Skip to main content
Log in

Rational proteomics of PKD1. I. Modeling the three dimensional structure and ligand specificity of the C_lectin binding domain of Polycystin-1.

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Polycystin-1 (Pc-1) is the 4303 amino acid multi-domain glycoprotein product of the polycystic kidney disease-1 (PKD1) gene. Mutations in this gene are implicated in 85% of cases of human autosomal dominant polycystic disease. Although the biochemistry of Pc-1 has been extensively studied its three dimensional structure has yet to be determined. We are combining bioinformatics, computational and biochemical data to model the 3D structure and function of individual domains of Pc-1. A three dimensional model of the C-type lectin domain (CLD) of Pc-1 (sequence region 405–534) complexed with galactose (Gal) and a calcium ion (Ca+2) has been developed (the coordinates are available on request, e-mail: pletnev@hwi.buffalo.edu). The model has α/β structural organization. It is composed of eight β strands and three α helices, and includes three disulfide bridges. It is consistent with the observed Ca+2 dependence of sugar binding to CLD and identifies the amino acid side chains (E499, H501, E506, N518, T519 and D520) that are likely to bind the ligand. The model provides a reliable basis upon which to map functionally important residues using mutagenic experiments and to refine our knowledge about a preferred sugar ligand and the functional role of the CLD in polycystin-1.

Carbohydrate binding site with bound galactose and calcium ion inC-lectin binding domain of polycystin-1

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Igarashi P, Somlo S (2002) J Am Soc Nephrol 13:2384–2398

    Article  CAS  Google Scholar 

  2. Wilson PD (2001) J am Soc Nephrol 12:834–845

    CAS  Google Scholar 

  3. Delmas P, Padilla F, Osorio N, Coste B, Raoux M, Crest M (2004) Biochem Biophys Res Comm 322:1374–1383

    Article  CAS  Google Scholar 

  4. Al-Bhalal L, Akhtor M (2005) Adv Anal Pathol 12:126–133

    Article  Google Scholar 

  5. Bycroft M, Bateman A, Clarke J, Hamill SJ, Sandford R, Thomas RL, Chothia C (1999) EMBO J 18:297–305

    Article  CAS  Google Scholar 

  6. Weston BS, Bagneris C, Price RG, Stirling JL (2001) Biochem Biophys Res Comm 1536:161–176

    CAS  Google Scholar 

  7. Bernstein FC, Koetzle TF, Williams GJB, Meyer ER, Brice MD, Rodgers JR, Kennard O, Shimanouchi T, Tasumi M (1997) J Mol Biol 112:535–542

    Article  Google Scholar 

  8. Bairoch A, Apweiler R (2000) Nucleic Acids Res 28:45–48

    Article  CAS  Google Scholar 

  9. Thompson JD, Higgins DG, Gibson TJ (1994) Nucleic Acids Res 22:4673–4680

    Article  CAS  Google Scholar 

  10. Gasteiger E, Gattiker A, Hoogland C, Ivanyi I, Appel RD, Bairoch A (2003) Nucleic Acids Res 31:3784–3788

    Article  CAS  Google Scholar 

  11. Sack JS (1988) J Mol Graphics 6:224–225

    Article  Google Scholar 

  12. Collaborative Computational Project Number 4 (1994) Acta Cryst D Biol Crystallogr 50(Pt5):760–763

    Article  Google Scholar 

  13. Brunger AT (1992) X-PLOR (version 3.1) Manual, Yale University, New Haven, CT

    Google Scholar 

  14. MacKerell AD, Brooks Jr B, Brooks CL, Nilsson L, Roux B, Won Y, Karplus M (1998) In: Schleyer PR et al (ed) The Encyclopedia of Computational Chemistry Vol 1, John Wiley & Sons, Chichester, pp 271–277

    Google Scholar 

  15. Wallace AC, Laskowski RA, Thornton JM (1995) Protein Eng 8:127–134

    Article  CAS  Google Scholar 

  16. McDonald IK, Thornton JM (1994) J Mol Biol 238:777–793

    Article  CAS  Google Scholar 

  17. Evans SV (1993) J Mol Graphics 11:134–138

    Article  CAS  Google Scholar 

  18. Sander C, Schneider R (1991) Protein Struct Funct Genet 9:56–68

    Article  CAS  Google Scholar 

  19. Guo Y, Feinberg H, Conroy E, Mitchell DA, Alvarez R, Blixt O, Taylor ME, Weis WI, Drickamer K (2004) Nature Struct Mol Biol 11:591–598

    Article  CAS  Google Scholar 

  20. Poget SF, Legge GB, Proctor MR, Butler PJG, Bycroft M, Williams RL (1999) J Mol Biol 290:867–879

    Article  CAS  Google Scholar 

  21. Sen U, Vasudevan S, Subbarao G, McClintock RA, Celikel R, Ruggeri ZM, Varughese KI (2001) Biochemistry 40:345–352

    Article  CAS  Google Scholar 

  22. Yang W, Lee HW, Hellinga H, Yank J (2002) Protein Struct Funct Genet 47:344–356

    Article  CAS  Google Scholar 

  23. Nayal N, Di Cera E (1994) Proc Nat Acad Sci USA 91:817–821

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by the Arrison Foundation. The graphics assistance of Melda Tugas is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William Duax.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pletnev, V., Huether, R., Habegger, L. et al. Rational proteomics of PKD1. I. Modeling the three dimensional structure and ligand specificity of the C_lectin binding domain of Polycystin-1.. J Mol Model 13, 891–896 (2007). https://doi.org/10.1007/s00894-007-0201-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-007-0201-z

Keywords

Navigation