Skip to main content

Disorders of the Urea Cycle and Related Enzymes

  • Chapter
  • First Online:
Inborn Metabolic Diseases

Abstract

Urea cycle disorders (UCDs) are genetic defects causing loss of function of any of the urea cycle (UC) enzymes carbamoyl phosphate synthetase 1 (CPS1), ornithine transcarbamylase (OTC), argininosuccinate synthetase (ASS), argininosuccinate lyase (ASL) and arginase (ARG1); the mitochondrial ornithine/citrulline antiporter (ORC1); and the CPS1-activating enzyme N-acetylglutamate synthase (NAGS). Their combined frequency is about 1:35,000 births, with newborn presentations in at least 25% of cases. NAGS, CPS1 and OTC are mitochondrial and their deficiencies cause hyperammonaemia. The deficiencies of the extramitochondrial enzymes ASS, ASL and ARG1, and of the ORC1 antiporter additionally cause specific alterations in amino acid levels with impact on disease pathogenesis. Deficiencies of carbonic anhydrase Va (CAVA), the liver mitochondrial citrin aspartate/glutamate antiporter and Δ1-pyrroline-5-carboxylate synthetase (P5CS), can cause hyperammonaemia by impairing supply to the UC of bicarbonate, aspartate and de novo made ornithine, respectively. Inheritance of UCDs is autosomal recessive except OTC deficiency, which is X-linked, and P5CS deficiency, which can be dominant or recessive. Acute hyperammonaemia is a clinical emergency occurring in most UCDs and in the transient hyperammonaemia of the newborn (THAN), a rarer condition of unclear etiology. It manifests as irritability, food refusal, vomiting, vegetative instability, hypotonia, convulsions, somnolence, lethargy, coma and death or neurological sequelae if untreated. Therapy of UCDs aims at rapid lowering of ammonia levels by (1) minimizing ammonia production via protein restriction and prevention of catabolism; (2) maximizing ammonia removal using dialytic measures, activation of alternate ammonia scavenging pathways with benzoate and/or phenylacetate or phenylbutyrate, and by enhancing residual UC function with arginine or citrulline where appropriate. Liver transplantation is curative or nearly so for most of these disorders but probably not for ASL deficiency. Importantly, citrin deficiency dramatically differs from other UCDs in that carbohydrates should be limited and high amounts of protein given. NAGS deficiency is virtually cured by giving N-carbamylglutamate to replace the missing N-acetylglutamate. Novel therapies being tested include gene addition and enzyme replacement.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Summar ML, Koelker S, Freedenberg D et al (2013) The incidence of urea cycle disorders. Mol Genet Metab 110:179–180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Ah Mew NA, Krivitzky L, McCarter R et al (2013) Clinical outcomes of neonatal onset proximal versus distal urea cycle disorders do not differ. J Pediatr 162:324–329

    Article  CAS  PubMed  Google Scholar 

  3. Häberle J, Burlina A, Chakrapani A et al (2019) Suggested guidelines for the diagnosis and management of urea cycle disorders: first revision. J Inherit Metab Dis 42:1192–1230

    Article  PubMed  Google Scholar 

  4. Teufel U, Burgard P, Meyburg J et al (2019) High blood pressure, a red flag for the neonatal manifestation of urea cycle disorders. Orphanet J Rare Dis 14:80

    Article  PubMed  PubMed Central  Google Scholar 

  5. Laemmle A, Gallagher RC, Keogh A et al (2016) Frequency and pathophysiology of acute liver failure in ornithine transcarbamylase deficiency (OTCD). PLoS One 11:e0153358

    Article  PubMed  PubMed Central  Google Scholar 

  6. Maestri NE, Lord C, Glynn M, Bale A, Brusilow SW (1988) The phenotype of ostensibly healthy women who are carriers for ornithine transcarbamylase deficiency. Medicine (Baltimore) 77:389–397

    Article  Google Scholar 

  7. Elliott KR, Tipton KF (1974) Product inhibition studies on bovine liver carbamoyl phosphate synthetase. Biochem J 141:817–824

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Alonso E, Rubio V (1989) Orotic aciduria due to arginine deprivation: changes in the levels of carbamoyl phosphate and of other urea cycle intermediates in mouse liver. J Nutr 119:1188–1195

    Article  CAS  PubMed  Google Scholar 

  9. Bachmann C, Colombo JP (1980) Diagnostic value of orotic acid excretion in heritable disorders of the urea cycle and in hyperammonemia due to organic acidurias. Eur J Pediatr 134:109–113

    Article  CAS  PubMed  Google Scholar 

  10. Rokicki D, Pajdowska M, Trubicka J et al (2017) 3-Methylglutaconic aciduria, a frequent but underrecognized finding in carbamoyl phosphate synthetase I deficiency. Clin Chim Acta 471:95–100

    Article  CAS  PubMed  Google Scholar 

  11. Pacheco-Colon I, Fricke S, VanMeter J, Gropman AL (2014) Advances in urea cycle neuroimaging: proceedings from the 4th international symposium on urea cycle disorders, Barcelona, Spain, September 2013. Mol Genet Metab 113:118–126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Albrecht J, Norenberg MD (2006) Glutamine: a Trojan horse in ammonia neurotoxicity. Hepatology 44:788–794

    Article  CAS  PubMed  Google Scholar 

  13. Eid T, Lee TS (2013) Reassessing the role of astrocytes in ammonia neurotoxicity. Nat Med 19:1572–1574

    Article  CAS  PubMed  Google Scholar 

  14. Rangroo Thrane V, Thrane AS, Wang F et al (2013) Ammonia triggers neuronal disinhibition and seizures by impairing astrocyte potassium buffering. Nat Med 19:1643–1648

    Article  PubMed  Google Scholar 

  15. Braissant O, McLin VA, Cudalbu C (2013) Ammonia toxicity to the brain. J Inherit Metab Dis 36:595–612

    Article  CAS  PubMed  Google Scholar 

  16. Sancho-Vaello E, Marco-Marín C, Gougeard N et al (2016) Understanding N-acetyl-L-glutamate synthase deficiency: mutational Spectrum, impact of clinical mutations on enzyme functionality, and structural considerations. Hum Mutat 37:679–694

    Article  CAS  PubMed  Google Scholar 

  17. Häberle J, Shchelochkov OA, Wang J et al (2011) Molecular defects in human carbamoyl phosphate synthetase I: mutational spectrum, diagnostic and protein structure considerations. Hum Mutat 32:579–589

    Article  PubMed  PubMed Central  Google Scholar 

  18. Caldovic L, Abdikarim I, Narain S, Tuchman M, Morizono H (2015) Genotype-phenotype correlations in ornithine transcarbamylase deficiency: a mutation update. J Genet Genomics 42:181–194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Guffon N, Schiff M, Cheillan D et al (2005) Neonatal hyperammonemia: the N-carbamoyl-L-glutamic acid test. J Pediatr 147:260–262

    Article  CAS  PubMed  Google Scholar 

  20. Krijt J, Sokolova J, Jesina P et al (2017) Activity of the liver enzyme ornithine carbamoyltransferase (OTC) in blood: LC-MS/MS assay for non-invasive diagnosis of ornithine carbamoyltransferase deficiency. Clin Chem Lab Med 55:1168–1177

    Article  CAS  PubMed  Google Scholar 

  21. Heibel SK, Ah Mew N, Caldovic L et al (2011) N-carbamylglutamate enhancement of ureagenesis leads to discovery of a novel deleterious mutation in a newly defined enhancer of the NAGS gene and to effective therapy. Hum Mutat 32:1153–1160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Isler J, Rüfenacht V, Gemperle C et al (2020) Improvement of diagnostic yield in carbamoylphosphate synthetase 1 (CPS1) molecular genetic investigation by RNA sequencing. JIMD Reports 52:28–34

    Article  PubMed  PubMed Central  Google Scholar 

  23. Jang YJ, LaBella AL, Feeney TP et al (2018) Disease-causing mutations in the promoter and enhancer of the ornithine transcarbamylase gene. Hum Mutat 39:527–536

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Grunewald S, Fairbanks L, Genet S et al (2004) How reliable is the allopurinol load in detecting carriers for ornithine transcarbamylase deficiency? J Inherit Metab Dis 27:179–186

    Article  CAS  PubMed  Google Scholar 

  25. Rüfenacht V, Häberle J (2015) Mini-review: challenges in newborn screening for urea cycle disorders. Int J Neonat Screen 1:27–35

    Article  Google Scholar 

  26. Staretz-Chacham O, Daas S, Ulanovsky I et al. (2020) The role of orotic acid measurement in routine newborn screening for urea cycle disorders. J Inherit Metab Dis 44:606–617

    Google Scholar 

  27. Hediger N, Landolt MA, Diez-Fernandez C, Huemer M, Häberle J (2018) The impact of ammonia levels and dialysis on outcome in 202 patients with neonatal onset urea cycle disorders. J Inherit Metab Dis 41:689–698

    Article  CAS  PubMed  Google Scholar 

  28. Adam S, Almeida MF, Assoun M et al (2013) Dietary management of urea cycle disorders: European practice. Mol Genet Metab 110:439–445

    Article  CAS  PubMed  Google Scholar 

  29. Berry SA, Lichter-Konecki U, Diaz GA et al (2014) Glycerol phenylbutyrate treatment in children with urea cycle disorders: pooled analysis of short and long-term ammonia control and outcomes. Mol Genet Metab 112:17–24

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Batshaw ML, Tuchman M, Summar M, Seminara J (2014) Members of the urea cycle disorders C. A longitudinal study of urea cycle disorders. Mol Genet Metab 113:127–130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Martin-Hernandez E, Aldamiz-Echevarria L, Castejon-Ponce E et al (2014) Urea cycle disorders in Spain: an observational, cross-sectional and multicentric study of 104 cases. Orphanet J Rare Dis 9:187

    Article  PubMed  PubMed Central  Google Scholar 

  32. Vergano SA, Crossette JM, Cusick FC et al (2013) Improving surveillance for hyperammonemia in the newborn. Mol Genet Metab 110:102–105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Yu L, Rayhill SC, Hsu EK, Landis CS (2015) Liver transplantation for urea cycle disorders: analysis of the united network for organ sharing database. Transplant Proc 47:2413–2418

    Article  CAS  PubMed  Google Scholar 

  34. Posset R, Gropman AL, Nagamani SCS et al (2019) Impact of diagnosis and therapy on cognitive function in urea cycle disorders. Ann Neurol 86:116–128

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Arn PH, Hauser ER, Thomas GH et al (1990) Hyperammonemia in women with a mutation at the ornithine carbamoyltransferase locus. A cause of postpartum coma. N Engl J Med 322:1652–1655

    Article  CAS  PubMed  Google Scholar 

  36. Häberle J, Vilaseca MA, Meli C et al (2010) First manifestation of citrullinemia type I as differential diagnosis to postpartum psychosis in the puerperal period. Eur J Obstet Gynecol Reprod Biol 149:228–229

    Article  PubMed  Google Scholar 

  37. Häberle J, Pauli S, Schmidt E et al (2003) Mild citrullinemia in Caucasians is an allelic variant of argininosuccinate synthetase deficiency (citrullinemia type 1). Mol Genet Metab 80:302–306

    Article  PubMed  Google Scholar 

  38. Barends M, Pitt J, Morrissy S, Tzanakos N, Boneh A (2014) Biochemical and molecular characteristics of patients with organic acidaemias and urea cycle disorders identified through newborn screening. Mol Genet Metab 113:46–52

    Article  CAS  PubMed  Google Scholar 

  39. Gomes Martins E, Santos Silva E, Vilarinho S, Saudubray JM, Vilarinho L (2010) Neonatal cholestasis: an uncommon presentation of hyperargininemia. J Inherit Metab Dis 33(Suppl 3):S503–S506

    Article  PubMed  Google Scholar 

  40. Faghfoury H, Baruteau J, de Baulny HO, Häberle J, Schulze A (2011) Transient fulminant liver failure as an initial presentation in citrullinemia type I. Mol Genet Metab 102:413–417

    Article  CAS  PubMed  Google Scholar 

  41. Kho J, Tian X, Wong WT et al (2018) Argininosuccinate lyase deficiency causes an endothelial-dependent form of hypertension. Am J Hum Genet 103:276–287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Sin YY, Baron G, Schulze A, Funk CD (2015) Arginase-1 deficiency. J Mol Med 93:1287–1296

    Article  CAS  PubMed  Google Scholar 

  43. Takada S, Saheki T, Igarashi Y, Katsunuma T (1979) Studies on rat liver argininosuccinate synthetase. Inhibition by various amino acids. J Biochem 85:1309–1314

    CAS  PubMed  Google Scholar 

  44. Brusilow SW (1984) Arginine, an indispensable amino acid for patients with inborn errors of urea synthesis. J Clin Invest 74:2144–2148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Sonoda T, Tatibana M (1983) Purification of N-acetyl-L-glutamate synthetase from rat liver mitochondria and substrate and activator specificity of the enzyme. J Biol Chem 258:9839–9844

    Article  CAS  PubMed  Google Scholar 

  46. Erez A, Nagamani SC, Shchelochkov OA et al (2011) Requirement of argininosuccinate lyase for systemic nitric oxide production. Nat Med 17:1619–1626

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Erez A (2013) Argininosuccinic aciduria: from a monogenic to a complex disorder. Genet Med 15:251–257

    Article  CAS  PubMed  Google Scholar 

  48. Baruteau J, Diez-Fernandez C, Lerner S, Ranucci G, Gissen P, Dionisi-Vici C, Nagamani S, Erez A, Häberle J (2019) Argininosuccinic aciduria: recent pathophysiological insights and therapeutic prospects. J Inherit Metab Dis 42(6):1147–1161

    Article  PubMed  Google Scholar 

  49. Panza E, Martinelli D, Magini P, Dionisi Vici C, Seri M (2019) Hereditary spastic paraplegia is a common phenotypic finding in ARG1 deficiency, P5CS deficiency and HHH syndrome: three inborn errors of metabolism caused by alteration of an interconnected pathway of glutamate and urea cycle metabolism. Front Neurol 10:131

    Article  PubMed  PubMed Central  Google Scholar 

  50. Amayreh W, Meyer U, Das AM (2014) Treatment of arginase deficiency revisited: guanidinoacetate as a therapeutic target and biomarker for therapeutic monitoring. Dev Med Child Neurol 56:1021–1024

    Article  PubMed  Google Scholar 

  51. Marco-Marin C, Escamilla-Honrubia JM, Llacer JL et al (2020) Delta(1)-Pyrroline-5-carboxylate synthetase deficiency: an emergent multifaceted urea cycle-related disorder. J Inherit Metab Dis 43:657–670

    Article  CAS  PubMed  Google Scholar 

  52. Engel K, Höhne W, Häberle J (2009) Mutations and polymorphisms in the human argininosuccinate synthetase (ASS1) gene. Hum Mutat 30:300–307

    Article  CAS  PubMed  Google Scholar 

  53. Balmer C, Pandey AV, Rüfenacht V et al (2014) Mutations and polymorphisms in the human argininosuccinate lyase (ASL) gene. Hum Mutat 35:27–35

    Article  CAS  PubMed  Google Scholar 

  54. Yu B, Howell PL (2000) Intragenic complementation and the structure and function of argininosuccinate lyase. Cell Mol Life Sci 57:1637–1651

    Article  CAS  PubMed  Google Scholar 

  55. Diez-Fernandez C, Rüfenacht V, Gemperle C, Fingerhut R, Häberle J (2018) Mutations and common variants in the human arginase 1 (ARG1) gene: impact on patients, diagnostics, and protein structure considerations. Hum Mutat 39(8):1029–1050

    Article  CAS  PubMed  Google Scholar 

  56. Ficicioglu C, Mandell R, Shih VE (2009) Argininosuccinate lyase deficiency: longterm outcome of 13 patients detected by newborn screening. Mol Genet Metab 98:273–277

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Silva ES, Cardoso ML, Vilarinho L et al (2013) Liver transplantation prevents progressive neurological impairment in argininemia. JIMD Rep 11:25–30

    Article  PubMed  PubMed Central  Google Scholar 

  58. Saheki T, Song YZ (2005/Updated 2017) Citrin deficiency. In: Adam MP, Ardinger HH, Pagon RA et al. (eds) GeneReviews. Seattle, Washington. https://www.ncbi.nlm.nih.gov/books/NBK1181/

  59. Vitoria I, Dalmau J, Ribes C et al (2013) Citrin deficiency in a Romanian child living in Spain highlights the worldwide distribution of this defect and illustrates the value of nutritional therapy. Mol Genet Metab 110:181–183

    Article  CAS  PubMed  Google Scholar 

  60. Ohura T, Kobayashi K, Tazawa Y et al (2007) Clinical pictures of 75 patients with neonatal intrahepatic cholestasis caused by citrin deficiency (NICCD). J Inherit Metab Dis 30:139–144

    Article  CAS  PubMed  Google Scholar 

  61. Saheki T, Moriyama M, Funahashi A, Kuroda E (2020) AGC2 (Citrin) deficiency-from recognition of the disease till construction of therapeutic procedures. Biomol Ther 10:1100

    CAS  Google Scholar 

  62. Hayasaka K (2020) Metabolic basis and treatment of citrin deficiency. J Inherit Metab Dis 44:110–117

    Google Scholar 

  63. Iijima M, Jalil A, Begum L et al (2001) Pathogenesis of adult-onset type II citrullinemia caused by deficiency of citrin, a mitochondrial solute carrier protein: tissue and subcellular localization of citrin. Adv Enzym Regul 41:325–342

    Article  CAS  Google Scholar 

  64. Saheki T, Sase M, Nakano K, Azuma F, Katsunuma T (1983) Some properties of argininosuccinate synthetase purified from human liver and a comparison with the rat liver enzyme. J Biochem 93:1531–1537

    Article  CAS  PubMed  Google Scholar 

  65. Mandel H, Levy N, Izkovitch S, Korman SH (2005) Elevated plasma citrulline and arginine due to consumption of Citrullus vulgaris (watermelon). J Inherit Metab Dis 28:467–472

    Article  CAS  PubMed  Google Scholar 

  66. Lau T, Owen W, Ming YY et al (2000) Arginine, citrulline, and nitric oxide metabolism in end-stage renal disease patients. J Clin Invest 105:1217–1225

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Dimmock D, Maranda B, Dionisi-Vici C et al (2009) Citrin deficiency, a perplexing global disorder. Mol Genet Metab 96:44–49

    Article  CAS  PubMed  Google Scholar 

  68. Zhang ZH, Lin WX, Deng M, Zhao XJ, Song YZ (2012) Molecular analysis of SLC25A13 gene in human peripheral blood lymphocytes: marked transcript diversity, and the feasibility of cDNA cloning as a diagnostic tool for citrin deficiency. Gene 511:227–234

    Article  CAS  PubMed  Google Scholar 

  69. Lin Y, Liu Y, Zhu L et al (2020) Combining newborn metabolic and genetic screening for neonatal intrahepatic cholestasis caused by citrin deficiency. J Inherit Metab Dis 43:467–477

    Article  CAS  PubMed  Google Scholar 

  70. van Karnebeek CD, Sly WS, Ross CJ et al (2014) Mitochondrial carbonic anhydrase VA deficiency resulting from CA5A alterations presents with hyperammonemia in early childhood. Am J Hum Genet 94:453–461

    Article  PubMed  PubMed Central  Google Scholar 

  71. Diez-Fernandez C, Rüfenacht V, Santra S et al (2016) Defective hepatic bicarbonate production due to carbonic anhydrase VA deficiency leads to early-onset life-threatening metabolic crisis. Genet Med 18:991–1000

    Article  CAS  PubMed  Google Scholar 

  72. Kumar V, Athreya R, Achuta SK, Sundarraju S (2019) Case 3: an unusual case of transient neonatal encephalopathy. NeoReviews 20:e472–e474

    Article  PubMed  Google Scholar 

  73. Baertling F, Wagner M, Brunet T et al (2020) Fatal metabolic decompensation in carbonic anhydrase VA deficiency despite early treatment and control of hyperammonemia. Genet Med 22:654–655

    Article  PubMed  Google Scholar 

  74. Konanki R, Akella RRD, Panigrahy N et al (2020) Mitochondrial carbonic anhydrase VA deficiency in three Indian infants manifesting early metabolic crisis. Brain and Development 42:534–538

    Article  PubMed  Google Scholar 

  75. Olgac A, Kasapkara CS, Kilic M et al (2020) Carbonic anhydrase VA deficiency: a very rare case of hyperammonemic encephalopathy. J Pediatr Endocrinol Metab 33:1349–1352

    Article  CAS  PubMed  Google Scholar 

  76. van Karnebeek C, Häberle J (2015) Carbonic anhydrase VA deficiency. In: Pagon RA, Adam MP, Ardinger HH et al (eds) GeneReviews. University of Washington, Seattle

    Google Scholar 

  77. Ballard RA, Vinocur B, Reynolds JW et al (1978) Transient hyperammonemia of the preterm infant. N Engl J Med 299:920–925

    Article  CAS  PubMed  Google Scholar 

  78. Tuchman M, Georgieff MK (1992) Transient hyperammonemia of the newborn: a vascular complication of prematurity? J Perinatol 12:234–236

    CAS  PubMed  Google Scholar 

  79. Bachmann C (2003) Inherited hyperammonemias. In: Blau N, Duran M, Blaskovic ME, Gibson KM (eds) Physician's guide to the laboratory diagnosis of metabolic diseases. Springer, Berlin, pp 261–276

    Chapter  Google Scholar 

  80. Hudak ML, Jones MD Jr, Brusilow SW (1985) Differentiation of transient hyperammonemia of the newborn and urea cycle enzyme defects by clinical presentation. J Pediatr 107:712–719

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johannes Häberle .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer-Verlag GmbH Germany, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Häberle, J., Rubio, V. (2022). Disorders of the Urea Cycle and Related Enzymes. In: Saudubray, JM., Baumgartner, M.R., García-Cazorla, Á., Walter, J. (eds) Inborn Metabolic Diseases. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-63123-2_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-63123-2_19

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-63122-5

  • Online ISBN: 978-3-662-63123-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics