Skip to main content

Polycystins and Autosomal Polycystic Kidney Disease

  • Chapter
  • First Online:
Animal Lectins: Form, Function and Clinical Applications
  • 1460 Accesses

Abstract

Autosomal dominant polycystic kidney disease (ADPKD) is one of the most common monogenic disorders, and globally is the third most common cause of end-stage kidney disease. Approximately 85% of ADPKD cases are attributable to mutations in polycystic kidney disease (PKD) gene 1 (PKD1) on chromosome 16, while mutations in PKD2 gene on chromosome 4 account for almost all of the remaining cases. These two diseases are phenotypically almost identical, differing only by the higher age of diagnosis with PKD2, and its slower progression to end-stage renal disease. The product of PKD1, polycystin-1 (PC-1), is a very large protein (4,303 amino acids), and is a membrane glycoprotein widely expressed in epithelial cells. It is also expressed in tight junctions, adherens junctions, desmosomes, apical junctions and primary cilia. Polycystin-2 (PC-2), the product of PKD2, is a smaller protein (968 amino acids) mainly present in the endoplasmic reticulum, but also in the cell plasma membrane. PC-1 and -2 are joined via a domain in the carboxy-tail of PC-1, and appear to act in concert (Ong and Harris 2005). PC-2 acts as a Ca2+ channel. It appears that PKD1 and PKD2 associate physically in vivo and may be partners of a common signaling cascade involved in tubular morphogenesis (Qian et al. 1997). Qian et al. (1997) defined naturally occurring pathogenic mutations of PKD1 and PKD2 that disrupt their associations. Portions of the cellular populations of PC-1 and PC-2 localize to the primary cilium. The ADPKD is the founding member of the “ciliopathies,” a recently defined class of genetic disorders that result from mutations in genes encoding cilia-associated proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adelsberg JV (2000) Polycystin-1 interacts with E-cadherin and the catenins—clues to the pathogenesis of cyst formation in ADPKD? Nephrol Dial Transplant 15:1–2

    Article  PubMed  Google Scholar 

  • Aguiari G, Banzi M, Gessi S et al (2004) Deficiency of polycystin-2 reduces Ca2+ channel activity and cell proliferation in ADPKD lymphoblastoid cells. FASEB J 18:884–886

    PubMed  CAS  Google Scholar 

  • Anyatonwu GI, Estrada M, Tian X et al (2007) Regulation of ryanodine receptor-dependent calcium signaling by polycystin-2. Proc Natl Acad Sci USA 104:6454–6459

    Article  PubMed  CAS  Google Scholar 

  • Babich V, Zeng WZ et al (2004) The N-terminal extracellular domain is required for polycystin-1-dependent channel activity. J Biol Chem 279:25582–25589

    Article  PubMed  CAS  Google Scholar 

  • Basora N, Nomura H, Berger UV et al (2002) Tissue and cellular localization of a novel polycystic kidney disease-like gene product, polycystin-L. J Am Soc Nephrol 13:293–301

    PubMed  CAS  Google Scholar 

  • Boucher C, Sandford R (2004) Autosomal dominant polycystic kidney disease (ADPKD, MIM 173900, PKD1 and PKD2 genes, protein products known as polycystin-1 and polycystin-2). Eur J Hum Genet 12:347–354

    Article  PubMed  CAS  Google Scholar 

  • Bukanov NO, Husson H, Dackowski WR et al (2002) Functional polycystin-1 expression is developmentally regulated during epithelial morphogenesis in vitro: downregulation and loss of membrane localization during cystogenesis. Hum Mol Genet 11:923–936

    Article  CAS  Google Scholar 

  • Burn TC, Connors TD, Dackowski WR et al (1995) Analysis of the genomic sequence for the autosomal dominant polycystic kidney disease (PKD1) gene predicts the presence of a leucine-rich repeat. The American PKD1 Consortium (APKD1 Consortium). Hum Mol Genet 4:575–582

    Article  PubMed  CAS  Google Scholar 

  • Burtey S, Leclerc C, Nabais E et al (2005) Cloning and expression of the amphibian homologue of the human PKD1 gene. Gene 357:29–36

    Article  PubMed  CAS  Google Scholar 

  • Bycroft M, Bateman A et al (1999) The structure of a PKD domain from polycystin-1: implications for polycystic kidney disease. EMBO J 18:297–305

    Article  PubMed  CAS  Google Scholar 

  • Cai Y, Maeda Y, Cedzich A et al (1999) Identification and characterization of polycystin-2, the PKD2 gene product. J Biol Chem 274:28557–28565

    Article  PubMed  CAS  Google Scholar 

  • Calvet JP, Grantham JJ (2001) The genetics and physiology of polycystic kidney disease. Semin Nephrol 21:107–123

    Article  PubMed  CAS  Google Scholar 

  • Cantiello HF (2003) A tale of two tails: ciliary mechanotransduction in ADPKD. Trends Mol Med 9:234–236

    Article  PubMed  CAS  Google Scholar 

  • Celić A, Petri ET, Demeler B et al (2008) Domain mapping of the polycystin-2C-terminal tail using de novo molecular modeling and biophysical analysis. J Biol Chem 283:28305–28312

    Article  PubMed  Google Scholar 

  • Chapin HC, Caplan MJ (2010) The cell biology of polycystic kidney disease. J Cell Biol 191:701–710

    Article  PubMed  CAS  Google Scholar 

  • Chauvet V, Tian X et al (2004) Mechanical stimuli induce cleavage and nuclear translocation of the polycystin-1C terminus. J Clin Invest 114:1433–1443

    PubMed  CAS  Google Scholar 

  • Clapham DE (2003) TRP channels as cellular sensors. Nature 426:517–524

    Article  PubMed  CAS  Google Scholar 

  • Constantinides R, Xenophontos S, Neophytou P et al (1997) New amino acid polymorphism, Ala/Val4058, in exon 45 of the polycystic kidney disease 1 gene: evolution of alleles. Hum Genet 99:644–647

    Article  PubMed  CAS  Google Scholar 

  • Delmas P (2004) Polycystins: from mechanosensation to gene regulation. Cell 118:145–148

    Article  PubMed  CAS  Google Scholar 

  • Delmas P, Padilla F, Osorio N, Coste B (2004) Polycystins, calcium signaling, and human diseases. Biochem Biophys Res Commun 322:1374–1383

    Article  PubMed  CAS  Google Scholar 

  • Delmas P, Nomura H, Li X et al (2002) Constitutive activation of G-proteins by polycystin-1 is antagonized by polycystin-2. J Biol Chem 277:11276–11283

    Article  PubMed  CAS  Google Scholar 

  • Eo HS, Lee JG, Ahn C et al (2002) Three novel mutations of the PKD1 gene in Korean patients with autosomal dominant polycystic kidney disease. Clin Genet 62:169–174

    Article  PubMed  Google Scholar 

  • Forman JR, Qamar S, Paci E et al (2005) The remarkable mechanical strength of polycystin-1 supports a direct role in mechanotransduction. J Mol Biol 349:861–871

    Article  PubMed  CAS  Google Scholar 

  • Galindo BE, Moy GW, Vacquier VD (2004) A third sea urchin sperm receptor for egg jelly module protein, suREJ2, concentrates in the plasma membrane over the sperm mitochondrion. Dev Growth Differ 46:53–60

    Article  PubMed  CAS  Google Scholar 

  • Geng L, Okuhara D et al (2006) Polycystin-2 traffics to cilia independently of polycystin-1 by using an N-terminal RVxP motif. J Cell Sci 119:1383–1395

    Article  PubMed  CAS  Google Scholar 

  • Giamarchi A, Padilla F, Coste B et al (2006) The versatile nature of the calcium-permeable cation channel TRPP2. EMBO Rep 7:787–793

    Article  PubMed  CAS  Google Scholar 

  • Gifford JL, Walsh MP, Vogel HJ (2007) Structures and metal-ion-binding properties of the Ca2+−binding helix-loop-helix EF-hand motifs. Biochem J 405:199–221

    Article  PubMed  CAS  Google Scholar 

  • Gonzalez-Perrett S, Kim K, Ibarra C et al (2001) Polycystin-2, the protein mutated in autosomal dominant polycystic kidney disease (ADPKD), is a Ca2+-permeable nonselective cation channel. Proc Natl Acad Sci USA 98:1182–1187

    Article  PubMed  CAS  Google Scholar 

  • Grimm DH, Karihaloo A, Cai Y et al (2006) Polycystin-2 regulates proliferation and branching morphogenesis in kidney epithelial cells. J Biol Chem 281:137–144

    Article  PubMed  CAS  Google Scholar 

  • Hanaoka K, Qian F, Boletta A et al (2000) Co-assembly of polycystin-1 and -2 produces unique cation-permeable currents. Nature 408(6815):990–994

    Article  PubMed  CAS  Google Scholar 

  • Harris PC, Ward CJ, Peral B, Hughes J (1995) Polycystic kidney disease. 1: identification and analysis of the primary defect. J Am Soc Nephrol 6:1125–1133

    PubMed  CAS  Google Scholar 

  • Hildebrandt F, Otto E (2005) Cilia and centrosomes: a unifying pathogenic concept for cystic kidney disease? Nat Rev Genet 6:928–940

    Article  PubMed  CAS  Google Scholar 

  • Huan Y, van Adelsberg J (1999) Polycystin-1, the PKD1 gene product, is in a complex containing E-cadherin and the catenins. J Clin Invest 104:1459–1468

    Article  PubMed  CAS  Google Scholar 

  • Hughes J, Ward CJ, Peral B et al (1995) The polycystic kidney disease 1 (PKD1) gene encodes a novel protein with multiple cell recognition domains. Nat Genet 10:151–160

    Article  PubMed  CAS  Google Scholar 

  • Ibraghimov-Beskrovnaya O, Bukanov N (2008) Polycystic kidney diseases: from molecular discoveries to targeted therapeutic strategies. Cell Mol Life Sci 65:605–619

    Article  PubMed  CAS  Google Scholar 

  • Ibraghimov-Beskrovnaya O, Dackowski WR, Foggensteiner L et al (1997) Polycystin: in vitro synthesis, in vivo tissue expression, and subcellular localization identifies a large membrane-associated protein. Proc Natl Acad Sci USA 94:6397–6402

    Article  PubMed  CAS  Google Scholar 

  • Ibraghimov-Beskrovnaya O, Bukanov NO, Donohue LC et al (2000) Strong homophilic interactions of the Ig-like domains of polycystin-1, the protein product of an autosomal dominant polycystic kidney disease gene, PKD1. Hum Mol Genet 9:1641–1649

    Article  PubMed  CAS  Google Scholar 

  • Igarashi P, Somlo S (2002) Genetics and pathogenesis of polycystic kidney disease. J Am Soc Nephrol 13:2384–2398

    Article  PubMed  CAS  Google Scholar 

  • International Polycystic Kidney Disease Consortium (1995) Polycystic kidney disease: the complete structure of the PKD1 gene and its protein. Cell 81:289–298

    Google Scholar 

  • Kierszenbaum AL (2004) Polycystins: what polycystic kidney disease tells us about sperm. Mol Reprod Dev 67:385–388

    Article  PubMed  CAS  Google Scholar 

  • Kim K, Drummond I et al (2000) Polycystin 1 is required for the structural integrity of blood vessels. Proc Natl Acad Sci USA 97:1731–1736

    Article  PubMed  CAS  Google Scholar 

  • Köttgen M, Benzing T, Simmen T et al (2005) Trafficking of TRPP2 by PACS proteins represents a novel mechanism of ion channel regulation. EMBO J 24:705–716

    Article  PubMed  Google Scholar 

  • Koulen P, Cai Y, Geng L et al (2002) Polycystin-2 is an intracellular calcium release channel. Nat Cell Biol 4:191–197

    Article  PubMed  CAS  Google Scholar 

  • Lantinga-van Leeuwen IS, Leonhard WN, Dauwerse H et al (2005) Common regulatory elements in the polycystic kidney disease 1 and 2 promoter regions. Eur J Hum Genet 13:649–659

    Article  PubMed  CAS  Google Scholar 

  • Li X, Luo Y et al (2005a) Polycystin-1 and polycystin-2 regulate the cell cycle through the helix-loop-helix inhibitor Id2. Nat Cell Biol 7:1202–1212

    PubMed  Google Scholar 

  • Li Y, Wright JM, Qian F et al (2005b) Polycystin 2 interacts with type I inositol 1,4,5-trisphosphate receptor to modulate intracellular Ca2+ signaling. J Biol Chem 280:41298–41306

    Article  PubMed  CAS  Google Scholar 

  • Li Y, Santoso NG, Yu S et al (2009) Polycystin-1 interacts with inositol 1,4,5-trisphosphate receptor to modulate intracellular Ca2+ signaling with implications for polycystic kidney disease. J Biol Chem 284:36431–36441

    Article  PubMed  CAS  Google Scholar 

  • Löhning C, Nowicka U, Frischauf AM (1997) The mouse homolog of PKD1: sequence analysis and alternative splicing. Mamm Genome 8:307–311

    Article  PubMed  Google Scholar 

  • Low SH, Vasanth S, Larson CH et al (2006) Polycystin-1, STAT6, and P100 function in a pathway that transduces ciliary mechanosensation and is activated in polycystic kidney disease. Dev Cell 10:57–69

    Article  PubMed  CAS  Google Scholar 

  • Lu W, Peissel B et al (1997) Perinatal lethality with kidney and pancreas defects in mice with a targeted PKD1 mutation. Nat Genet 17:179–181

    Article  PubMed  CAS  Google Scholar 

  • Luo Y, Vassilev PM, Li X et al (2003) Native polycystin 2 functions as a plasma membrane Ca2+-permeable cation channel in renal epithelia. Mol Cell Biol 23:2600–2607

    Article  PubMed  CAS  Google Scholar 

  • Malhas AN, Abuknesha RA, Price RG (2002) Interaction of the leucine-rich repeats of polycystin-1 with extracellular matrix proteins: possible role in cell proliferation. J Am Soc Nephrol 13:19–26

    PubMed  CAS  Google Scholar 

  • Mochizuki T, Wu G et al (1996) PKD2, a gene for polycystic kidney disease that encodes an integral membrane protein. Science 272:1339–1342

    Article  PubMed  CAS  Google Scholar 

  • Molland KL, Narayanan A, Burgner JW et al (2010) Identification of the structural motif responsible for trimeric assembly of the carboxyl-terminal regulatory domains of polycystin channels PKD2L1 and PKD2. Biochem J 429:171–183

    Article  PubMed  CAS  Google Scholar 

  • Montell C (2005) The TRP superfamily of cation channels. Sci STKE 2005(272):re3

    Article  PubMed  Google Scholar 

  • Nauli SM, Zhou J (2004) Polycystins and mechanosensation in renal and nodal cilia. Bioessays 26:844–856

    Article  PubMed  CAS  Google Scholar 

  • Nauli SM, Alenghat FJ, Luo Y et al (2003) Polycystins 1 and 2 mediate mechanosensation in the primary cilium of kidney cells. Nat Genet 33:129–137

    Article  PubMed  CAS  Google Scholar 

  • Nauli SM, Rossetti S, Kolb RJ et al (2006) Loss of polycystin-1 in human cyst-lining epithelia leads to ciliary dysfunction. J Am Soc Nephrol 17:1015–1025

    Article  PubMed  CAS  Google Scholar 

  • Neill AT, Moy GW, Vacquier VD (2004) Polycystin-2 associates with the polycystin-1 homolog, suREJ3, and localizes to the acrosomal region of sea urchin spermatozoa. Mol Reprod Dev 67:472–477

    Article  PubMed  CAS  Google Scholar 

  • Newby LJ, Streets AJ, Zhao Y et al (2002) Identification, characterization, and localization of a novel kidney polycystin-1-polycystin-2 comple44. J Biol Chem 277:20763–20773

    Article  PubMed  CAS  Google Scholar 

  • Ong AC (2000) Polycystin expression in the kidney and other tissues: complexity, consensus and controversy. Exp Nephrol 8:208–214

    Article  PubMed  CAS  Google Scholar 

  • Ong ACM, Harris PC (2005) Molecular pathogenesis of ADPKD: the polycystin complex gets complex. Kidney Int 67:1234–1247

    Article  PubMed  CAS  Google Scholar 

  • Parnell SC, Magenheimer BS, Maser RL et al (1998) The polycystic kidney disease-1 protein, polycystin-1, binds and activates heterotrimeric G-proteins in vitro. Biochem Biophys Res Commun 251:625–631

    Article  PubMed  CAS  Google Scholar 

  • Pennekamp P, Bogdanova N, Wilda M et al (1998) Characterization of the murine polycystic kidney disease (Pkd2) gene. Mamm Genome 9:749–752

    Article  PubMed  CAS  Google Scholar 

  • Pletnev V, Huether R, Habegger L et al (2007) Rational proteomics of PKD1. I. Modeling the three dimensional structure and ligand specificity of the C-lectin binding domain of polycystin-1. J Mol Model 13:891–896

    Article  PubMed  CAS  Google Scholar 

  • Puri S, Magenheimer BS, Maser RL et al (2004) Polycystin-1 activates the calcineurin/NFAT (nuclear factor of activated T-cells) signaling pathway. J Biol Chem 279:55455–55464

    Article  PubMed  CAS  Google Scholar 

  • Puri S, Rodova M, Islam MR et al (2006) Ets factors regulate the polycystic kidney disease-1 promoter. Biochem Biophys Res Commun 342:1005–1013

    Article  PubMed  CAS  Google Scholar 

  • Qian F, Germino FJ, Cai Y et al (1997) PKD1 interacts with PKD2 through a probable coiled-coil domain. Nat Genet 16:179–183

    Article  PubMed  CAS  Google Scholar 

  • Qian F, Boletta A, Bhunia AK et al (2002) Cleavage of polycystin-1 requires the receptor for egg jelly domain and is disrupted by human autosomal-dominant polycystic kidney disease 1-associated mutations. Proc Natl Acad Sci USA 99:16981–16986

    Article  PubMed  CAS  Google Scholar 

  • Qian F, Wei W, Germino G, Oberhauser A (2005) The nanomechanics of polycystin-1 extracellular region. J Biol Chem 280:40723–40730

    Article  PubMed  CAS  Google Scholar 

  • Rapoport J (2007) Autosomal dominant polycystic kidney disease: pathophysiology and treatment. Q J Med 100:1–9

    Article  CAS  Google Scholar 

  • Roitbak T, Ward CJ, Harris PC et al (2004) A polycystin-1 multiprotein complex is disrupted in polycystic kidney disease cells. Mol Biol Cell 15:1334–1346

    Article  PubMed  CAS  Google Scholar 

  • Russo RJ, Husson H, Joly D et al (2005) Impaired formation of desmosomal junctions in ADPKD epithelia. Histochem Cell Biol 124:487–497

    Article  PubMed  CAS  Google Scholar 

  • Scheffers MS, van der Bent P, Prins F et al (2000) Polycystin-1, the product of the polycystic kidney disease 1 gene, co- localizes with desmosomes in MDCK cells. Hum Mol Genet 9:2743–2744

    Article  PubMed  CAS  Google Scholar 

  • Scheffers MS, Le H, van der Bent P et al (2002) Distinct subcellular expression of endogenous polycystin-2 in the plasma membrane and Golgi apparatus of MDCK cells. Hum Mol Genet 11:59–67

    Article  PubMed  CAS  Google Scholar 

  • Shiba D, Takamatsu T, Yokoyama T (2005) Primary cilia of inv/inv mouse renal epithelial cells sense physiological fluid flow: bending of primary cilia and Ca2+ influ44. Cell Struct Funct 30:93–100

    Article  PubMed  CAS  Google Scholar 

  • Streets AJ, Newby LJ, O’Hare MJ et al (2003) Functional analysis of PKD1 transgenic lines reveals a direct role for polycystin-1 in mediating cell-cell adhesion. J Am Soc Nephrol 14:1804–1815

    Article  PubMed  CAS  Google Scholar 

  • Streets AJ, Moon DJ, Kane ME et al (2006) Identification of an N-terminal glycogen synthase kinase 3 phosphorylation site which regulates the functional localization of polycystin-2 in vivo and in vitro. Hum Mol Genet 15:1465–1473

    Article  PubMed  CAS  Google Scholar 

  • Sutters M (2006) The pathogenesis of autosomal dominant polycystic kidney disease. Nephron Exp Nephrol 103:e149–e155

    Article  PubMed  Google Scholar 

  • Teilmann SC, Byskov AG, Pedersen PA et al (2005) Localization of transient receptor potential ion channels in primary and motile cilia of the female murine reproductive organs. Mol Reprod Dev 71:444–452

    Article  PubMed  CAS  Google Scholar 

  • Tsiokas L, Kim E et al (1997) Homo- and heterodimeric interactions between the gene products of PKD1 and PKD2. Proc Natl Acad Sci USA 94:6965–6970

    Article  PubMed  CAS  Google Scholar 

  • van Adelsberg J (1999a) Peptides from the PKD repeats of polycystin, the PKD1 gene product, modulate pattern formation in the developing kidney. Dev Genet 24:299–308

    Article  PubMed  Google Scholar 

  • van Adelsberg JS (1999b) The role of the polycystins in kidney development. Pediatr Nephrol 13:454–459

    Article  PubMed  Google Scholar 

  • van Adelsberg J, Chamberlain S, D’Agati V (1997) Polycystin expression is temporally and spatially regulated during renal development. Am J Physiol 272:F602–F609

    PubMed  Google Scholar 

  • Wang S, Zhang J, Nauli SM et al (2007) Fibrocystin/polyductin, found in the same protein complex with polycystin-2, regulates calcium responses in kidney epithelia. Mol Cell Biol 27:3241–3252

    Article  PubMed  CAS  Google Scholar 

  • Wei W, Hackmann K, Xu H et al (2007) Characterization of cis-autoproteolysis of polycystin-1, the product of human polycystic kidney disease 1 gene. J Biol Chem 282:21729–21737

    Article  PubMed  CAS  Google Scholar 

  • Weston BS, Bagnéris C, Price RG, Stirling JL (2001) The polycystin-1C-type lectin domain binds carbohydrate in a calcium-dependent manner, and interacts with extracellular matrix proteins in vitro. Biochim Biophys Acta 1536:161–176

    Article  PubMed  CAS  Google Scholar 

  • Weston BS, Malhas AN, Price RG (2003) Structure-function relationships of the extracellular domain of the autosomal dominant polycystic kidney disease-associated protein, polycystin-1. FEBS Lett 538:8–13

    Article  PubMed  CAS  Google Scholar 

  • Wilson PD (2004) Polycystic kidney disease. N Engl J Med 350:151–164

    Article  PubMed  CAS  Google Scholar 

  • Xu GM, Sikaneta T, Sullivan BM et al (2001) Polycystin-1 interacts with intermediate filaments. J Biol Chem 276:46544–46552

    Article  PubMed  CAS  Google Scholar 

  • Yoder BK, Hou X, Guay-Woodford LM (2002) The polycystic kidney disease proteins, polycystin-1, polycystin-2, polaris, and cystin, are co-localized in renal cilia. J Am Soc Nephrol 13:2508–2516

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Wien

About this chapter

Cite this chapter

Gupta, G.S. (2012). Polycystins and Autosomal Polycystic Kidney Disease. In: Animal Lectins: Form, Function and Clinical Applications. Springer, Vienna. https://doi.org/10.1007/978-3-7091-1065-2_45

Download citation

Publish with us

Policies and ethics