Skip to main content

Cytoskeletons

  • Chapter
  • First Online:
Atlas of Plant Cell Structure
  • 2054 Accesses

Abstract

The term ‘cytoskeleton’ might give a static impression given the inclusion of “skeleton,” a notion that is enforced by the fact that plant cells do not appear to be very active when compared to animal cells. However, the skeletal feature of the cytoskeleton function is only one component of its reality. When a plant cell forms and alters its shape, the cytoskeleton is intimately involved. Additionally, plant cells actively relocate some cellular components while keeping others in place. The cytoskeleton itself is a filamentous network of protein polymers comprised of three structural components: microtubules, actin filaments, and intermediate filaments. The former two play major roles in cellular rearrangements, and their fundamental structures are conserved in animals and plants. It is particularly interesting to take a look at the organization of plant mitotic structures from a phylogenetic viewpoint. The plant cytoskeleton also has unique functions and features, many of which are outlined in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Chapter References

  1. Mineyuki Y (2007) Plant microtubule studies: past and present. J Plant Res 120:45–51

    Article  PubMed  CAS  Google Scholar 

  2. Mineyuki Y, Iida H, Anraku Y (1994) Loss of microtubules in the interphase cells of onion (Allium cepa L.) root tips from the cell cortex and their appearance in the cytoplasm after treatment with cycloheximide. Plant Physiol 104:281–284

    PubMed  CAS  PubMed Central  Google Scholar 

  3. Nogami A, Suzaki T, Shigenaka Y, Nagahama Y, Mineyuki Y (1996) Effects of cycloheximide on preprophase bands and prophase spindles in onion (Allium cepa L.) root tip cells. Protoplasma 192:109–121

    Article  CAS  Google Scholar 

  4. Murata T, Sonobe S, Baskin TI, Hyodo S, Hasezawa S, Nagata T, Horio T, Hasebe M (2005) Microtubule-dependent microtubule nucleation based on recruitment of γ-tubulin in higher plants. Nat Cell Biol 7:961–968

    Article  PubMed  CAS  Google Scholar 

  5. Petry S, Groen AC, Ishihara K, Mitchison TJ, Vale RD (2013) Branching microtubule nucleation in Xenopus egg extracts mediated by augmin and TPX2. Cell 152:768–777

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  6. Kamasaki T, O’Toole E, Kita S, Osumi M, Usukura J, McIntosh JR, Goshima G (2013) Augmin-dependent microtubule nucleation at microtubule walls in the spindle. J Cell Biol 202:25–33

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  7. Karahara I, Kang BH (2014) High-pressure freezing and low-temperature processing of plant tissue samples for electron microscopy. Methods Mol Biol 1080:147–157

    Article  PubMed  Google Scholar 

  8. Murata T, Karahara I, Kozuka T, Giddings TH Jr, Staehelin LA, Mineyuki Y (2002) Improved method for visualizing coated pits, microfilaments, and microtubules in cryofixed and freeze-substituted plant cells. J Electron Microsc 51:133–136

    Article  CAS  Google Scholar 

  9. Karahara I, Suda J, Tahara H, Yokota E, Shimmen T, Misaki K, Yonemura S, Staehelin A, Mineyuki Y (2009) The preprophase band is a localized center of clathrin-mediated endocytosis in late prophase cells of the onion cotyledon epidermis. Plant J 57:819–831

    Article  PubMed  CAS  Google Scholar 

  10. Karahara I, Suda J, Staehelin LA, Mineyuki Y (2009) Quantitative analysis of vesicles in the preprophase band by electron tomography. Cytologia 74:113–114

    Google Scholar 

  11. Mineyuki Y, Suda J, Karahara I (2004) Electron tomography. Plant Morphol 16:21–30 (Japanese)

    Article  Google Scholar 

  12. Mineyuki Y (2013) Electron tomography and structure of plant cell framework. In: IIRS (eds) Structure and function of life analyzed by 3D imaging. Asakura Publishing Co. Ltd., Tokyo, pp 51–60. ISBN 978-4-254-17157-0 C3045 (Japanese)

    Google Scholar 

  13. Shimamura M, Brown RC, Lemmon BE, Akashi T, Mizuno K, Nishihara N, Tomizawa KI, Yoshimoto K, Deguchi H, Hosoya H, Horio T, Mineyuki Y (2004) γ-Tubulin in basal land plants: characterization, localization, and implication in the evolution of acentriolar microtubule organizing centers. Plant Cell 16:45–59

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  14. Shimamura M (2004) Monoplastidic cell in lower land plants. Plant Morphol 16:83–92

    Article  Google Scholar 

  15. Motomura T, Nagasato C, Kimura K (2010) Cytoplasmic inheritance of organelles in brown algae. J Plant Res 123:185–192

    Article  PubMed  Google Scholar 

  16. Nagasato C, Motomura T, Ichimura T (1998) Selective disappearance of maternal centrioles after fertilization in the anisogamous brown alga Cutleria cylindrica (Cutleriales, Phaeophyceae): paternal inheritance of centrioles is universal in the brown alga. Phycol Res 46:191–198

    Article  Google Scholar 

  17. Motomura T (1994) Electron and immunofluorescence microscopy on the fertilization of Fucus distichus (Fucales, Phaeophyceae). Protoplasma 178:97–110

    Article  Google Scholar 

  18. Nagasato C, Motomura T (2002) Ultrastructural study on mitosis and cytokinesis in Scytosiphon lomentaria zygotes (Scytosiphonales, Phaeophyceae) by freeze-substitution. Protoplasma 219:140–149

    Article  PubMed  CAS  Google Scholar 

  19. Yubuki N, Leander BS (2011) Reconciling the bizarre inheritance of microtubules in complex (euglenid) microeukaryotes. Protoplasma 249:859–869

    Article  PubMed  Google Scholar 

  20. Jaspersen SL, Winey M (2004) The budding yeast spindle pole body: structure, duplication, and function. Annu Rev Cell Dev Biol 20:1–28

    Article  PubMed  CAS  Google Scholar 

  21. Hirata A (2010) Meiosis I in Saccharomyces cerevisiae by rapid-freeze electron microscopy. Cytologia 75:221–222 (Technical note)

    Google Scholar 

  22. Tanaka I, Kitazume C, Ito M (1987) The isolation and culture of lily pollen protoplasts. Plant Sci 50:205–211

    Article  CAS  Google Scholar 

  23. Tanaka I, Wakabayashi T (1992) Organization of the actin and microtubule cytoskeleton preceding pollen germination: an analysis using cultured pollen protoplasts of Lilium longiflorum. Planta 186:473–482

    Article  PubMed  CAS  Google Scholar 

  24. Riedl J, Crevenna AH, Kessenbrock K, Yu JH, Neukirchen D, Bista M, Bradke F, Jenne D, Holak TA, Werb Z, Sixt M, Wedlich-Sordner R (2008) Lifeact: a versatile marker to visualize F-actin. Nat Methods 5:605–607

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  25. Era A, Tominaga M, Ebine K, Awai C, Saito C, Ishizaki K, Yamato KT, Kohchi T, Nakano A, Ueda T (2009) Application of lifeact reveals F-actin dynamics in Arabidopsis thaliana and the liverwort, Marchantia polymorpha. Plant Cell Physiol 50:1041–1048

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  26. Era A, Kutsuna N, Higaki T, Hasezawa S, Nakano A, Ueda T (2013) Microtubule stability affects the unique motility of F-actin in Marchantia polymorpha. J Plant Res 126:113–119

    Article  PubMed  CAS  Google Scholar 

  27. Sameshima M, Kishi Y, Osumi M, Mahadeo D, Cotter D (2000) Novel actin cytoskeleton: actin tubules. Cell Struct Funct 25:291–295

    Article  PubMed  CAS  Google Scholar 

  28. Sameshima M (2012) Stabilization of dormant spores depends on the actin cytoskeleton in the cellular slime mold. Plant Morphol 24:65–71

    Article  Google Scholar 

  29. Sameshima M, Kishi Y, Osumi M, Minamikawa-Tachino R, Mahadeo D, Cotter D (2001) The formation of actin rods composed of actin tubules in Dictyostelium discoideum spores. J Struct Biol 136:7–19

    Article  PubMed  CAS  Google Scholar 

  30. Mineyuki Y, Palevitz PA (1990) Relationship between preprophase band organization, F-actin and the division site in Allium. J Cell Sci 97:283–295

    CAS  Google Scholar 

  31. Mineyuki Y (1999) The preprophase band of microtubules: its function as a cytokinetic apparatus in higher plants. Int Rev Cytol 187:1–49

    Article  Google Scholar 

  32. Paredez AR, Somerville CR, Ehrhardt DW (2006) Visualization of cellulose synthase demonstrates functional association with microtubules. Science 312:1491–1495

    Article  PubMed  CAS  Google Scholar 

  33. Schmidt A (1924) Histologische Studien an phanerogamen Vegetationspunkten. Bot Arch 8:345–404

    Google Scholar 

  34. Sakaguchi S, Hogetsu T, Hara N (1988) Arrangement of cortical microtubules in the shoot apex of Vinca major L. Observations by immunofluorescence microscopy. Planta 175:403–411

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ichirou Karahara .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Japan

About this chapter

Cite this chapter

Karahara, I. (2014). Cytoskeletons. In: Noguchi, T., et al. Atlas of Plant Cell Structure. Springer, Tokyo. https://doi.org/10.1007/978-4-431-54941-3_6

Download citation

Publish with us

Policies and ethics