Skip to main content

CD33 (Siglec 3) and CD33-Related Siglecs

  • Chapter
  • First Online:
Animal Lectins: Form, Function and Clinical Applications
  • 1565 Accesses

Abstract

Sialic-acid-binding immunoglobulin-like lectins (Siglecs) bind sialic acids in different linkages in a wide variety of glycoconjugates. These membrane receptors are expressed in a highly specific manner, predominantly within haematopoietic system. Activating and inhibitory receptors act in concert to regulate cellular activation. Second sub-set of rapidly evolving siglecs is designated the CD33-related siglecs. In humans, these include CD33 and siglecs-5, -6, -7 (7/p75/AIRM1), -8, -9, 10, -11, -14 and -16, whereas, in mice, they comprise murine CD33 and siglec-E, -F, -G and -H. CD33 is a myeloid-specific inhibitory receptor, which along with CD33-related Siglecs represent a distinct subgroup that is undergoing rapid evolution. The structural features of CD33-related Siglecs and the frequent presence of conserved cytoplasmic signaling motifs point to their roles in regulating leukocyte functions that are important during inflammatory and immune responses. McMillan and Crocker (2008) reviewed ligand binding preferences and described the functional roles of CD33-related Siglecs in the immune system and the potential for targeting novel therapeutics against these surface receptors. Siglec-4 belonging to subset 1 of sialoadhesin family is discussed in Chap. 16.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aizawa H, Plitt J, Bochner BS (2002) Human eosinophils express two siglec-8 splice variants. J Allergy Clin Immunol 109:176

    Article  PubMed  CAS  Google Scholar 

  • Aizawa H, Zimmermann N, Carrigan PE et al (2003) Molecular analysis of human Siglec-8 orthologs relevant to mouse eosinophils: identification of mouse orthologs of Siglec-5 (mSiglec-F) and Siglec-10 (mSiglec-G). Genomics 82:521–530

    Article  PubMed  CAS  Google Scholar 

  • Alphey MS, Attrill H, Crocker PR, van Aalten DM (2003) High resolution crystal structures of Siglec-7. Insights into ligand specificity in the Siglec family. J Biol Chem 278:3372–3377

    Article  PubMed  CAS  Google Scholar 

  • Altheide TK, Hayakawa T, Mikkelsen TS et al (2006) System-wide genomic and biochemical comparisons of sialic acid biology among primates and rodents: evidence for two modes of rapid evolution. J Biol Chem 281:25689–25702

    Article  PubMed  CAS  Google Scholar 

  • Ando M, Tu W, Nishijima K, Iijima S (2008) Siglec-9 enhances IL-10 production in macrophages via tyrosine-based motifs. Biochem Biophys Res Commun 369:878–883

    Article  PubMed  CAS  Google Scholar 

  • Angata T (2006) Molecular diversity and evolution of the Siglec family of cell-surface lectins. Mol Divers 10:555–566

    Article  PubMed  CAS  Google Scholar 

  • Angata T, Varki A (2000a) Cloning, characterization, and phylogenetic analysis of siglec-9, a new member of the CD33-related group of siglecs. Evidence for co-evolution with sialic acid synthesis pathways. J Biol Chem 275:22127–22135

    Article  PubMed  CAS  Google Scholar 

  • Angata T, Varki A (2000b) Siglec-7: a sialic acid-binding lectin of the immunoglobulin superfamily. Glycobiology 10:431–438

    Article  PubMed  CAS  Google Scholar 

  • Angata T, Hingorani R et al (2000) Cloning and characterization of siglec binding specificities, including the significance of fucosylation and of the sialyl-Tn epitope. Sialic acid-binding immunoglobulin superfamily lectins. J Biol Chem 275:8625–8632

    Article  Google Scholar 

  • Angata T, Hingorani R, Varki NM, Varki A (2001a) Cloning and characterization of a novel mouse siglec, mSiglec-F. Differential evolution of the mouse and human (CD33) siglec-3-related gene clusters. J BiolChem 276:45128–45136

    CAS  Google Scholar 

  • Angata T, Varki NM, Varki A (2001b) A second uniquely human mutation affecting sialic acid biology. J Biol Chem 276:40282–40287

    PubMed  CAS  Google Scholar 

  • Angata T, Kerr SC et al (2002) Cloning and characterization of human Siglec-11. A recently evolved signaling that can interact with SHP-1 and SHP-2 and is expressed by tissue macrophages, including brain microglia. J Biol Chem 277:24466–24474

    Article  PubMed  CAS  Google Scholar 

  • Angata T, Margulies EH, Green ED, Varki A (2004) Large-scale sequencing of the CD33-related Siglec gene cluster in five mammalian species reveals rapid evolution by multiple mechanisms. Proc Natl Acad Sci USA 101:13251–13256

    Article  PubMed  CAS  Google Scholar 

  • Angata T, Hayakawa T, Yamanaka M et al (2006) Discovery of Siglec-14, a novel sialic acid receptor undergoing concerted evolution with Siglec-5 in primates. FASEB J 20:1964–1973

    Article  PubMed  CAS  Google Scholar 

  • Arase H, Lanier LL (2004) Specific recognition of virus-infected cells by paired NK receptors. Rev Med Virol 14:83–93

    Article  PubMed  CAS  Google Scholar 

  • Attrill H, Imamura A, Sharma RS et al (2006a) Siglec-7 undergoes a major conformational change when complexed with the α(2,8)-disialylganglioside GT1b. J Biol Chem 281:32774–32783

    Article  PubMed  CAS  Google Scholar 

  • Attrill H, Takazawa H, Witt S et al (2006b) The structure of siglec-7 in complex with sialosides: leads for rational structure-based inhibitor design. Biochem J 397:271–278

    Article  PubMed  CAS  Google Scholar 

  • Avril T, Floyd H, Lopez F et al (2004) The membrane-proximal immunoreceptor tyrosine-based inhibitory motif is critical for the inhibitory signaling mediated by Siglecs-7 and -9, CD33-related Siglecs expressed on human monocytes and NK cells. J Immunol 173:6841–6849

    PubMed  CAS  Google Scholar 

  • Avril T, Freeman SD, Attrill H et al (2005) Siglec-5 (CD170) can mediate inhibitory signaling in the absence of immunoreceptor tyrosine-based inhibitory motif phosphorylation. J Biol Chem 280:19843–19851

    Article  PubMed  CAS  Google Scholar 

  • Avril T, Wagner ER, Willison HJ, Crocker PR (2006) Sialic acid-binding immunoglobulin-like lectin 7 mediates selective recognition of sialylated glycans expressed on Campylobacter jejuni lipooligosaccharides. Infect Immun 74:4133–4141

    Article  PubMed  CAS  Google Scholar 

  • Biedermann B, Gil D et al (2007) Analysis of the CD33-related siglec family reveals that Siglec-9 is an endocytic receptor expressed on subsets of acute myeloid leukemia cells and absent from normal hematopoietic progenitors. Leuk Res 31:211–220

    Article  PubMed  CAS  Google Scholar 

  • Blasius AL, Cella M, Maldonado J et al (2006) Siglec-H is an IPC-specific receptor that modulates type I IFN secretion through DAP12. Blood 107:2474–2476

    Article  PubMed  CAS  Google Scholar 

  • Blixt O, Collins BE, van den Nieuwenhof IM et al (2003) Sialoside specificity of the siglec family assessed using novel multivalent probes: identification of potent inhibitors of myelin-associated glycoprotein. J Biol Chem 278:31007–31019

    Article  PubMed  CAS  Google Scholar 

  • Bochner BS (2009) Siglec-8 on human eosinophils and mast cells, and Siglec-F on murine eosinophils, are functionally related inhibitory receptors. Clin Exp Allergy 39:317–324

    Article  PubMed  CAS  Google Scholar 

  • Bochner BS, Alvarez RA, Mehta P et al (2005) Glycan array screening reveals a candidate ligand for Siglec-8. J Biol Chem 280:4307–4312

    Article  PubMed  CAS  Google Scholar 

  • Brinkman-Van der Linden EC, Varki A (2000) New aspects of siglec binding specificities, including the significance of fucosylation and of the sialyl-Tn epitope. Sialic acid-binding immunoglobulin superfamily lectins. J Biol Chem 275:8625–8632

    Article  PubMed  CAS  Google Scholar 

  • Brinkman-Van der Linden EC, Varki A (2001) New aspects of a novel mouse Siglec, mSiglec-F: differential evolution of the mouse and human (CD33) Siglec-3-related gene clusters. J Biol Chem 276:45128–45136

    Article  CAS  Google Scholar 

  • Brinkman-Van der Linden EC, Angata T, Reynolds SA et al (2003) CD33/Siglec-3 binding specificity, expression pattern, and consequences of gene deletion in mice. Mol Cell Biol 23:4199–4206

    Article  PubMed  CAS  Google Scholar 

  • Brinkman-Van der Linden ECM, Hurtado-Ziola N et al (2007) Human-specific expression of Siglec-6 in the placenta. Glycobiology 17:922–931

    Article  PubMed  CAS  Google Scholar 

  • Cao H, Crocker PR (2011) Evolution of CD33-related siglecs: regulating host immune functions and escaping pathogen exploitation? Immunology 132:18–26

    Article  PubMed  CAS  Google Scholar 

  • Cao H, Lakner U, de Bono B et al (2008) SIGLEC16 encodes a DAP12-associated receptor expressed in macrophages that evolved from its inhibitory counterpart SIGLEC11 and has functional and non-functional alleles in humans. Eur J Immunol 38:2303–2315

    Article  PubMed  CAS  Google Scholar 

  • Cao H, de Bono B, Belov K et al (2009) Comparative genomics indicates the mammalian CD33rSiglec locus evolved by an ancient large-scale inverse duplication and suggests all Siglecs share a common ancestral region. Immunogenetics 61:401–417

    Article  PubMed  CAS  Google Scholar 

  • Carlin AF, Lewis AL, Varki A, Nizet V (2007) Group B streptococcal capsular sialic acids interact with Siglecs (immunoglobulin-like lectins) on human leukocytes. J Bacteriol 189:1231–1237

    Article  PubMed  CAS  Google Scholar 

  • Carlin AF, Uchiyama S, Chang Y-C et al (2009) Molecular mimicry of host sialylated glycans allows a bacterial pathogen to engage neutrophil Siglec-9 and dampen the innate immune response. Blood 113:3333–3336

    Article  PubMed  CAS  Google Scholar 

  • Collins BE, Ito H, Sawada N et al (1999) Enhanced binding of the neural siglecs, myelin-associated glycoprotein and Schwann cell myelin protein, to Chol-1 (α-series) gangliosides and novel sulfated Chol-1 analogs. J Biol Chem 274:37637–37643

    Article  PubMed  CAS  Google Scholar 

  • Cornish AL, Freeman S, Forbes G et al (1998) Characterization of siglec-5, a novel glycoprotein expressed on myeloid cells related to CD33. Blood 92:2123–2132

    PubMed  CAS  Google Scholar 

  • Crocker PR (2002) Siglecs: sialic-acid-binding immunoglobulin-like lectins in cell-cell interactions and signaling. Curr Opin Struct Biol 12:609–615

    Article  PubMed  CAS  Google Scholar 

  • Crocker PR (2005) Siglecs in innate immunity. Curr Opin Pharmacol 5:431–437

    Article  PubMed  CAS  Google Scholar 

  • Crocker PR, Varki A (2001a) Siglecs in the immune system. Immunology 103:137–145

    Article  PubMed  CAS  Google Scholar 

  • Crocker PR, Varki A (2001b) Siglecs, sialic acids and innate immunity. Trends Immunol 22:337–342

    Article  PubMed  CAS  Google Scholar 

  • Crocker PR, Paulson JC, Varki A (2007) Siglecs and their roles in the immune system. Nat Rev Immunol 7:255–266

    Article  PubMed  CAS  Google Scholar 

  • Crocker PR, Redelinghuys P (2008) Siglecs as positive and negative regulators of the immune system. Biochem Soc Trans 36(Pt 6):1467–1471

    Article  PubMed  CAS  Google Scholar 

  • Damle NK (2004) Tumour-targeted chemotherapy with immunoconjugates of calicheamicin. Expert Opin Biol Ther 4:1445–1452

    Article  PubMed  CAS  Google Scholar 

  • Damle NK, Frost P (2003) Antibody-targeted chemotherapy with immunoconjugates of calicheamicin. Curr Opin Pharmacol 3:386–390, 20

    Article  PubMed  CAS  Google Scholar 

  • Dehal P, Predki P, Olsen AS, Kobayashi A et al (2001) Human chromosome 19 and related regions in mouse: conservative and lineage-specific evolution. Science 293:104–111

    Article  PubMed  CAS  Google Scholar 

  • Dimasi N, Moretta A, Moretta L et al (2004) Structure of the saccharide-binding domain of the human natural killer cell inhibitory receptor p75/AIRM1. Acta Crystallogr D Biol Crystallogr 60(Pt 2):401–403

    Article  PubMed  CAS  Google Scholar 

  • Feldman EJ, Brandwein J, Stone R et al (2005) Phase III randomized multicenter study of a humanized anti-CD33 monoclonal antibody, lintuzumab, in combination with chemotherapy, versus chemotherapy alone in patients with refractory or first-relapsed acute myeloid leukemia. J Clin Oncol 23:4110–4116

    Article  PubMed  CAS  Google Scholar 

  • Floyd H, Ni J, Cornish AL et al (2000) Siglec-8: a novel eosinophil-specific member of the immunoglobulin superfamily. J Biol Chem 275:861–866

    Article  PubMed  CAS  Google Scholar 

  • Foussias G, Yousef GM, Diamandis EP (2000) Molecular characterization of a Siglec8 variant containing cytoplasmic tyrosine-based motifs, and mapping of the Siglec8 gene. Biochem Biophys Res Commun 278:775–781

    Article  PubMed  CAS  Google Scholar 

  • Foussias G, Taylor SM, Yousef GM et al (2001) Cloning and molecular characterization of two splice variants of a new putative member of the Siglec-3-like subgroup of Siglecs. Biochem Biophys Res Commun 284:887–899

    Article  PubMed  CAS  Google Scholar 

  • Freeman SD, Kelm S, Barber EK, Crocker PR (1995) Characterization of CD33 as a new member of the sialoadhesin family of cellular interaction molecules. Blood 85:2005–2012

    PubMed  CAS  Google Scholar 

  • Freeman S, Birrell HC, D'Alessio K et al (2001) A comparative study of the asparagine-linked oligosaccharides on siglec-5, siglec-7 and siglec-8, expressed in a CHO cell line, and their contribution to ligand recognition. Eur J Biochem 268:1228–1237

    Article  PubMed  CAS  Google Scholar 

  • Grobe K, Powell LD (2002) Role of protein kinase C in the phosphorylation of CD33 (Siglec-3) and its effect on lectin activity. Blood 99:3188–3196

    Article  PubMed  CAS  Google Scholar 

  • Gunturi A, Berg RE, Forman J (2004) The role of CD94/NKG2 in innate and adaptive immunity. Immunol Res 30:29–34

    Article  PubMed  CAS  Google Scholar 

  • Hara-Yokoyama M, Ito H, Ueno-Noto K et al (2003) Novel sulfated gangliosides, high-affinity ligands for neural siglecs, inhibit NADase activity of leukocyte cell surface antigen CD38. Bioorg Med Chem Lett 13:3441–3445

    Article  PubMed  CAS  Google Scholar 

  • Hauswirth AW, Florian S, Printz D et al (2007) Expression of the target receptor CD33 in CD34/CD38/CD123 AML stem cells. Eur J Clin Invest 37:73–82

    Article  PubMed  CAS  Google Scholar 

  • Hayakawa T, Angata T, Lewis AL et al (2005) A human specific gene in microglia. Science 309(5741):1693, Comment in: Science. 2005; 309(5741):1662–1663

    PubMed  CAS  Google Scholar 

  • Hoffmann A, Kerr S, Jellusova J et al (2007) Siglec-G is a B1 cell-inhibitory receptor that controls expansion and calcium signaling of the B1 cell population. Nat Immunol 8:695–704

    Article  PubMed  CAS  Google Scholar 

  • Howie D, Simarro M, Sayos J et al (2002) Molecular dissection of the signaling and costimulatory functions of CD150 (SLAM): CD150/SAP binding and CD150-mediated costimulation. Blood 99:957–965

    Article  PubMed  CAS  Google Scholar 

  • Ikehara Y, Ikehara SK, Paulson JC (2004) Negative regulation of T cell receptor signaling by Siglec-7 (p70/AIRM) and Siglec-9. J Biol Chem 279:43117–43125

    Article  PubMed  CAS  Google Scholar 

  • Ito H, Ishida H, Collins BE et al (2003) Systematic synthesis and MAG-binding activity of novel sulfated GM1b analogues as mimics of Chol-1 (α-series) gangliosides: highly active ligands for neural siglecs. Carbohydr Res 338:1621–1639

    Article  PubMed  CAS  Google Scholar 

  • Jones C, Virji M, Crocker PR (2003) Recognition of sialylated meningococcal lipopolysaccharide by siglecs expressed on myeloid cells leads to enhanced bacterial uptake. Mol Microbiol 49:1213–1225

    Article  PubMed  CAS  Google Scholar 

  • Kikly KK, Bochner BS, Freeman SD et al (2000) Identification of SAF-2, a novel siglec expressed on eosinophils, mast cells, and basophils. J Allergy Clin Immunol 105:1093–1100

    Article  PubMed  CAS  Google Scholar 

  • Kitzig F, Martinez-Barriocanal A, López-Botet M, Sayós J (2002) Cloning of two new splice variants of Siglec-10 and mapping of the interaction between Siglec-10 and SHP-1. Biochem Biophys Res Commun 296:355–362

    Article  PubMed  CAS  Google Scholar 

  • Kubagawa H, Burrows PD, Cooper MD (1997) A novel pair of immunoglobulin-like receptors expressed by B cells and myeloid cells. Proc Natl Acad Sci USA 94:5261–5266

    Article  PubMed  CAS  Google Scholar 

  • Lanier LL (2001) Face off—the interplay between activating and inhibitory immune receptors. Curr Opin Immunol 13:326–331

    Article  PubMed  CAS  Google Scholar 

  • Lehmann F, Gäthje H, Kelm S, Dietz F (2004) Evolution of sialic acid-binding proteins: molecular cloning and expression of fish siglec-4. Glycobiology 14:959–968

    Article  PubMed  CAS  Google Scholar 

  • Li N, Zhang W, Wan T et al (2001) Cloning and characterization of Siglec-10, a novel sialic acid binding member of the Ig superfamily, from human dendritic cells. J Biol Chem 276:28106–28112

    Article  PubMed  CAS  Google Scholar 

  • Linenberger ML (2005) CD33-directed therapy with gemtuzumab ozogamicin in acute myeloid leukemia: progress in understanding cytotoxicity and potential mechanisms of drug resistance. Leukemia 19:176–182

    Article  PubMed  CAS  Google Scholar 

  • Liu Y, Chen GY, Zheng P (2009) CD24-Siglec G/10 discriminates danger- from pathogen-associated molecular patterns. Trends Immunol 30:557–561

    Article  PubMed  CAS  Google Scholar 

  • Lock K, Zhang J, Lu J et al (2004) Expression of CD33-related siglecs on human mononuclear phagocytes, monocyte-derived dendritic cells and plasmacytoid dendritic cells. Immunobiology 209:199–207

    Article  PubMed  CAS  Google Scholar 

  • Long EO (1999) Regulation of immune responses through inhibitory receptors. Annu Rev Immunol 17:875–904

    Article  PubMed  CAS  Google Scholar 

  • Lo J, Lee S, Xu M et al (2003) Unique zebrafish EST clusters and their future use in microarray for profiling gene expression patterns during embryogenesis. Genome Res 13:455–466

    Article  PubMed  Google Scholar 

  • Malbec O, Fong DC, Turner M et al (1998) Fcε receptor I-associated lyn-dependent phosphorylation of Fc gamma receptor IIB during negative regulation of mast cell activation. J Immunol 160:1647–1658

    PubMed  CAS  Google Scholar 

  • Martin AM, Kulski JK, Witt C et al (2002) Leukocyte Ig-like receptor complex (LRC) in mice and men. Trends Immunol 23:81–88

    Article  PubMed  CAS  Google Scholar 

  • McMillan SJ, Crocker PR (2008) CD33-related sialic-acid-binding immunoglobulin-like lectins in health and disease. Carbohydr Res 343:2050–2056

    Article  PubMed  CAS  Google Scholar 

  • Mingari MC, Vitale C, Romagnani C et al (2001) p75/AIRM1 and CD33, two sialoadhesin receptors that regulate the proliferation or the survival of normal and leukemic myeloid cells. Immunol Rev 181:260–268

    Article  PubMed  CAS  Google Scholar 

  • Miyazaki K, Ohmori K, Izawa M et al (2004) Loss of disialyl Lewis(a), the ligand for lymphocyte inhibitory receptor sialic acid-binding immunoglobulin-like lectin-7 (Siglec-7) associated with increased sialyl Lewis(a) expression on human colon cancers. Cancer Res 64:4498–4505

    Article  PubMed  CAS  Google Scholar 

  • Mitra N, Banda K, Altheide TK et al (2011) SIGLEC12, a human-specific segregating (pseudo)gene, encodes a signaling molecule expressed in prostate carcinomas. J Biol Chem 286:23003–23011

    Article  PubMed  CAS  Google Scholar 

  • Munday J, Kerr S, Ni J et al (2001) Identification, characterization and leucocyte expression of Siglec-10, a novel human sialic acid-binding receptor. Biochem J 355:489–497

    Article  PubMed  CAS  Google Scholar 

  • Nath D, Hartnell A, Happerfield L et al (1999) Macrophage-tumour cell interactions: identification of MUC1 on breast cancer cells as a potential counter-receptor for the macrophage-restricted receptor, sialoadhesin. Immunology 98:213–219

    Article  PubMed  CAS  Google Scholar 

  • Nemecek ER, Matthews DC (2002) Antibody-based therapy of human leukemia. Curr Opin Hematol 9(4):316–321

    Article  PubMed  Google Scholar 

  • Nguyen DH, Tangvoranuntakul P, Varki A (2005) Effects of natural human antibodies against a nonhuman sialic acid that metabolically incorporates into activated and malignant immune cells. J Immunol 175:228–236

    PubMed  CAS  Google Scholar 

  • Nguyen DH, Ball ED, Varki A (2006a) Myeloid precursors and acute myeloid leukemia cells express multiple CD33-related Siglecs. Exp Hematol 34:728–735

    Article  PubMed  CAS  Google Scholar 

  • Nguyen DH, Hurtado-Ziola N, Gagneux P, Varki A (2006b) Loss of Siglec expression on T lymphocytes during human evolution. Proc Natl Acad Sci USA 103:7765–7770

    Article  PubMed  CAS  Google Scholar 

  • Nicoll G, Ni J, Liu D et al (1999) Identification and characterization of a novel siglec, siglec-7, expressed by human natural killer cells and monocytes. J Biol Chem 274:34089–34095

    Article  PubMed  CAS  Google Scholar 

  • Nicoll G, Avril T, Lock K et al (2003) Ganglioside GD3 expression on target cells can modulate NK cell cytotoxicity via siglec-7-dependent and – independent mechanisms. Eur J Immunol 33:1642–1648

    Article  PubMed  CAS  Google Scholar 

  • Nitschke L (2009) CD22 and Siglec-G: B-cell inhibitory receptors with distinct functions. Immunol Rev 230:128–143

    Article  PubMed  CAS  Google Scholar 

  • Nutku E, Aizawa H, Hudson SA, Bochner BS (2003) Ligation of Siglec-8: a selective mechanism for induction of human eosinophil apoptosis. Blood 101:5014–5020

    Article  PubMed  CAS  Google Scholar 

  • Nutku E, Hudson SA, Bochner BS (2005) Mechanism of Siglec-8-induced human eosinophil apoptosis: role of caspases and mitochondrial injury. Biochem Biophys Res Commun 336:918–924

    Article  PubMed  CAS  Google Scholar 

  • Nutku E, Hudson SA, Bochner 1SB (2008) Interleukin-5 priming of human eosinophils alters Siglec-8-mediated apoptosis pathways. Am J Respir Cell Mol Biol 38:121–124

    Article  CAS  Google Scholar 

  • Oetke C, Vinson MC, Jones C, Crocker PR (2006b) Sialoadhesin-deficient mice exhibit subtle changes in B- and T-cell populations and reduced immunoglobulin M levels. Mol Cell Biol 26:1549–1557

    Article  PubMed  CAS  Google Scholar 

  • O'Reilly MK, Paulson JC (2009) Siglecs as targets for therapy in immune-cell-mediated disease. Trends Pharmacol Sci 30:240–248

    Article  PubMed  CAS  Google Scholar 

  • Orr SJ, Morgan NM, Buick RJ et al (2007) SOCS3 targets Siglec 7 for proteasomal degradation and blocks Siglec 7-mediated responses. J Biol Chem 282:3418–3422

    Article  PubMed  CAS  Google Scholar 

  • Patel N, Brinkman-Van der Linden EC et al (1999) OB-BP1/Siglec-6. a leptin- and sialic acid-binding protein of the immunoglobulin superfamily. J Biol Chem 274:22729–22738

    Article  PubMed  CAS  Google Scholar 

  • Rapoport E, Khaidukov S, Baidina O et al (2003a) Involvement of the Galβ1–3GalNAcβ structure in the recognition of apoptotic bodies by THP-1 cells. Eur J Cell Biol 82:295–302

    Article  PubMed  CAS  Google Scholar 

  • Rapoport E, Mikhalyov I, Zhang J et al (2003b) Ganglioside binding pattern of CD33-related siglecs. Bioorg Med Chem Lett 13:675–678

    Article  PubMed  CAS  Google Scholar 

  • Rapoport EM, Sapot'ko YB, Pazynina GV et al (2005) Sialoside-binding macrophage lectins in phagocytosis of apoptotic bodies. Biochemistry (Mosc) 70:330–338

    Article  CAS  Google Scholar 

  • Rapoport EM, Pazynina GV, Sablina MA et al (2006) Probing sialic acid binding Ig-like lectins (siglecs) with sulfated oligosaccharides. Biochemistry (Mosc) 71:496–504

    Article  CAS  Google Scholar 

  • Ravetch JV, Lanier LL (2000) Immune inhibitory receptors. Science 290:84–89

    Article  PubMed  CAS  Google Scholar 

  • Salminen A, Kaarniranta K (2009) Siglec receptors and hiding plaques in Alzheimer's disease. Mol Med 87:697–701

    Article  CAS  Google Scholar 

  • Sonnenburg JL, Altheide TK, Varki A (2004) A uniquely human consequence of domain-specific functional adaptation in a sialic acid-binding receptor. Glycobiology 14:339–346

    Article  PubMed  CAS  Google Scholar 

  • Staub E, Rosenthal A, Hinzmann B (2004) Systematic identification of immunoreceptor tyrosine-based inhibitory motifs in the human proteome. Cell Signal 16:435–456

    Article  PubMed  CAS  Google Scholar 

  • Takei Y, Sasaki S, Fujiwara T et al (1997) Molecular cloning of a novel gene similar to myeloid antigen CD33 and its specific expression in placenta. Cytogenet Cell Genet 78:295–300

    Article  PubMed  CAS  Google Scholar 

  • Tateno H, Crocker PR, Paulson JC (2005) Mouse Siglec-F and human Siglec-8 are functionally convergent paralogs that are selectively expressed on eosinophils and recognize 6'-sulfo-sialyl Lewis X as a preferred glycan ligand. Glycobiology 15:1125–1135

    Article  PubMed  CAS  Google Scholar 

  • Tateno H, Li H, Schur MJ, Wakarchuk WW, Paulson JC et al (2007) Distinct endocytic mechanisms of CD22 (Siglec-2) and Siglec-F reflect roles in cell signaling and innate immunity. Mole Cell Biol 27:5699–5710

    Article  CAS  Google Scholar 

  • Taylor VC, Buckley CD, Douglas M et al (1999) The myeloid-specific sialic acid-binding receptor, CD33, associates with the protein-tyrosine phosphatases, SHP-1 and SHP-2. J Biol Chem 274:11505–11512

    Article  PubMed  CAS  Google Scholar 

  • Tchilian EZ, Beverley PC, Young BD, Watt SM (1994) Molecular cloning of two isoforms of the murine homolog of the myeloid CD33 antigen. Blood 83:3188–3198

    PubMed  CAS  Google Scholar 

  • Ten Cate B, Samplonius DF, Bijma T et al (2007) The histone deacetylase inhibitor valproic acid potently augments gemtuzumab ozogamicin-induced apoptosis in acute myeloid leukemic cells. Leukemia 21:248–252

    Article  PubMed  CAS  Google Scholar 

  • Ulyanova T, Shah DD, Thomas ML (2001) Molecular cloning of MIS, a myeloid inhibitory siglec, that binds protein-tyrosine phosphatases SHP-1 and SHP-2. J Biol Chem 276:14451–14458

    PubMed  CAS  Google Scholar 

  • van den Berg TK, Nath D, Ziltener HJ et al (2001) Cutting edge: CD43 functions as a T cell counterreceptor for the macrophage adhesion receptor sialoadhesin (Siglec-1). J Immunol 166:3637–3644

    PubMed  Google Scholar 

  • Varki A (2009) Multiple changes in sialic acid biology during human evolution. Glycoconj J 26:231–245

    Article  PubMed  CAS  Google Scholar 

  • Varki A, Angata T (2006) Siglecs—the major subfamily of I-type lectins. Glycobiology 16:1R–27R

    Article  PubMed  CAS  Google Scholar 

  • Varki A, Crocker PR. I-type lectins, in Essentials of Glycobiology, 2nd edition (Varki A, Cummings RD, Esko JD, et al., editors), Cold Spring Harbor (NY), 2009.

    Google Scholar 

  • Vilches C, Parham P (2002) KIR: diverse, rapidly evolving receptors of innate and adaptive immunity. Annu Rev Immunol 20:217–251

    Article  PubMed  CAS  Google Scholar 

  • Virgo P, Denning-Kendall PA, Erickson-Miller CL et al (2003) Identification of the CD33-related Siglec receptor, Siglec-5 (CD170), as a useful marker in both normal myelopoiesis and acute myeloid leukaemias. Br J Haematol 123:420–430

    Article  PubMed  Google Scholar 

  • Vitale C, Romagnani C, Puccetti A et al (2001) Surface expression and function of p75/AIRM-1 or CD33 in acute myeloid leukemias: engagement of CD33 induces apoptosis of leukemic cells. Proc Natl Acad Sci USA 98:5764–5769

    Article  PubMed  CAS  Google Scholar 

  • von Gunten S, Simon HU (2006) Sialic acid binding immunoglobulin-like lectins may regulate innate immune responses by modulating the life span of granulocytes. FASEB J 20:601–605

    Article  CAS  Google Scholar 

  • von Gunten S, Yousefi S, Seitz M et al (2005) Siglec-9 transduces apoptotic and nonapoptotic death signals into neutrophils depending on the proinflammatory cytokine environment. Blood 106:1423–1431

    Article  CAS  Google Scholar 

  • von Gunten S, Schaub A, Vogel M et al (2006) Immunologic and functional evidence for anti-Siglec-9 autoantibodies in intravenous immunoglobulin preparations. Blood 108:4255–4259

    Article  CAS  Google Scholar 

  • von Gunten S, Jakob SM, Geering B et al (2009) Different patterns of Siglec-9-mediated neutrophil death responses in septic shock. Shock 32:386–392

    Article  CAS  Google Scholar 

  • Walter RB, Raden BW, Kamikura DM et al (2005) Influence of CD33 expression levels and ITIM-dependent internalization on gemtuzumab ozogamicin-induced cytotoxicity. Blood 105:1295–1302

    Article  PubMed  CAS  Google Scholar 

  • Walter RB, Boyle KM, Appelbaum FR et al (2008a) Simultaneously targeting CD45 significantly increases cytotoxicity of the anti-CD33 immunoconjugate, gemtuzumab ozogamicin, against acute myeloid leukemia (AML) cells and improves survival of mice bearing human AML xenografts. Blood 111:4813–4816

    Article  PubMed  CAS  Google Scholar 

  • Walter RB, Häusermann P, Raden BW et al (2008b) Phosphorylated ITIMs enable ubiquitylation of an inhibitory cell surface receptor. Traffic 9:267–279

    Article  PubMed  CAS  Google Scholar 

  • Walter RB, Raden BW, Zeng R et al (2008c) ITIM-dependent endocytosis of CD33-related Siglecs: role of intracellular domain, tyrosine phosphorylation, and the tyrosine phosphatases, Shp1 and Shp2. J Leukoc Biol 83:200–211

    Article  PubMed  CAS  Google Scholar 

  • Whitney G, Wang S, Chang H et al (2001) A new siglec family member, siglec-10, is expressed in cells of the immune system and has signaling properties similar to CD33. Eur J Biochem 268:6083–6096

    Article  PubMed  CAS  Google Scholar 

  • Winn VD, Gormley M, Paquet AC et al (2009) Severe preeclampsia-related changes in gene expression at the maternal-fetal interface include sialic acid-binding immunoglobulin-like lectin-6 and pappalysin-2. Endocrinology 150:452–462

    Article  PubMed  CAS  Google Scholar 

  • Yamaji T, Teranishi T, Alphey MS et al (2002) A small region of the natural killer cell receptor, Siglec-7, is responsible for its preferred binding to α 2,8-disialyl and branched α 2,6-sialyl residues. A comparison with Siglec-9. J Biol Chem 277:6324–6332

    Article  PubMed  CAS  Google Scholar 

  • Yamaji T, Mitsuki M, Teranishi T et al (2005) Characterization of inhibitory signaling motifs of the natural killer cell receptor Siglec-7: attenuated recruitment of phosphatases by the receptor is attributed to two amino acids in the motifs. Glycobiology 15:667–676

    Article  PubMed  CAS  Google Scholar 

  • Yokoyama WM, Plougastel BF (2003) Immune functions encoded by the natural killer gene complex. Nat Rev Immunol 3:304–316

    Article  PubMed  CAS  Google Scholar 

  • Yotsumoto K, Okoshi Y, Shibuya K et al (2003) Paired activating and inhibitory immunoglobulin-like receptors, MAIR-I and MAIR-II, regulate mast cell and macrophage activation. J Exp Med 198:223–233

    Article  PubMed  CAS  Google Scholar 

  • Yousef GM, Ordon MH, Foussias G, Diamandis EP (2002) Genomic organization of the siglec gene locus on chromosome 19q13.4 and cloning of two new siglec pseudogenes. Gene 286:259–270

    Article  PubMed  CAS  Google Scholar 

  • Yu Z, Lai CM, Maoui M et al (2001a) Identification and characterization of S2V, a novel putative siglec that contains two V set Ig-like domains and recruits protein-tyrosine phosphatases SHPs. J Biol Chem 276:23816–23824

    Article  PubMed  CAS  Google Scholar 

  • Yu Z, Maoui M et al (2001b) mSiglec-E, a novel mouse CD33-related siglec (sialic acid-binding immunoglobulin-like lectin) that recruits Src homology 2 (SH2)-domain-containing protein tyrosine phosphatases SHP-1 and SHP-2. Biochem J 353:483–492

    Article  PubMed  CAS  Google Scholar 

  • Zhang JQ, Nicoll G, Jones C, Crocker PR (2000) Siglec-9, a novel sialic acid binding member of the immunoglobulin superfamily expressed broadly on human blood leukocytes. J Biol Chem 275:22121–22126

    Article  PubMed  CAS  Google Scholar 

  • Zhang JQ, Biedermann B, Nitschke L, Crocker PR (2004) The murine inhibitory receptor mSiglec-E is expressed broadly on cells of the innate immune system whereas mSiglec-F is restricted to eosinophils. Eur J Immunol 34:1175–1184

    Article  PubMed  CAS  Google Scholar 

  • Zhang J, Raper A, Sugita N et al (2006) Characterization of Siglec-H as a novel endocytic receptor expressed on murine plasmacytoid dendritic cell precursors. Blood 107:3600–3608

    Article  PubMed  CAS  Google Scholar 

  • Zhang M, Angata T, Cho JY et al (2007) Defining the in vivo function of Siglec-F, a CD33-related Siglec expressed on mouse eosinophils. Blood 109:4280–4287

    Article  PubMed  CAS  Google Scholar 

  • Zhuravleva MA, Trandem K, Sun PD (2008) Structural implications of Siglec-5-mediated sialoglycan recognition. J Mol Biol 375:437–447

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Wien

About this chapter

Cite this chapter

Gupta, G.S. (2012). CD33 (Siglec 3) and CD33-Related Siglecs. In: Animal Lectins: Form, Function and Clinical Applications. Springer, Vienna. https://doi.org/10.1007/978-3-7091-1065-2_17

Download citation

Publish with us

Policies and ethics