL-1beta. Cell Micro (in press)

  70. Sun GW, Lu J et al (2005) Caspase-1 dependent macrophage death induced by Burkholderia pseudomallei. Cell Microbiol 7(10):1447–1458

    Article  PubMed  CAS  Google Scholar 

  71. Sutterwala FS, Ogura Y, Flavell RA (2007) The inflammasome in pathogen recognition and inflammation. J Leukoc Biol (in press)

  72. Troisfontaines P, Cornelis GR (2005) Type III secretion: more systems than you think. Physiology (Bethesda) 20:326–339

    CAS  Google Scholar 

  73. Tschopp J, Martinon F et al (2003) NALPs: a novel protein family involved in inflammation. Nat Rev Mol Cell Biol 4(2):95–104

    Article  PubMed  CAS  Google Scholar 

  74. Turton K, Chaddock JA et al (2002) Botulinum and tetanus neurotoxins: Structure, function and therapeutic utility. Trends Biochem Sci 27(11):552–558

    Article  PubMed  CAS  Google Scholar 

  75. Tweten RK, Parker MW et al (2001) The cholesterol-dependent cytolysins. Curr Top Microbiol Immunol 257:15–33

    PubMed  CAS  Google Scholar 

  76. Vabulas RM, Wagner H, Schild H (2002) Heat shock proteins as ligands of toll-like receptors. Curr Top Microbiol Immunol 270:169–184

    PubMed  CAS  Google Scholar 

  77. van der Velden AW, Velasquez M et al (2003) Salmonella rapidly kill dendritic cells via a caspase-1-dependent mechanism. J Immunol 171(12):6742–6749

    PubMed  Google Scholar 

  78. Veiga E, Cossart P (2005) Listeria hijacks the clathrin-dependent endocytic machinery to invade mammalian cells. Nat Cell Biol 7(9):894–900

    Article  PubMed  CAS  Google Scholar 

  79. Walev I, Reske K et al (1995) Potassium-inhibited processing of IL-1 beta in human monocytes. Embo J 14(8):1607–1614

    PubMed  CAS  Google Scholar 

  80. Wisnoskey BJ, Estacion M et al (2004) Maitotoxin-induced cell death cascade in bovine aortic endothelial cells: divalent cation specificity and selectivity. Am J Physiol Cell Physiol 287(2):C345–C356

    Article  PubMed  CAS  Google Scholar 

  81. Yamamoto M, Yaginuma K et al (2004) ASC is essential for LPS-induced activation of procaspase-1 independently of TLR-associated signal adaptor molecules. Genes Cells 9(11):1055–1067

    Article  PubMed  CAS  Google Scholar 

  82. Zamboni DS, Kobayashi KS et al (2006) The Birc1e cytosolic pattern-recognition receptor contributes to the detection and control of Legionella pneumophila infection. Nat Immunol 7(3):318–325

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Gisou van der Goot.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Freche, B., Reig, N. & van der Goot, F.G. The role of the inflammasome in cellular responses to toxins and bacterial effectors. Semin Immunopathol 29, 249–260 (2007). https://doi.org/10.1007/s00281-007-0085-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00281-007-0085-0

Keywords

Navigation