Skip to main content

Bacterial Preparations

  • Chapter
  • First Online:
Immunotherapy of Cancer

Abstract

From the era of Coley’s toxin back in the beginning of the twentieth century, it was well known that certain acute bacterial infection might lead to the regression of malignant tumors in some cases. Many types of bacteria either in its crude form or with special preparation have been reported to possess immunotherapeutic activity against cancers. To date, experimental studies and clinical implications of those tumor immunotherapies have become more widely examined with more sophisticated methodology, utilizing activation of the two types of human immune system, i.e., innate and adaptive. In this chapter, various bacterial preparations that have been applied for tumor immunotherapy will be introduced, together with the new detailed mechanism of action of those two immune systems that have recently been elucidated. Of note, the efficacies of OK-432, a preparation derived from streptococcus pyogenes, are discussed by a tabulated data and individual patient data meta-analyses of randomized trials of adjuvant immunochemotherapy for lung and gastric cancers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Everson TC (1967) Spontaneous regression of cancer. Prog Clin Cancer 3:79–95

    CAS  PubMed  Google Scholar 

  2. Fauvet J, Campagne J, Chavy A, Piet G (1960) Cures, regressions and spontaneous remissions of cancer. Rev Prat 10:2349–2384

    CAS  PubMed  Google Scholar 

  3. Hoption Cann SA, van Netten JP, van Netten C, Glover DW (2002) Spontaneous regression: a hidden treasure buried in time. Med Hypotheses 58:115–119

    Article  CAS  PubMed  Google Scholar 

  4. Rohdenburg GL (1918) Fluctuations in the growth energy of malignant tumors in man, with especial reference to spontaneous recession. J Cancer Res 3:193–225

    Google Scholar 

  5. Shiku H, Takahashi T, Resnick LA, Oettgen HF, Old LJ (1977) Cell surface antigens of human malignant melanoma. III. Recognition of autoantibodies with unusual characteristics. J Exp Med 145(3):784–789

    Article  CAS  PubMed  Google Scholar 

  6. Ueda R, Shiku H, Pfreundschuh M, Takahashi T, Li LT, Whitmore WF, Oettgen HF, Old LJ (1979) Cell surface antigens of human renal cancer defined by autologous typing. J Exp Med 150(3):564–579

    Article  CAS  PubMed  Google Scholar 

  7. Coley WB II (1891) Contribution to the knowledge of sarcoma. Ann Surg 14(3):199–220

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Zacharski LR, Sukhatme VP (2005) Coley’s toxin revisited: immunotherapy or plasminogen activator therapy of cancer? J Thromb Haemost 3(3):424–427

    Article  CAS  PubMed  Google Scholar 

  9. Wiemann B, Starnes CO (1994) Coley’s toxins, tumor necrosis factor and cancer research: a historical perspective. Pharmacol Ther 64(3):529–564

    Article  CAS  PubMed  Google Scholar 

  10. Kumar H, Kawai T, Akira S (2009) Pathogen recognition in the innate immune response. Biochem J 420(1):1–16. doi:10.1042/BJ20090272

    Article  CAS  PubMed  Google Scholar 

  11. Rossol M, Heine H, Meusch U, Quandt D, Klein C, Sweet MJ, Hauschildt S (2011) LPS-induced cytokine production in human monocytes and macrophages. Crit Rev Immunol 31(5):379–446

    Article  CAS  PubMed  Google Scholar 

  12. Hobohm U, Stanford JL, Grange JM (2008) Pathogen-associated molecular pattern in cancer immunotherapy. Crit Rev Immunol 28(2):95–107

    Article  CAS  PubMed  Google Scholar 

  13. Skitzki JJ, Repasky EA, Evans SS (2009) Hyperthermia as an immunotherapy strategy for cancer. Curr Opin Investig Drugs 10(6):550–558

    PubMed Central  CAS  PubMed  Google Scholar 

  14. Oblak A, Jerala R (2011) Toll-like receptor 4 activation in cancer progression and therapy. Clin Dev Immunol 2011:609579. doi:10.1155/2011/609579, Epub 2011 Nov 3

    Article  PubMed Central  PubMed  Google Scholar 

  15. Hobohm U (2001) Fever and cancer in perspective. Cancer Immunol Immunother 50(8):391–396

    CAS  PubMed  Google Scholar 

  16. Nauts HC, McLaren JR (1990) Coley toxins – the first century. Adv Exp Med Biol 267:483–500

    Article  CAS  PubMed  Google Scholar 

  17. Belardelli F, Ferrantini M, Proietti E, Kirkwood JM (2002) Interferon-alpha in tumor immunity and immunotherapy. Cytokine Growth Factor Rev 13(2):119–134

    Article  CAS  PubMed  Google Scholar 

  18. Petrella T, Quirt I, Verma S, Haynes AE, Charette M, Bak K, Members of the Melanoma Disease Site Group of Cancer Care Ontario's Program in Evidence-Based Care (2007) Single-agent interleukin-2 in the treatment of metastatic melanoma. Curr Oncol 14(1):21–26

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Perabo FG, Müller SC (2004) Current and new strategies in immunotherapy for superficial bladder cancer. Urology 64(3):409–421

    Article  PubMed  Google Scholar 

  20. Maletzki C, Klier U, Obst W, Kreikemeyer B, Linnebacher M (2012) Reevaluating the concept of treating experimental tumors with a mixed bacterial vaccine: Coley’s toxin. Clin Dev Immunol 2012:230625. doi:10.1155/2012/230625, Epub 2012 Nov 11

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Klier U, Maletzki C, Göttmann N, Kreikemeyer B, Linnebacher M (2011) Avitalized bacteria mediate tumor growth control via activation of innate immunity. Cell Immunol 269(2):120–127. doi:10.1016/j.cellimm.2011.03.014, Epub 2011 Mar 17

    Article  CAS  PubMed  Google Scholar 

  22. Hobohm U (2005) Fever therapy revisited. Br J Cancer 92(3):421–425

    PubMed Central  CAS  PubMed  Google Scholar 

  23. Klenk M, Nakata M, Podbielski A, Skupin B, Schroten H, Kreikemeyer B (2007) Streptococcus pyogenes serotype-dependent and independent changes in infected HEp-2 epithelial cells. ISME J 1(8):678–692, Epub 2007 Oct 18

    Article  CAS  PubMed  Google Scholar 

  24. Tsung K, Norton JA (2006) Lessons from Coley’s toxin. Surg Oncol 15(1):25–28, Epub 2006 Jun 30

    Article  PubMed  Google Scholar 

  25. Friedman H, Blanchard DK, Newton C, Klein T, Stewart W II, Keler T, Nowotny A (1987) Distinctive immunomodulatory effects of endotoxin and nontoxic lipopolysaccharide derivatives in lymphoid cell cultures. J Biol Response Modif 6(6):664–677

    CAS  Google Scholar 

  26. Park JM, Fisher DE (2010) Testimony from the bedside: from Coley’s toxins to targeted immunotherapy. Cancer Cell 18(1):9–10. doi:10.1016/j.ccr.2010.06.010

    Article  CAS  PubMed  Google Scholar 

  27. Thomas JA, Badini M (2011) The role of innate immunity in spontaneous regression of cancer. Indian J Cancer 48(2):246–251. doi:10.4103/0019-509X.82887

    Article  CAS  PubMed  Google Scholar 

  28. Mason KA, Hunter NR (2012) CpG plus radiotherapy: a review of preclinical works leading to clinical trial. Front Oncol 2:101. doi:10.3389/fonc.2012.00101. eCollection 2012

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Ursu R, Carpentier AF (2012) Immunotherapeutic approach with oligodeoxynucleotides containing CpG motifs (CpG-ODN) in malignant glioma. Adv Exp Med Biol 746:95–108, Review

    Article  CAS  PubMed  Google Scholar 

  30. Zent CS, Smith BJ, Ballas ZK, Wooldridge JE, Link BK, Call TG, Shanafelt TD, Bowen DA, Kay NE, Witzig TE, Weiner GJ (2012) Phase I clinical trial of CpG oligonucleotide 7909 (PF-03512676) in patients with previously treated chronic lymphocytic leukemia. Leuk Lymphoma 53(2):211–217. doi:10.3109/10428194.2011.608451, Epub 2011 Sep 19

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Xu D, Liu H, Komai-Koma (2004) Direct and indirect role of Toll-like receptors in T cell mediated immunity. Cell Mol Immunol 1(4):239–246

    CAS  PubMed  Google Scholar 

  32. Brown J, Wang H, Hajishengallis GN, Martin M (2011) TLR-signaling networks: an integration of adaptor molecules, kinases, and cross-talk. J Dent Res 90(4):417–427. doi:10.1177/0022034510381264, Epub 2010 Oct 12

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. Itoh T, Satoh H, Isono N, Rikiishi H, Kumagai K (1992) Mechanism of stimulation of T cells by Streptococcus pyogenes: isolation of a major mitogenic factor, cytoplasmic membrane-associated protein. Infect Immun 60(8):3128–3135

    PubMed Central  CAS  PubMed  Google Scholar 

  34. Decker WK, Safdar A (2009) Bioimmunoadjuvants for the treatment of neoplastic and infectious disease: Coley’s legacy revisited. Cytokine Growth Factor Rev 20(4):271–281. doi:10.1016/j.cytogfr.2009.07.004, Epub 2009 Aug 4

    Article  PubMed  Google Scholar 

  35. Millman I, Scott AW, Halbherr T (1977) Antitumor activity of Propionibacterium acnes (Corynebacterium parvum) and isolated cytoplasmic fractions1. Cancer Res 37:4150–4155

    CAS  PubMed  Google Scholar 

  36. Bowlin TL, Rosenberger AL, Sunkara PS (1985) The effect of combination treatment with alpha-difluoromethylornithine and Corynebacterium parvum on B16 melanoma growth and tumoricidal effector cell generation in vivo. Cancer Immunol Immunother 20(3):214–218

    Article  CAS  PubMed  Google Scholar 

  37. Woodruff M, Walbaum P (1983) A phase-II trial of Corynebacterium parvum as adjuvant to surgery in the treatment of operable lung cancer. Cancer Immunol Immunother 16(2):114–116

    Article  CAS  PubMed  Google Scholar 

  38. Ohno R, Nakamura H, Kodera Y, Ezaki K, Yokomaku S, Oguma S, Kubota Y, Shibata H, Ogawa N, Masaoka T (1986) Randomized controlled study of chemoimmunotherapy of acute myelogenous leukemia (AML) in adults with Nocardia rubra cell-wall skeleton and irradiated allogeneic AML cells. Cancer 57(8):1483–1488

    Article  CAS  PubMed  Google Scholar 

  39. Ogura T, Namba N, Hirao F, Yamamura Y, Azuma I (1979) Association of macrophage activation with antitumor effect on rat syngeneic fibrosarcoma by Nocardia rubra cell wall skeleton. Cancer Res 39(11):4706–4712

    CAS  PubMed  Google Scholar 

  40. Saijo N, Ozaki A, Beppu Y, Irimajiri N, Shibuya M, Shimizu E, Takizawa T, Taniguchi T, Hoshi A (1983) In vivo and in vitro effects of Nocardia rubra cell wall skeleton on natural killer activity in mice. Gann 74(1):137–142

    CAS  PubMed  Google Scholar 

  41. Yamamura Y, Ogura T, Sakatani M, Hirao F, Kishimoto S, Fukuoka M, Takada M, Kawahara M, Furuse K, Kuwahara O (1983) Randomized controlled study of adjuvant immunotherapy with Nocardia rubra cell wall skeleton for inoperable lung cancer. Cancer Res 43(11):5575–5579

    CAS  PubMed  Google Scholar 

  42. Urban RW, Edwards BS, Segal W (1980) Tumor-immunotherapeutic efficacy of Serratia marcescens polyribosomes. Cancer Res 40(5):1501–1505

    CAS  PubMed  Google Scholar 

  43. Ikekawa T, Ikeda Y, Fukuoka F (1975) Antitumor activity of polysaccharides from Serratia marcescens. Gann 66(3):317–318

    CAS  PubMed  Google Scholar 

  44. Cress NB, Owens BM, Hill FH (1991) ImuVert therapy in the treatment of recurrent malignant astrocytomas: nursing implications. J Neurosci Nurs 23(1):29–33

    Article  CAS  PubMed  Google Scholar 

  45. Matsuzaki T, Yokokura T, Azuma I (1987) Antimetastatic effect of Lactobacillus casei YIT9018 (LC 9018) on a highly metastatic variant of B16 melanoma in C57BL/6J mice. Cancer Immunol Immunother 24(2):99–105

    Article  CAS  PubMed  Google Scholar 

  46. Yasutake N, Kato I, Ohwaki M, Yokokura T, Mutai M (1984) Host-mediated antitumor activity of Lactobacillus casei in mice. Gann 75(1):72–80

    CAS  PubMed  Google Scholar 

  47. Okawa T1, Niibe H, Arai T, Sekiba K, Noda K, Takeuchi S, Hashimoto S, Ogawa N (1993) Effect of LC9018 combined with radiation therapy on carcinoma of the uterine cervix. A phase III, multicenter, randomized, controlled study. Cancer 72(6):1949–1954

    Article  CAS  PubMed  Google Scholar 

  48. Pulaski BA, Terman DS, Khan S, Muller E, Ostrand-Rosenberg S (2000) Cooperativity of Staphylococcal aureus enterotoxin B superantigen, major histocompatibility complex class II, and CD80 for immunotherapy of advanced spontaneous metastases in a clinically relevant postoperative mouse breast cancer model. Cancer Res 60(10):2710–2715

    CAS  PubMed  Google Scholar 

  49. Mondal TK, Bhatta D, Biswas S, Pal P (2002) Repeated treatment with S. aureus superantigens expands the survival rate of Ehrlich ascites tumor bearing mice. Immunol Invest 31(1):13–28

    Article  CAS  PubMed  Google Scholar 

  50. Messerschmidt GL, Bowles CA, Henry DH, Deisseroth AB (1984) Clinical trials with Staphylococcus aureus and protein A in the treatment of malignant disease. J Biol Response Modif 3(3):325–329

    CAS  Google Scholar 

  51. Kim SH, Castro F, Paterson Y, Gravekamp C (2009) High efficacy of a Listeria-based vaccine against metastatic breast cancer reveals a dual mode of action. Cancer Res 69(14):5860–5866. doi:10.1158/0008-5472.CAN-08-4855, Epub 2009 Jul 7

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  52. Wood LM, Guirnalda PD, Seavey MM, Paterson Y (2008) Cancer immunotherapy using Listeria monocytogenes and listerial virulence factors. Immunol Res 42(1–3):233–245. doi:10.1007/s12026-008-8087-0

    Article  PubMed Central  PubMed  Google Scholar 

  53. Wood LM, Paterson Y (2014) Attenuated Listeria monocytogenes: a powerful and versatile vector for the future of tumor immunotherapy. Front Cell Infect Microbiol 4:51. doi:10.3389/fcimb.2014.00051

    Article  PubMed Central  PubMed  Google Scholar 

  54. Young SL, Murphy M, Zhu XW, Harnden P, O’Donnell MA, James K, Patel PM, Selby PJ, Jackson AM (2004) Cytokine-modified Mycobacterium smegmatis as a novel anticancer immunotherapy. Int J Cancer 112(4):653–660

    Article  CAS  PubMed  Google Scholar 

  55. Vosika GJ, Schmidtke JR, Goldman A, Ribi E, Parker R, Gray GR (1979) Intralesional immunotherapy of malignant melanoma with mycobacterium smegmatis cell wall skeleton combined with trehalose dimycolate (P3). Cancer 44(2):495–503

    Article  CAS  PubMed  Google Scholar 

  56. Decroix G, Chastang C, Fichet D, Asselain B, Lebeau B, Morice V, Lepage T, Babo P, Fabre C, Rebischung JL (1984) Adjuvant immunotherapy with nonviable Mycobacterium smegmatis in resected primary lung carcinoma. A randomized clinical trial of 219 patients. Cancer 53(4):906–912

    Article  CAS  PubMed  Google Scholar 

  57. O’Brien ME, Saini A, Smith IE, Webb A, Gregory K, Mendes R, Ryan C, Priest K, Bromelow KV, Palmer RD, Tuckwell N, Kennard DA, Souberbielle BE (2000) A randomized phase II study of SRL172 (Mycobacterium vaccae) combined with chemotherapy in patients with advanced inoperable non-small-cell lung cancer and mesothelioma. Br J Cancer 83(7):853–857

    Article  PubMed Central  PubMed  Google Scholar 

  58. Nicholson S, Guile K, John J, Clarke IA, Diffley J, Donnellan P, Michael A, Szlosarek P, Dalgleish AG (2003) A randomized phase II trial of SRL172 (Mycobacterium vaccae) +/− low-dose interleukin-2 in the treatment of metastatic malignant melanoma. Melanoma Res 13(4):389–393

    Article  CAS  PubMed  Google Scholar 

  59. Patel PM, Sim S, O’Donnell DO, Protheroe A, Beirne D, Stanley A, Tourani JM, Khayat D, Hancock B, Vasey P, Dalgleish A, Johnston C, Banks RE, Selby PJ (2008) An evaluation of a preparation of Mycobacterium vaccae (SRL172) as an immunotherapeutic agent in renal cancer. Eur J Cancer 44(2):216–223. doi:10.1016/j.ejca.2007.11.003

    Article  CAS  PubMed  Google Scholar 

  60. Eisenstein TK, Bushnell B, Meissler JJ Jr, Dalal N, Schafer R, Havas HF (1995) Immunotherapy of a plasmacytoma with attenuated salmonella. Med Oncol 12(2):103–108

    Article  CAS  PubMed  Google Scholar 

  61. Chorobik P, Marcinkiewicz J (2011) Therapeutic vaccines based on genetically modified Salmonella: a novel strategy in cancer immunotherapy. Pol Arch Med Wewn 121(12):461–466, Review

    CAS  PubMed  Google Scholar 

  62. Niethammer AG, Lubenau H, Mikus G, Knebel P, Hohmann N, Leowardi C, Beckhove P, Akhisaroglu M, Ge Y, Springer M, Grenacher L, Buchler MW, Koch M, Weitz J, Haefeli WE, Schmitz-Winnenthal FH (2012) Double-blind, placebo-controlled first in human study to investigate an oral vaccine aimed to elicit an immune reaction against the VEGF-Receptor 2 in patients with stage IV and locally advanced pancreatic cancer. BMC Cancer 12:361. doi:10.1186/1471-2407 -12-361

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  63. Sasaki T, Chihara G, Takasuka N, Suzuki S (1976) Effect of Clostridium toxoids, especially of Clostridium perfringens toxoid, on mouse transplanted tumors. Gann 67(2):275–277

    CAS  PubMed  Google Scholar 

  64. Sethi KK, Brandis H (1973) Neuraminidase induced loss in the transplantability of murine leukaemia L 1210, induction of immunoprotection and the transfer of induced immunity to normal DBA-2 mice by serum and peritoneal cells. Br J Cancer 27(2):106–113

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  65. Dang LH, Bettegowda C, Huso DL, Kinzler KW, Vogelstein B (2001) Combination bacteriolytic therapy for the treatment of experimental tumors. Proc Natl Acad Sci U S A 98:15155–15160

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  66. Agrawal N, Bettegowda C, Cheong I, Geschwind JF, Drake CG, Hipkiss EL, Tatsumi M, Dang LH, Diaz LA, Pomper M, Abusedera M, Wahl RL, Kinzler KW, Zhou S, Huso DL, Vogelstein B (2004) Bacteriolytic therapy can generate a potent immune response against experimental tumors. Proc Natl Acad Sci U S A 101:15172–15177

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  67. Aoki T, Kvedar JP, Hollis VW Jr, Bushar GS (1976) Streptococcus pyogenes preparation OK-432: immunoprophylactic and immunotherapeutic effects on the incidence of spontaneous leukemia in AKR mice. J Natl Cancer Inst 56(3):687–690

    CAS  PubMed  Google Scholar 

  68. Higuchi Y (1986) Cytotoxic and antitumor activity of a soluble fraction of Streptococcus pyogenes against S180 sarcoma cells. Jpn J Med Sci Biol 39(4):169–175

    Article  CAS  PubMed  Google Scholar 

  69. Fukui H, Reynolds CW (1987) Antitumor activity of a Streptococcus pyogenes preparation (OK-432). I. Sequential effector mechanisms following a single OK-432 injection in F344 rats leading to the rejection of syngeneic MADB106 tumor cells. J Natl Cancer Inst 79(5):1011–1017

    CAS  PubMed  Google Scholar 

  70. Lee YC, Luh SP, Wu RM, Lee CJ (1994) Adjuvant immunotherapy with intrapleural Streptococcus pyogenes (OK-432) in lung cancer patients after resection. Cancer Immunol Immunother 39(4):269–274

    CAS  PubMed  Google Scholar 

  71. Cervical Cancer Immunotherapy Study Group (1987) Immunotherapy using the streptococcal preparation OK-432 for the treatment of uterine cervical cancer. Cancer 60(10):2394–2402

    Article  Google Scholar 

  72. MacAdam DH, Coley (eds) (2003) Spontaneous regression: cancer and the immune system, 1st edn. Xilibris, Philadelphia, pp 5–10

    Google Scholar 

  73. Hobohm U (2009) Healing heat: harnessing infection to fight cancer. Am Sci 97:34

    Article  Google Scholar 

  74. Linnebacher, Maletzki C, Klier U, Klar E (2012) Bacterial immunotherapy of gastrointestinal tumors. Langenbeck’s Arch Surg 397(4):557–568

    Article  Google Scholar 

  75. Vivier E, Tomasello E, Baratin M, Walzer T, Ugolini S (2008) Functions of natural killer cells. Nat Immunol 9:503–510

    Article  CAS  PubMed  Google Scholar 

  76. Medzhitov R, Janeway CA Jr (1998) Innate immune recognition and control of adaptive immune responses. Semin Immunol 10:351–353

    Article  CAS  PubMed  Google Scholar 

  77. Hayakawa Y, Smyth MJ (2006) Innate immune recognition and suppression of tumors. Adv Cancer Res 95:293–322

    Article  CAS  PubMed  Google Scholar 

  78. Sakamoto J, Teramukai S, Watanabe Y, Hayata Y, Okayasu T, Nakazato H, Ohashi Y, Japanese Meta-Analysis Group in Cancer, Japanese Society of Strategies for Cancer Research and Therapy (2001) Meta-analysis of adjuvant immuno -chemotherapy using OK-432 in patients with resected non-small-cell lung cancer. J Immunother 24(3):250–256

    Article  CAS  Google Scholar 

  79. Sakamoto J, Teramukai S, Nakazato H, Sato Y, Uchino J, Taguchi T, Ryoma Y, Ohashi Y (2002) Efficacy of adjuvant immunochemotherapy with OK-432 for patients with curatively resected gastric cancer: a meta-analysis of centrally randomized controlled clinical trials. J Immunother 25(5):405–412

    Article  CAS  PubMed  Google Scholar 

  80. Oba MS, Teramukai S, Ohashi Y, Ogawa K, Maehara Y, Sakamoto J (2015) The efficacy of adjuvant immunochemotherapy with OK-432 after curative resection of gastric cancer: an individual patient data meta-analysis of randomized controlled trials. Gastric Cancer [Epub ahead of print]

    Google Scholar 

  81. Okamoto M, Ohe G, Furuichi S, Nishikawa H, Oshikawa T, Tano T, Ahmed SU, Yoshida H, Moriya Y, Matsubara S, Ryoma Y, Saito M, Sato M (2002) Enhancement of anti-tumor immunity by lipoteichoic acid-related molecule isolated from OK-432, a streptococcal agent, in athymic nude mice bearing human salivary adenocarcinoma: role of natural killer cells. Anticancer Res 22:3229–3239

    CAS  PubMed  Google Scholar 

  82. Okamoto M, Furuichi S, Nishioka Y, Oshikawa T, Tano T, Ahmed SU, Takeda K, Akira S, Ryoma Y, Moriya Y, Saito M, Sone S, Sato M (2004) Expression of toll-like receptor 4 on dendritic cells is significant for anticancer effect of dendritic cell-based immunotherapy in combination with an active component of OK-432, a streptococcal preparation. Cancer Res 64:5461–5470

    Article  CAS  PubMed  Google Scholar 

  83. Okamoto M, Oshikawa T, Tano T, Ohe G, Furuichi S, Nishikawa H, Ahmed SU, Akashi S, Miyake K, Takeuchi O, Akira S, Moriya Y, Matsubara S, Ryoma Y, Saito M, Sato M (2003) Involvement of Toll-like receptor 4 signaling in interferon-gamma production and antitumor effect by streptococcal agent OK-432. J Natl Cancer Inst 95:316–326

    Article  CAS  PubMed  Google Scholar 

  84. Wada H, Isobe M, Kakimi K, Mizote Y, Eikawa S, Sato E et al (2014) Vaccination with NY-ESO-1 overlapping peptides mixed with Picibanil OK-432 and montanide ISA-51 in patients with cancers expressing the NY-ESO-1 antigen. J Immunother 37:84–92

    Article  CAS  PubMed  Google Scholar 

  85. www.cancer.gov/clinicaltrials

Download references

Acknowledgment

Collection of the materials and information for this review were supported, in part, by Epidemiological and Clinical Research Information Network (ECRIN).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junichi Sakamoto M.D., Ph.D., F.A.C.S. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Japan

About this chapter

Cite this chapter

Sakamoto, J., Honda, M., Aoyama, T. (2016). Bacterial Preparations. In: Yamaguchi, Y. (eds) Immunotherapy of Cancer. Springer, Tokyo. https://doi.org/10.1007/978-4-431-55031-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-55031-0_2

  • Published:

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-55030-3

  • Online ISBN: 978-4-431-55031-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics