Skip to main content

Molecular Aspects of Zinc Signals

  • Chapter
  • First Online:
Zinc Signals in Cellular Functions and Disorders

Abstract

Zinc ions (Zn2+) have chemical properties that make them ideally suited to carry biological information in intracellular and intercellular communication. Such zinc signaling has much in common with calcium signaling in terms of fast binding in coordination environments of proteins, but there are also important differences between the two metal ions. Biological control with zinc occurs at much lower metal ion concentrations. Zinc ions bind with higher affinity and hence dissociation rates are slower, resulting in longer-lasting biological effects. Selectivity of coordination environments is different as zinc employs oxygen, nitrogen, and sulfur donors from ligands whereas calcium binds almost exclusively to oxygen donors. Zinc and calcium ions are redox inert but sulfur donors in zinc/thiolate coordination environments confer redox activity, thereby linking zinc metabolism and redox metabolism. In humans, 24 zinc transporters and more than 12 metallothioneins exert precise control over cellular zinc homeostasis, cellular redistribution, and transients of zinc ions that are used for biological regulation. Zinc ions are stored in subcellular compartments and released by different stimuli. Rises in cytosolic Zn2+ concentrations target proteins and affect a variety of cellular processes, such as phosphorylation signaling and gene expression. Zinc signaling complements and interacts with calcium signaling and redox signaling and is an integral part of the cellular signal transduction network. It has fundamental importance for health and disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aizenman E, Stout AK, Hartnett KA et al (2000) Induction of neuronal apoptosis by thiol oxidation: putative role of intracellular zinc release. J Neurochem 75:1878–1888

    Article  PubMed  CAS  Google Scholar 

  • Andreini C, Banci L, Bertini I et al (2006) Counting the zinc-proteins encoded in the human genome. J Proteome Res 5:196–201

    Article  PubMed  CAS  Google Scholar 

  • Bal W, Kurowska E, Maret W (2012a) The final frontier of pH and the undiscovered country beyond. PLoS One 7:e45832

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Bal W, Sokolowska M, Kurowska E et al (2012b) Binding of transition metal ions to albumin: sites, affinities and rates. Biochim Biophys Acta 1830:5444–5455

    Article  Google Scholar 

  • Beyersmann D, Haase H (2001) Functions of zinc in signaling, proliferation and differentiation of mammalian cells. Biometals 14:331–341

    Article  PubMed  CAS  Google Scholar 

  • Bozym RA, Thompson RB, Stoddard AK et al (2006) Measuring picomolar intracellular exchangeable zinc in PC-12 cells using a ratiometric fluorescence biosensor. ACS Chem Biol 1:103–111

    Article  PubMed  CAS  Google Scholar 

  • Chen Y, Maret W (2001) Catalytic selenols couple the redox cycles of metallothionein and glutathione. Eur J Biochem 268:3346–3353

    Article  PubMed  CAS  Google Scholar 

  • Chong CR, Auld DS (2007) Catalysis of zinc transfer by d-penicillamine to secondary chelators. J Med Chem 50:5524–5527

    Article  PubMed  CAS  Google Scholar 

  • Colvin RA, Bush AI, Volitakis I et al (2008) Insights into Zn2+ homeostasis in neurons from experimental and modeling studies. Am J Physiol Cell Physiol 294:C726–C742

    Article  PubMed  CAS  Google Scholar 

  • Colvin RA, Holmes WR, Fontaine CP et al (2010) Cytosolic zinc buffering and muffling: their role in intracellular zinc homeostasis. Metallomics 2:306–317

    Article  PubMed  CAS  Google Scholar 

  • Danscher G, Stoltenberg M (2005) Zinc-specific autometallographic in vivo selenium methods: tracing of zinc-enriched (ZEN) pathways, and pools of zinc ions in a multitude of other ZEN cells. J Histochem Cytochem 53:141–153

    Article  PubMed  CAS  Google Scholar 

  • Frederickson CJ, Koh J-Y, Bush AI (2005) The neurobiology of zinc in health and disease. Nat Rev Neurosci 6:449–462

    Article  PubMed  CAS  Google Scholar 

  • Fukada T, Kambe T (2011) Molecular and genetic features of zinc transporters in physiology and pathogenesis. Metallomics 3:662–674

    Article  PubMed  CAS  Google Scholar 

  • Fukada T, Yamasaki S, Nishida K et al (2011) Zinc homeostasis and signaling in health and diseases. J Biol Inorg Chem 16:1123–1134

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • GĂĽnther V, Lindert U, Schaffner W (2012) The taste of heavy metals: gene regulation by MTF-1. Biochim Biophys Acta 1823:1416–1425

    Article  PubMed  Google Scholar 

  • Haase H, Rink L (2014) Zinc signals and immune function. Biofactors 40:27–40

    Article  PubMed  CAS  Google Scholar 

  • Hao Q, Maret W (2006) Aldehydes release zinc from proteins. A pathway from oxidative stress/lipid peroxidation to cellular functions of zinc. FEBS J 273:4300–4310

    Article  PubMed  CAS  Google Scholar 

  • Heinz U, Kiefer M, Tholey A et al (2005) On the competition for available zinc. J Biol Chem 280:3197–3207

    Article  PubMed  CAS  Google Scholar 

  • Hershfinkel M, Moran A, Grossman N et al (2001) A zinc-sensing receptor triggers the release of intracellular Ca2+ and regulates ion transport. Proc Natl Acad Sci USA 98:11749–11754

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Hirano T, Murakami M, Fukada T et al (2008) Roles of zinc and zinc signaling in immunity: zinc as an intracellular signaling molecule. Adv Immunol 97:149–176

    Article  PubMed  CAS  Google Scholar 

  • Hogstrand C, Verbost PM, Wendelaar Bonga SE (1999) Inhibition of human Ca2+-ATPase by Zn2+. Toxicology 133:139–145

    Article  PubMed  CAS  Google Scholar 

  • Hogstrand C, Kille P, Ackland ML et al (2013) A mechanism for epithelial-mesenchymal transition and anoikis resistance in breast cancer triggered by zinc channel ZIP6 and signal transducer and activator of transcription 3 (STAT3). Biochem J 455:229–237

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Holst B, Egerod KL, Schild E et al (2007) GPR39 signaling is stimulated by zinc ions but not by obestatin. Endocrinology 148:13–20

    Article  PubMed  CAS  Google Scholar 

  • Ippolito JA, Baird TT Jr, McGee SA et al (1995) Structure-assisted redesign of a protein zinc-binding site with femtomolar affinity. Proc Natl Acad Sci USA 92:5017–5021

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Irving H, Williams RJP (1948) Order of stability of metal complexes. Nature (Lond) 162:746–747

    Article  CAS  Google Scholar 

  • Jacob C, Maret W, Vallee BL (1998) Control of zinc transfer between thionein, metallothionein and zinc proteins. Proc Natl Acad Sci USA 95:3489–3494

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Kaltenberg J, Plum JL, Ober-Blöbaum JL et al (2010) Zinc signals promote IL-2-dependent proliferation of T-cells. Eur J Immunol 40:1496–1503

    Article  PubMed  CAS  Google Scholar 

  • Kim AM, Bernhardt ML, Kong BY et al (2011) Zinc sparks are triggered by fertilization and facilitate cell cycle resumption in mammalian eggs. ACS Chem Biol 6:716–723

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Krężel A, Maret W (2006) Zinc buffering capacity of a eukaryotic cell at physiological pH. J Biol Inorg Chem 11:1049–1062

    Article  PubMed  Google Scholar 

  • Krężel A, Maret W (2007) The nanomolar and picomolar Zn(II) binding properties of metallothionein. J Am Chem Soc 129:10911–10921

    Article  PubMed  Google Scholar 

  • Krężel A, Maret W (2008) Thionein/metallothionein control Zn(II) availability and the activity of enzymes. J Biol Inorg Chem 13:401–409

    Article  PubMed  Google Scholar 

  • Krężel A, Hao Q, Maret W (2007) The zinc/thiolate redox biochemistry of metallothionein and the control of zinc ion fluctuations in cell signaling. Arch Biochem Biophys 463:188–200

    Article  PubMed  Google Scholar 

  • Laity JH, Andrews GK (2007) Understanding the mechanism of zinc-sensing by metal-responsive element binding transcription factor-1 (MTF-1). Arch Biochem Biophys 463:201–210

    Article  PubMed  CAS  Google Scholar 

  • Levy S, Beharier O, Etzion Y et al (2009) Molecular basis for zinc transporter 1 action as an endogenous inhibitor of L-type calcium channels. J Biol Chem 284:32434–32443

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Li Y, Maret W (2008) Human metallothionein metallomics. J Anal Atom Spectrom 23:1055–1062

    Article  CAS  Google Scholar 

  • Li Y, Maret W (2009) Transient fluctuations of intracellular zinc ions in cell proliferation. Exp Cell Res 315:2463–2470

    Article  PubMed  CAS  Google Scholar 

  • Lu M, Fu D (2007) Structure of the zinc transporter YiiP. Science 317:1746–1748

    Article  PubMed  CAS  Google Scholar 

  • Magneson GR, Puvathingal JM, Ray WJ (1987) The concentration of free Mg2+ and free Zn2+ in equine blood plasma. J Biol Chem 262:11140–11148

    PubMed  CAS  Google Scholar 

  • Maret W (2001) Crosstalk of the group IIa and IIb metals calcium and zinc in cellular signaling. Proc Natl Acad Sci USA 98:12325–12327

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Maret W (2004a) Zinc and sulfur: a critical biological partnership. Biochemistry 43:3301–3309

    Article  PubMed  CAS  Google Scholar 

  • Maret W (2004b) Protein interface zinc sites: a role of zinc in the supramolecular assembly of proteins and in transient protein–protein interactions. In: Messerschmidt A, Bode W, Cygler M (eds) Handbook of metalloproteins, vol 3. Wiley, Chichester, pp 432–441

    Google Scholar 

  • Maret W (2006) Zinc coordination environments in proteins as redox sensors and signal transducers. Antioxid Redox Signal 8:1419–1441

    Article  PubMed  CAS  Google Scholar 

  • Maret W (2008a) Metallothionein redox biology in the cytoprotective and cytotoxic functions of zinc. Exp Gerontol 43:363–369

    Article  PubMed  CAS  Google Scholar 

  • Maret W (2008b) Zinc proteomics and the annotation of the human zinc proteome. Pure Appl Chem 80:2679–2687

    Article  CAS  Google Scholar 

  • Maret W (2009) Molecular aspects of human cellular zinc homeostasis: redox control of zinc potentials and zinc signals. Biometals 22:149–157

    Article  PubMed  CAS  Google Scholar 

  • Maret W (2011a) Redox biochemistry of mammalian metallothioneins. J Biol Inorg Chem 16:1079–1086

    Article  PubMed  CAS  Google Scholar 

  • Maret W (2011b) Metals on the move: zinc ions in cellular regulation and in the coordination dynamics of zinc proteins. Biometals 24:411–418

    Article  PubMed  CAS  Google Scholar 

  • Maret W (2012) New perspectives of zinc coordination environments in proteins. J Inorg Biochem 111:110–116

    Article  PubMed  CAS  Google Scholar 

  • Maret W (2013a) Zinc biochemistry: from a single zinc enzyme to a key element of life. Adv Nutr 4:82–91

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Maret W (2013b) Inhibitory zinc sites in enzymes. Biometals 26:197–204

    Article  PubMed  CAS  Google Scholar 

  • Maret W, Li Y (2009) Coordination dynamics of zinc in proteins. Chem Rev 109:4682–4707

    Article  PubMed  CAS  Google Scholar 

  • Maret W, Vallee BL (1998) Thiolate ligands in metallothionein confer redox activity on zinc clusters. Proc Natl Acad Sci USA 95:3478–3482

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Maret W, Larsen KS, Vallee BL (1997) Coordination dynamics of biological zinc “clusters” in metallothioneins and in the DNA-binding domain of the transcription factor Gal4. Proc Natl Acad Sci USA 94:2233–2237

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Maret W, Jacob C, Vallee BL et al (1999) Inhibitory sites in enzymes: zinc removal and reactivation by thionein. Proc Natl Acad Sci USA 96:1936–1940

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • McCranor BJ, Bozym RA, Vitolo MI et al (2012) Quantitative imagine of mitochondrial and cytosolic free zinc levels in an in vitro model of ischemia/reperfusion. J Bioenerg Biomembr 44:253–263

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Mor M, Beharier O, Levy S et al (2012) ZnT-1 enhances the activity and surface expression of T-type calcium channels through activation of Ras-ERK signaling. Am J Physiol Cell Physiol 303:C192–C203

    Article  PubMed  CAS  Google Scholar 

  • Nydegger I, Rumschik SM, Zhao J et al (2012) Evidence for an extracellular zinc-veneer in rodent brains from experiments with Zn-ionophores and ZnT3 knockouts. ACS Chem Neurosci 3:761–766

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Ohyoshi E, Hamada Y, Nakata K et al (1999) The interaction between human and bovine serum albumin and zinc studied by a competitive spectrophotometry. J Inorg Biochem 75:213–218

    Article  PubMed  CAS  Google Scholar 

  • Paoletti P, Ascher P, Neyton J (1997) High-affinity inhibition of NMDA NR1-NR2A receptors. J Neurosci 17:5711–5725

    PubMed  CAS  Google Scholar 

  • Park JG, Qin Y, Galati DF et al (2012) New sensors for quantitative measurement of mitochondrial Zn(2+). ACS Chem Biol 7:1636–1640

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Pearce LL, Gandley RE, Han W et al (2000) Role of metallothionein in nitric oxide signaling as revealed by a green fluorescent fusion protein. Proc Natl Acad Sci USA 97:477–482

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Peck EJ, Ray WJ (1971) Metal complexes of phosphoglucomutase in vivo. J Biol Chem 246:1160–1167

    PubMed  Google Scholar 

  • Qin Y, Dittmer PJ, Park JG et al (2011) Measuring steady-state and dynamic endoplasmic reticulum and Golgi Zn2+ with genetically encoded sensors. Proc Natl Acad Sci USA 108:7351–7356

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Qiu A, Shayeghi M, Hogstrand C (2005) Molecular cloning and functional characterization of a high-affinity zinc importer (DrZIP1) from zebrafish (Danio rero). Biochem J 388:745–754

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Ray WJ (1969) Role of bivalent cations in the phosphoglucomutase system. J Biol Chem 244:3740–3747

    PubMed  CAS  Google Scholar 

  • Rink L (ed) (2011) Zinc in human health. IOS Press, Amsterdam

    Google Scholar 

  • Sanchez-Blazques P, Rodriguez-Munoz M, Bailon C et al (2012) GPCRs promote the release of zinc ions mediated by nNOS/NO and the redox transducer RGSZ2 protein. Antioxid Redox Signal 17:1163–1177

    Article  Google Scholar 

  • Sensi SL, Paoletti P, Bush AI (2009) Zinc in the physiology and pathology of the CNS. Nat Rev Neurosci 10:780–791

    Article  PubMed  CAS  Google Scholar 

  • Sikorska M, Krężel A, Otlewski J (2012) Femtomolar Zn2+ affinity of LIM domain PDLIM1 protein uncovers crucial contribution of protein–protein interactions to protein stability. J Inorg Biochem 115:28–35

    Article  PubMed  CAS  Google Scholar 

  • Simons TJB (1991) Intracellular free zinc and zinc buffering in human red blood cells. J Membr Biol 123:63–71

    Article  PubMed  CAS  Google Scholar 

  • Spahl DU, Berendji-Gruen D, Suschek CV et al (2003) Regulation of zinc homeostasis by inducible NO synthase-derived NO: nuclear metallothionein translocation and intranuclear Zn2+ release. Proc Natl Acad Sci USA 100:13952–13957

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Stork CJ, Li YV (2010) Zinc release from thapsigargin/IP3-sensitive stores in cultured cortical neurons. J Mol Signal 5:5

    Article  PubMed  PubMed Central  Google Scholar 

  • Takeda A, Nakamura M, Fujii H et al (2013) Synaptic Zn(2+) homeostasis and its significance. Metallomics 5:417–423

    Article  PubMed  CAS  Google Scholar 

  • Tamaki M, Fujitani Y, Hara A et al (2013) The diabetes-susceptibility gene SLC30A8/ZnT8 regulates hepatic insulin clearance. J Clin Invest 123:4513–4524

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Taylor KM, Kille P, Hogstrand C (2012a) Protein kinase CK2 opens the gate for zinc signaling. Cell Cycle 11:1863–1864

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Taylor KM, Hiscox S, Nicholson RI et al (2012b) Protein kinase CK2 triggers cytosolic zinc signaling pathways by phosphorylation of zinc channel ZIP7. Sci Signal 5(210):ra11

    PubMed  PubMed Central  Google Scholar 

  • Thomas RC, Coles JA, Deitmer JW (1991) Homeostatic muffling. Nature (Lond) 350:564

    Article  CAS  Google Scholar 

  • Ueno S, Tsukamoto M, Hirano T et al (2002) Mossy fiber Zn2+ spillover modulates heterosynaptic N-methyl-d-aspartate receptor activity in hippocampal CA3 circuits. J Cell Biol 158:215–220

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Vinkenborg JL, Nicholson TJ, Bellomo EA et al (2009) Genetically encoded FRET sensors to monitor intracellular Zn2+ homeostasis. Nat Methods 6:737–740

    Article  PubMed  CAS  Google Scholar 

  • Wellenreuther G, Cianci M, Tucoulou R et al (2009) The ligand environment of zinc stored in vesicles. Biochem Biophys Res Commun 380:198–203

    Article  PubMed  CAS  Google Scholar 

  • Williams RJP (1984) Zinc: what is its role in biology? Endeavour 8:65–70

    Article  PubMed  CAS  Google Scholar 

  • Wilson M, Hogstrand C, Maret W (2012) Picomolar concentrations of free zinc(II) ions regulate receptor protein tyrosine phosphatase beta activity. J Biol Chem 287:9322–9326

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Yamasaki S, Sakata-Sogawa K, Hasegawa A et al (2007) Zinc is a novel intracellular second messenger. J Cell Biol 177:637–645

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Yamasaki S, Hasegawa A, Hojyo S et al (2012) A novel role of the L-type calcium channel alpha1D subunit as a gatekeeper for intracellular zinc signaling: zinc wave. PLoS One 7:e39654

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Yasuda S, Miyazaki T, Munechika K et al (2007) Isolation of Zn2+ as an endogenous agonist of GPR39 from fetal bovine serum. J Recept Signal Transduct Res 27:235–246

    Article  PubMed  CAS  Google Scholar 

  • Ye B, Maret W, Vallee BL (2001) Zinc metallothionein imported into liver mitochondria modulates respiration. Proc Natl Acad Sci USA 98:2317–2322

    Article  PubMed  CAS  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wolfgang Maret .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Japan

About this chapter

Cite this chapter

Maret, W. (2014). Molecular Aspects of Zinc Signals. In: Fukada, T., Kambe, T. (eds) Zinc Signals in Cellular Functions and Disorders. Springer, Tokyo. https://doi.org/10.1007/978-4-431-55114-0_2

Download citation

Publish with us

Policies and ethics