Skip to main content

Abstract

Hyperammonemia (systemic venous or arterial plasma ammonia >80 in newborns or >50 µmol/L after 28 days postnatally) is due either to an increased production exceeding the capacity to detoxify (as in colonization with urease containing microorganisms in an intestinal loop, a neurogenic bladder or with a ureterosigmoidostomy), or to a decreased detoxification capacity. Among the latter causes are primary or secondary defects of enzymes involved in ammonia detoxification or a deficiency of intermediates needed as substrates for a functional urea cycle, such as a nutritional, enzyme, or transport defect, or to interference with portal circulation so that portal blood does not reach the hepatocytes (a portacaval bypass or a patent ductus), which can cause “transient hyperammonemia of the premature”. Ammonia detoxification is reduced in deficiencies of urea cycle enzymes, transport proteins (estimated incidence 1:30 000 newborns, [1]) in conditions where glutamate or acetyl CoA is decreased (valproate therapy and organic acidurias), with carnitine and CoA (sequestered by pathological acyl moieties) and defects of mitochondrial beta-oxidation or carnitine metabolism. These lead to a deficient formation of N-acetylglutamate (NAG), an obligate activator of the first step of ammonia detoxification, and thus to a functional NAGS deficiency. An acetyl CoA deficiency further reduces pyruvate carboxylase, which blocks gluconeogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Summar M, Tuchman M. Proceedings of a consensus conference for the management of patients with urea cycle disorders. Journal of Pediatrics 2001;138(1):S6–S10.

    Article  PubMed  CAS  Google Scholar 

  2. Bachmann C. Ornithine carbamoyl transferase deficiency: findings, models and problems. J Inherit Metab Dis 1992;15(4):578–591

    Article  PubMed  CAS  Google Scholar 

  3. Braissant O, Gotoh T, Loup M, Mori M, Bachmann C. L-arginine uptake, the citrulline-NO-cycle and arginase II in the rat brain: an in situ hybridisation study. Molecular Brain Research 1999;70(2):231–241.

    Article  PubMed  CAS  Google Scholar 

  4. Aral B, Schlenzig JS, Liu G, Kamoun P. Database cloning human delta 1-pyrroline-5-carboxylate synthetase (P5CS) cDNA: a bifunctional enzyme catalyzing the first 2 steps in proline biosynthesis. Comptes Rendus de l’ Académie des Sciences. Serie III, Sciences de La Vie 1996;319(3):171–178

    CAS  Google Scholar 

  5. Stanley CA, Fang J, Kutyna K et al. Molecular basis and characterization of the hyperinsulinism/hyperammonemia syndrome: predominance of mutations in exons 11 and 12 of the glutamate dehydrogenase gene. Diabetes 2000;49(4):667–673

    Article  PubMed  CAS  Google Scholar 

  6. Huijmans JG, Duran M, de Klerk JB, Rovers MJ, Scholte HR. Functional hyperactivity of hepatic glutamate dehydrogenase as a cause of the hyperinsulinism/hyperammonemia syndrome: effect of treatment. Pediatrics 2000;106(3):596–600

    Article  PubMed  CAS  Google Scholar 

  7. Kobayashi K, Sinasac DS, Iijima M, et al. The gene mutated in adult-onset type II citrullinaemia encodes a putative mitochondrial carrier protein. Nature Genetics 1999;22(2):159–163

    Article  PubMed  CAS  Google Scholar 

  8. Colombo JP, Peheim E, Kretschmer R, Dauwalder H, Sidiropoulos D. Plasma ammonia concentrations in newborns and children. Clinica Chimica Acta 1984;138:283–191

    Article  CAS  Google Scholar 

  9. Diaz J, Tornel PL, Martinez P. Reference intervals for blood ammonia in healthy subjects, determined by microdiffusion [letter]. Clinical Chemistry 1995;41(7):1048

    PubMed  CAS  Google Scholar 

  10. Burlina AB, Ferrari V, Dionisi-Vici C, Bordugo A, Zacchello F, Tuchman M. Allopurinol challenge test in children. Journal of Inherited Metabolic Disease 1992;15(5):707–712

    Article  PubMed  CAS  Google Scholar 

  11. Arranz JA, Riudor E, Rodes M, et al. Optimization of allopurinol challenge: sample purification, protein intake control, and the use of orotidine response as a discriminative variable improve performance of the test for diagnosing ornithine carbamoyltransferase deficiency. Clinical Chemistry 1999;45(7):995–1001

    PubMed  CAS  Google Scholar 

  12. da Fonseca-Wollheim F. Preanalytical increase of ammonia in blood specimens from healthy subjects. Clinical Chemistry 1990;36(8 Pt 1):1483–1487.

    PubMed  Google Scholar 

  13. Bachmann C. Urea cycle disorders. In: Fernandes J, Saudubray J, Tada K, eds. Inborn metabolic diseases. Diagnosis and treatment. Springer-Verlag: Berlin, Heidelberg 1990, pp 211–228

    Chapter  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bachmann, C. (2003). Inherited Hyperammonemias. In: Blau, N., Duran, M., Blaskovics, M.E., Gibson, K.M. (eds) Physician’s Guide to the Laboratory Diagnosis of Metabolic Diseases. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-55878-8_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-55878-8_17

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-62709-5

  • Online ISBN: 978-3-642-55878-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics