Skip to main content

Recent Development of Computational Methods in the Field of Epitranscriptomics

  • Chapter
  • First Online:
Handbook of Statistical Bioinformatics

Part of the book series: Springer Handbooks of Computational Statistics ((SHCS))

  • 977 Accesses

Abstract

The RNA epigenetics gold rush in the past few years has brought reversible RNA modifications (epitranscriptomics) into the spotlight as an important mechanism of gene regulation due to their important functions in various biological systems. Methylated RNA immunoprecipitation sequencing (MeRIP-seq) is so far the most widely used technique in RNA modification studies to survey the epitranscriptome. The unique characteristics of MeRIP-seq data posted new challenges to computational methods. In this chapter, we will introduce the biology of epitranscriptomics, the MeRIP-seq, and other genome-wide assays to survey RNA modifications. Then, we will discuss the challenges in analyzing MeRIP-seq data as well as recent progress in computational methods to tackle these challenges. Further, we survey bioinformatic resources that could be useful in epitranscriptomics studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Roundtree IA et al (2017) Dynamic RNA modifications in gene expression regulation. Cell 169(7):1187–1200

    Article  CAS  Google Scholar 

  2. Fu Y et al (2014) Gene expression regulation mediated through reversible m(6)A RNA methylation. Nat Rev Genet 15(5):293–306

    Article  CAS  Google Scholar 

  3. Liu J et al (2013) A METTL3–METTL14 complex mediates mammalian nuclear RNA N6-adenosine methylation. Nat Chem Biol 10:93

    Article  Google Scholar 

  4. Wang P, Doxtader KA, Nam Y (2016) Structural basis for cooperative function of Mettl3 and Mettl14 methyltransferases. Mol Cell 63(2):306–317

    Article  CAS  Google Scholar 

  5. Ping X-L et al (2014) Mammalian WTAP is a regulatory subunit of the RNA N6-methyladenosine methyltransferase. Cell Res 24:177

    Article  CAS  Google Scholar 

  6. Yue Y et al (2018) VIRMA mediates preferential m6A mRNA methylation in 3′UTR and near stop codon and associates with alternative polyadenylation. Cell Discovery 4(1):10

    Article  Google Scholar 

  7. Wen J et al (2018) Zc3h13 regulates nuclear RNA m6A methylation and mouse embryonic stem cell self-renewal. Mol Cell 69(6):1028–1038.e6

    Article  CAS  Google Scholar 

  8. Patil DP et al (2016) m(6)A RNA methylation promotes XIST-mediated transcriptional repression. Nature 537(7620):369–373

    Article  CAS  Google Scholar 

  9. Aoyama T, Yamashita S, Tomita K (2020) Mechanistic insights into m6A modification of U6 snRNA by human METTL16. Nucleic Acids Res 48(9):5157–5168

    Article  CAS  Google Scholar 

  10. Zheng G et al (2013) ALKBH5 is a mammalian RNA demethylase that impacts RNA metabolism and mouse fertility. Mol Cell 49(1):18–29

    Article  CAS  Google Scholar 

  11. Jia G et al (2011) N6-methyladenosine in nuclear RNA is a major substrate of the obesity-associated FTO. Nat Chem Biol 7(12):885–887

    Article  CAS  Google Scholar 

  12. Wei J et al (2018) Differential m6A, m6Am, and m1A demethylation mediated by FTO in the cell nucleus and cytoplasm. Mol Cell 71(6):973–985.e5

    Article  CAS  Google Scholar 

  13. Yu Q et al (2021) RNA demethylation increases the yield and biomass of rice and potato plants in field trials. Nat Biotechnol

    Google Scholar 

  14. Wang X et al (2015) N(6)-methyladenosine modulates messenger RNA translation efficiency. Cell 161(6):1388–1399

    Article  CAS  Google Scholar 

  15. Wang X et al (2013) N6-methyladenosine-dependent regulation of messenger RNA stability. Nature 505:117

    Article  CAS  Google Scholar 

  16. Du H et al (2016) YTHDF2 destabilizes m6A-containing RNA through direct recruitment of the CCR4–NOT deadenylase complex. Nat Commun 7(1):12626

    Article  CAS  Google Scholar 

  17. Shi H et al (2017) YTHDF3 facilitates translation and decay of N6-methyladenosine-modified RNA. Cell Res 27:315

    Article  CAS  Google Scholar 

  18. Roundtree IA et al (2017) YTHDC1 mediates nuclear export of N6-methyladenosine methylated mRNAs. elife 6:e31311

    Article  Google Scholar 

  19. Xiao W et al (2016) Nuclear m6A reader YTHDC1 regulates mRNA splicing. Mol Cell 61(4):507–519

    Article  CAS  Google Scholar 

  20. Liu J et al (2020) N (6)-methyladenosine of chromosome-associated regulatory RNA regulates chromatin state and transcription. Science 367(6477):580–586

    Article  CAS  Google Scholar 

  21. Zhang C et al (2016) Hypoxia induces the breast cancer stem cell phenotype by HIF-dependent and ALKBH5-mediated m6A-demethylation of NANOG mRNA. Proc Natl Acad Sci 113(14):E2047

    Article  CAS  Google Scholar 

  22. Shi Y et al (2019) YTHDF1 links hypoxia adaptation and non-small cell lung cancer progression. Nat Commun 10(1):4892

    Article  CAS  Google Scholar 

  23. Zhou J et al (2015) Dynamic m6A mRNA methylation directs translational control of heat shock response. Nature 526:591

    Article  CAS  Google Scholar 

  24. Han D et al (2019) Anti-tumour immunity controlled through mRNA m6A methylation and YTHDF1 in dendritic cells. Nature 566(7743):270–274

    Article  CAS  Google Scholar 

  25. Winkler R et al (2019) m6A modification controls the innate immune response to infection by targeting type I interferons. Nat Immunol 20(2):173–182

    Article  CAS  Google Scholar 

  26. Shi H et al (2018) m6A facilitates hippocampus-dependent learning and memory through YTHDF1. Nature 563(7730):249–253

    Article  CAS  Google Scholar 

  27. Yoon K-J et al (2017) Temporal control of mammalian cortical neurogenesis by m6A methylation. Cell 171(4):877–889.e17

    Article  CAS  Google Scholar 

  28. Dominissini D et al (2012) Topology of the human and mouse m6A RNA methylomes revealed by m6A-seq. Nature 485:201

    Article  CAS  Google Scholar 

  29. Meyer KD et al (2012) Comprehensive analysis of mRNA methylation reveals enrichment in 3' UTRs and near stop codons. Cell 149(7):1635–1646

    Article  CAS  Google Scholar 

  30. De Jesus DF et al (2019) m6A mRNA methylation regulates human β-cell biology in physiological states and in type 2 diabetes. Nat Metab 1(8):765–774

    Article  Google Scholar 

  31. Zhang Z et al (2019) RADAR: differential analysis of MeRIP-seq data with a random effect model. Genome Biol 20(1):294

    Article  Google Scholar 

  32. Engel M et al (2018) The role of m(6)A/m-RNA methylation in stress response regulation. Neuron 99(2):389–403.e9

    Article  CAS  Google Scholar 

  33. Zhang Z et al (2020) Genetic analyses support the contribution of mRNA N6-methyladenosine (m6A) modification to human disease heritability. Nat Genet 52(9):939–949

    Article  CAS  Google Scholar 

  34. Chen K et al (2015) High-resolution N(6) -methyladenosine (m(6) A) map using photo-crosslinking-assisted m(6) A sequencing. Angew Chem Int Ed Engl 54(5):1587–1590

    Article  CAS  Google Scholar 

  35. Linder B et al (2015) Single-nucleotide-resolution mapping of m6A and m6Am throughout the transcriptome. Nat Methods 12(8):767–772

    Article  CAS  Google Scholar 

  36. Zhang Z et al (2019) Single-base mapping of m(6)A by an antibody-independent method. Sci Adv 5(7):eaax0250

    Article  CAS  Google Scholar 

  37. Garcia-Campos MA et al (2019) Deciphering the “m6A Code” via antibody-independent quantitative profiling. Cell 178(3):731–747.e16

    Article  CAS  Google Scholar 

  38. Meng J et al (2014) A protocol for RNA methylation differential analysis with MeRIP-Seq data and exomePeak R/Bioconductor package. Methods 69(3):274–281

    Article  CAS  Google Scholar 

  39. Cui X et al (2016) A novel algorithm for calling mRNA m6A peaks by modeling biological variances in MeRIP-seq data. Bioinformatics 32(12):i378–i385

    Article  CAS  Google Scholar 

  40. Cui X et al (2018) MeTDiff: a novel differential RNA methylation analysis for MeRIP-seq data. IEEE/ACM Trans Comput Biol Bioinform 15(2):526–534

    Article  CAS  Google Scholar 

  41. Liu L et al (2016) DRME: count-based differential RNA methylation analysis at small sample size scenario. Anal Biochem 499:15–23

    Article  CAS  Google Scholar 

  42. Liu L et al (2017) QNB: differential RNA methylation analysis for count-based small-sample sequencing data with a quad-negative binomial model. BMC Bioinformatics 18(1):387

    Article  Google Scholar 

  43. Xiong X et al (2021) Genetic drivers of m6A methylation in human brain, lung, heart and muscle. Nat Genet

    Google Scholar 

  44. Stegle O et al (2010) A Bayesian framework to account for complex non-genetic factors in gene expression levels greatly increases power in eQTL studies. PLoS Comput Biol 6(5):e1000770

    Article  Google Scholar 

  45. Kim D et al (2019) Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype. Nat Biotechnol 37(8):907–915

    Article  CAS  Google Scholar 

  46. Dobin A et al (2013) STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29(1):15–21

    Article  CAS  Google Scholar 

  47. Chen W et al (2018) iRNA(m6A)-PseDNC: identifying N(6)-methyladenosine sites using pseudo dinucleotide composition. Anal Biochem 561–562:59–65

    Article  Google Scholar 

  48. Wei L et al (2019) Integration of deep feature representations and handcrafted features to improve the prediction of N6-methyladenosine sites. Neurocomputing 324:3–9

    Article  Google Scholar 

  49. Feng P et al (2017) iRNA-PseColl: identifying the occurrence sites of different RNA modifications by incorporating collective effects of nucleotides into PseKNC. Mol Ther Nucleic Acids 7:155–163

    Article  CAS  Google Scholar 

  50. Chen W, Tang H, Lin H (2017) MethyRNA: a web server for identification of N(6)-methyladenosine sites. J Biomol Struct Dyn 35(3):683–687

    Article  CAS  Google Scholar 

  51. Chen W et al (2018) iRNA-3typeA: identifying three types of modification at RNA's adenosine sites. Mol Ther Nucleic Acids 11:468–474

    Article  CAS  Google Scholar 

  52. Xing P et al (2017) Identifying N6-methyladenosine sites using multi-interval nucleotide pair position specificity and support vector machine. Sci Rep 7(1):46757

    Article  Google Scholar 

  53. Liu Z et al (2016) pRNAm-PC: predicting N(6)-methyladenosine sites in RNA sequences via physical-chemical properties. Anal Biochem 497:60–67

    Article  CAS  Google Scholar 

  54. Chen W, Xing P, Zou Q (2017) Detecting N6-methyladenosine sites from RNA transcriptomes using ensemble Support Vector Machines. Sci Rep 7(1):40242

    Article  CAS  Google Scholar 

  55. Li GQ et al (2016) TargetM6A: identifying N(6)-methyladenosine sites from RNA sequences via position-specific nucleotide propensities and a support vector machine. IEEE Trans Nanobioscience 15(7):674–682

    Article  CAS  Google Scholar 

  56. Jia CZ, Zhang JJ, Gu WZ (2016) RNA-MethylPred: a high-accuracy predictor to identify N6-methyladenosine in RNA. Anal Biochem 510:72–75

    Article  CAS  Google Scholar 

  57. Chen W et al (2016) Identifying N6-methyladenosine sites in the Arabidopsis thaliana transcriptome. Mol Gen Genomics 291(6):2225–2229

    Article  CAS  Google Scholar 

  58. Chen W et al (2015) Identification and analysis of the N6-methyladenosine in the Saccharomyces cerevisiae transcriptome. Sci Rep 5(1):13859

    Article  Google Scholar 

  59. Chen W et al (2015) iRNA-methyl: identifying N(6)-methyladenosine sites using pseudo nucleotide composition. Anal Biochem 490:26–33

    Article  CAS  Google Scholar 

  60. Dao FY et al (2020) Computational identification of N6-methyladenosine sites in multiple tissues of mammals. Comput Struct Biotechnol J 18:1084–1091

    Article  CAS  Google Scholar 

  61. Wang M, Xie J, Xu S (2021) M6A-BiNP: predicting N(6)-methyladenosine sites based on bidirectional position-specific propensities of polynucleotides and pointwise joint mutual information. RNA Biol:1–15

    Google Scholar 

  62. Xiang S et al (2016) AthMethPre: a web server for the prediction and query of mRNA m(6)A sites in Arabidopsis thaliana. Mol BioSyst 12(11):3333–3337

    Article  CAS  Google Scholar 

  63. Li J et al (2021) HSM6AP: a high-precision predictor for the Homo sapiens N6-methyladenosine (m^6 A) based on multiple weights and feature stitching. RNA Biol:1–11

    Google Scholar 

  64. Zhao Z et al (2018) Imbalance learning for the prediction of N(6)-methylation sites in mRNAs. BMC Genomics 19(1):574

    Article  Google Scholar 

  65. Qiang X et al (2018) M6AMRFS: robust prediction of N6-methyladenosine sites with sequence-based features in multiple species. Front Genet 9:495

    Article  Google Scholar 

  66. Liu K, Chen W (2020) iMRM: a platform for simultaneously identifying multiple kinds of RNA modifications. Bioinformatics 36(11):3336–3342

    Article  CAS  Google Scholar 

  67. Zhou Y et al (2016) SRAMP: prediction of mammalian N6-methyladenosine (m6A) sites based on sequence-derived features. Nucleic Acids Res 44(10):e91

    Article  Google Scholar 

  68. Wang X, Yan R (2018) RFAthM6A: a new tool for predicting m(6)A sites in Arabidopsis thaliana. Plant Mol Biol 96(3):327–337

    Article  CAS  Google Scholar 

  69. Wei L, Chen H, Su R (2018) M6APred-EL: a sequence-based predictor for identifying N6-methyladenosine sites using ensemble learning. Mol Ther Nucleic Acids 12:635–644

    Article  CAS  Google Scholar 

  70. Zou Q et al (2019) Gene2vec: gene subsequence embedding for prediction of mammalian N (6)-methyladenosine sites from mRNA. RNA 25(2):205–218

    Article  CAS  Google Scholar 

  71. Nazari I et al (2019) iN6-methyl (5-step): identifying RNA N6-methyladenosine sites using deep learning mode via Chou's 5-step rules and Chou's general PseKNC. Chemom Intell Lab Syst 193:103811

    Article  CAS  Google Scholar 

  72. Chen Z et al (2020) Comprehensive review and assessment of computational methods for predicting RNA post-transcriptional modification sites from RNA sequences. Brief Bioinform 21(5):1676–1696

    Article  CAS  Google Scholar 

  73. Mahmoudi O, Wahab A, Chong KT (2020) iMethyl-deep: N6 methyladenosine identification of yeast genome with automatic feature extraction technique by using deep learning algorithm. Genes (Basel) 11(5)

    Google Scholar 

  74. Liu W (2019) SICM6A: identifying m6A site across species by transposed GRU Network. bioRxiv: 694158

    Google Scholar 

  75. Zhang Y, Hamada M (2018) DeepM6ASeq: prediction and characterization of m6A-containing sequences using deep learning. BMC Bioinformatics 19(Suppl 19):524

    Article  Google Scholar 

  76. Zhang L et al (2021) EDLm(6)APred: ensemble deep learning approach for mRNA m(6)A site prediction. BMC Bioinformatics 22(1):288

    Article  CAS  Google Scholar 

  77. Huang Y et al (2018) BERMP: a cross-species classifier for predicting m(6)A sites by integrating a deep learning algorithm and a random forest approach. Int J Biol Sci 14(12):1669–1677

    Article  CAS  Google Scholar 

  78. Liu L et al (2021) WHISTLE server: a high-accuracy genomic coordinate-based machine learning platform for RNA modification prediction. Methods

    Google Scholar 

  79. Liu Z et al (2019) HLMethy: a machine learning-based model to identify the hidden labels of m(6)A candidates. Plant Mol Biol 101(6):575–584

    Article  CAS  Google Scholar 

  80. Wang Y et al (2021) m6AGE: a predictor for N6-methyladenosine sites identification utilizing sequence characteristics and graph embedding-based geometrical information. Front Genet 12:670852

    Article  CAS  Google Scholar 

  81. Zhang L et al (2021) DNN-m6A: a cross-species method for identifying RNA N6-methyladenosine sites based on deep neural network with multi-information fusion. Genes (Basel) 12(3)

    Google Scholar 

  82. Salekin S et al (2020) Predicting sites of epitranscriptome modifications using unsupervised representation learning based on generative adversarial networks. Front Phys 8

    Google Scholar 

  83. Song Z et al (2021) Attention-based multi-label neural networks for integrated prediction and interpretation of twelve widely occurring RNA modifications. Nat Commun 12(1):4011

    Article  CAS  Google Scholar 

  84. Chen K et al (2019) WHISTLE: a high-accuracy map of the human N6-methyladenosine (m6A) epitranscriptome predicted using a machine learning approach. Nucleic Acids Res 47(7):e41

    Article  Google Scholar 

  85. Liu H et al (2018) MeT-DB V2.0: elucidating context-specific functions of N6-methyl-adenosine methyltranscriptome. Nucleic Acids Res 46(D1):D281–D287

    Article  CAS  Google Scholar 

  86. Xuan JJ et al (2018) RMBase v2.0: deciphering the map of RNA modifications from epitranscriptome sequencing data. Nucleic Acids Res 46(D1):D327–D334

    Article  CAS  Google Scholar 

  87. Liu S et al (2020) REPIC: a database for exploring the N(6)-methyladenosine methylome. Genome Biol 21(1):100

    Article  CAS  Google Scholar 

  88. Tang Y et al (2021) m6A-Atlas: a comprehensive knowledgebase for unraveling the N6-methyladenosine (m6A) epitranscriptome. Nucleic Acids Res 49(D1):D134–D143

    Article  CAS  Google Scholar 

  89. Zhou D et al (2021) M6ADD: a comprehensive database of m(6)A modifications in diseases. RNA Biol:1–9

    Google Scholar 

  90. Han Y et al (2019) CVm6A: a visualization and exploration database for m(6)As in cell lines. Cell 8(2)

    Google Scholar 

  91. Song B et al (2021) ConsRM: collection and large-scale prediction of the evolutionarily conserved RNA methylation sites, with implications for the functional epitranscriptome. Brief Bioinform

    Google Scholar 

  92. Chen K et al (2021) RMDisease: a database of genetic variants that affect RNA modifications, with implications for epitranscriptome pathogenesis. Nucleic Acids Res 49(D1):D1396–D1404

    Article  CAS  Google Scholar 

  93. Luo X et al (2021) RMVar: an updated database of functional variants involved in RNA modifications. Nucleic Acids Res 49(D1):D1405–D1412

    Article  CAS  Google Scholar 

  94. Deng S et al (2021) M6A2Target: a comprehensive database for targets of m6A writers, erasers and readers. Brief Bioinform 22(3)

    Google Scholar 

  95. Liu H et al (2015) MeT-DB: a database of transcriptome methylation in mammalian cells. Nucleic Acids Res 43(Database issue):D197–D203

    Article  CAS  Google Scholar 

  96. Xu W et al (2021) METTL3 regulates heterochromatin in mouse embryonic stem cells. Nature

    Google Scholar 

  97. Li Y et al (2020) N(6)-methyladenosine co-transcriptionally directs the demethylation of histone H3K9me2. Nat Genet 52(9):870–877

    Article  CAS  Google Scholar 

  98. Abakir A et al (2020) N(6)-methyladenosine regulates the stability of RNA:DNA hybrids in human cells. Nat Genet 52(1):48–55

    Article  CAS  Google Scholar 

  99. Liu S (2020) easym6A: process m6A/MeRIP-seq data in a single or batch job mode. Github. https://github.com/shunliubio/easym6A

  100. Zhang Y et al (2008) Model-based analysis of ChIP-Seq (MACS). Genome Biol 9(9):R137

    Article  Google Scholar 

  101. Huang H et al (2019) Histone H3 trimethylation at lysine 36 guides m(6)A RNA modification co-transcriptionally. Nature 567(7748):414–419

    Article  CAS  Google Scholar 

  102. Cao X et al (2018) GIVE: portable genome browsers for personal websites. Genome Biol 19(1):92

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mengjie Chen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer-Verlag GmbH, DE, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zhang, Z., Liu, S., He, C., Chen, M. (2022). Recent Development of Computational Methods in the Field of Epitranscriptomics. In: Lu, H.HS., Schölkopf, B., Wells, M.T., Zhao, H. (eds) Handbook of Statistical Bioinformatics. Springer Handbooks of Computational Statistics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-65902-1_15

Download citation

Publish with us

Policies and ethics