Skip to main content

Ecological Stability of Mixed-Species Forests

  • Chapter
  • First Online:
Mixed-Species Forests

Abstract

In many parts of the world, forests are likely to face novel disturbance regimes as a result of global change processes, and there is concern that the capacity of forest ecosystems to withstand, recover from, or adapt to these novel disturbance regimes may decline. Creation and maintenance of species-diverse forests is seen as an important option to adapt forests to uncertain future disturbances. However, it is not known whether benefits of mixed-species forests consist mainly of risk spreading among tree species that have different susceptibility to various stressors and disturbance agents or whether they also have emergent properties resulting from interactions among species, which increase the resistance and resilience of participating species or the entire ecosystem. Here we review the evidence for the effects of tree diversity on the resistance and resilience of forests in relation to a number of abiotic (drought, wind, fire) and biotic (insect herbivores, pathogens) stress and disturbance factors. For the abiotic disturbances, damage or reduction in ecosystem function can be reduced, compared with monocultures of susceptible or less resilient species, when more resistant or resilient species are mixed with less susceptible and less resilient species. However, storm, fire, or drought damage to individual species may not be reduced in mixtures when compared to monocultures. The stress or disturbance impacts may even be aggravated for one or more species in some mixtures, as is shown for drought. There is more evidence for beneficial diversity effects in relation to biotic disturbance agents. Mixing tree species reduces the impact of insect herbivores on individual susceptible tree species in the majority of cases, where the community is dominated by specialist herbivores. However, the opposite effect may occur with generalist herbivores, which can be promoted by tree diversity. Similarly, tree diversity can reduce the impact of specialist pathogens on host tree species, whereas there is little evidence for positive influences in the case of generalist pathogens. In most cases, tree species diversity dilutes the impact of disturbance agents and, owing to different susceptibility of species to specific disturbances, insures against a complete damage or loss. In addition, mixing tree species can reduce temporal variation in growth and stabilise productivity. However, there is little evidence for true, positive diversity effects, where diversity leads to an increase in the resistance and resilience of component species in mixed-species communities. From an economic point of view, mixing might help to reduce risk for a more vulnerable and valuable species, even if there are no benefits for the admixed species. However, forest managers should be aware that mixtures do not provide universally higher resistance or resilience in relation to disturbances than monocultures. In most cases, it depends to a large extent on the attributes of the species in mixture in relation to the specific disturbances.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agee JK (1996) The influence of forest structure on fire behavior. In: Proceedings of the 17th annual forest vegetation management conference, pp 16–18

    Google Scholar 

  • Albrecht A, Hanewinkel M, Bauhus J, Kohnle U (2012) How does silviculture affect storm damage in forests of south-western Germany? Results from empirical modeling based on long-term observations. Eur J For Res 131:229–247

    Article  Google Scholar 

  • Allen HD (2008) Fire: plant functional types and patch mosaic burning in fire-prone ecosystems. Prog Phys Geogr 32:421–437

    Article  Google Scholar 

  • Allen CD, Macalady AK, Chenchouni H et al (2010) A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. For Ecol Manage 259:660–684

    Article  Google Scholar 

  • Anagnostakis SA (1987) Chestnut blight: the classical problem of an introduced pathogen. Mycologia 79:23–37

    Article  Google Scholar 

  • Anders S, Müller J, Augustin S, Rust S (2006) Die Ressource Wasser im zweischichtigen Nadel-Laub-Mischbestand. In: Fritz P (ed) Ökologischer Waldumbau in Deutschland: Fragen, Antworten, Perspektiven. Oekom Verlag, pp 152–183

    Google Scholar 

  • Attiwill PM (1994) The disturbance of forest ecosystems: the ecological basis for conservative management. For Ecol Manage 63:247–300

    Article  Google Scholar 

  • Ayres MP, Lombardero MJ (2000) Assessing the consequences of global change for forest disturbance from herbivores and pathogens. Sci Total Environ 262:263–286

    Article  CAS  PubMed  Google Scholar 

  • Baeten L, Verheyen K, Wirth C et al (2013) A novel comparative research platform designed to determine the functional significance of tree species diversity in European forests. Perspect Plant Ecol Evol Syst 15:281–291

    Article  Google Scholar 

  • Baleshta KE, Simard SW, Guy RD, Chanway CP (2005) Reducing paper birch density increases Douglas-fir growth rate and Armillaria root disease incidence in southern interior British Columbia. For Ecol Manage 208:1–13

    Article  Google Scholar 

  • Baleshta KE, Simard SW, Roach WJ (2015) Effects of thinning paper birch on conifer productivity and understory plant diversity. Scand J For Res 30:699–709

    Article  Google Scholar 

  • Barbosa P, Hines J, Kaplan I et al (2009) Associational resistance and associational susceptibility: having right or wrong neighbors. Annu Rev Ecol Evol Syst 40:1–20

    Article  Google Scholar 

  • Bauhus J, Puettmann KJ, Kuehne C (2013) Close-to-nature forest management in Europe: does it support complexity and adaptability of forest ecosystems? In: Messier C, Puettmann KJ, Coates KD (eds) Managing forests as complex adaptive systems: building resilience to the challenge of global change. Routledge, The Earthscan Forest Library, pp 187–213

    Google Scholar 

  • Bernays EA, Bright KL, Gonzalez N, Angel J (1994) Dietary mixing in a generalist herbivore: tests of two hypotheses. Ecology 75:1997–2006

    Article  Google Scholar 

  • Binkley D, Menyailo O (2005) Gaining insights on the effects of tree species on soils. In: Binkley D, Menyailo O (eds) Tree species effects on soils: implications for global change. Kluwer Academic Publishers, Dordrecht, pp 1–16

    Chapter  Google Scholar 

  • Blakeman JP (1993) Pathogens in the foliar environment. Plant Pathol 42:479–493

    Article  Google Scholar 

  • Blauw LG, Wensink N, Bakker L et al (2015) Fuel moisture content enhances non-additive effects of plant mixtures on flammability and fire behavior. Ecol Evol 5:3830–3841

    Article  PubMed  PubMed Central  Google Scholar 

  • Bolte A, Ammer C, Löf M et al (2009) Adaptive forest management in central Europe: climate change impacts, strategies and integrative concept. Scand J For Res 24:473–482

    Article  Google Scholar 

  • Bommarco R, Banks JE (2003) Scale as modifier in vegetation diversity experiments: effects on herbivores and predators. Oikos 102:440–448

    Article  Google Scholar 

  • Bond WJ, Woodward FI, Midgley GF (2005) The global distribution of ecosystems in a world without fire. New Phytol 165:525–538

    Article  CAS  PubMed  Google Scholar 

  • Bowman DM (2000) Australian rainforests: islands of green in a land of fire. Cambridge University Press, Cambridge, 344 p

    Book  Google Scholar 

  • Brang P (2001) Resistance and elasticity: promising concepts for the management of protection forests in the European Alps. For Ecol Manage 145:107–119

    Article  Google Scholar 

  • Brunet Y (2013) Susceptibility to wind damage. In: Gardiner B, Schuck A, Schelhaas M-J, Orazio C, Blennow K, Nicoll B (eds) Living with storm damage to forests: what science can tell us, vol 3. European Forest Institute, Joensuu, pp 25–30

    Google Scholar 

  • Caldwell MM, Dawson TE, Richards JH (1998) Hydraulic lift: consequences of water efflux from the roots to plants. Oecologia 113:151–161

    Article  PubMed  Google Scholar 

  • Canham CD, Papaik MJ, Latty EF (2001) Interspecific variation in susceptibility to windthrow as a function of tree size and storm severity for northern temperate tree species. Can J For Res 31:1–10

    Article  Google Scholar 

  • Castagneyrol B, Jactel H (2012) Unravelling plant-animal diversity relationships: a meta-regression analysis. Ecology 93:2115–2124

    Article  PubMed  Google Scholar 

  • Castagneyrol B, Giffard B, Péré C, Jactel H (2013) Plant apparency, an overlooked driver of associational resistance to insect herbivory. J Ecol 10:418–429

    Article  Google Scholar 

  • Castagneyrol B, Jactel H, Vacher C et al (2014a) Effects of plant phylogenetic diversity on herbivory depend on herbivore specialization. J Appl Ecol 51:134–141

    Article  Google Scholar 

  • Castagneyrol B, Régolini M, Jactel H (2014b) Tree species composition rather than diversity triggers associational resistance to the pine processionary moth. Basic Appl Ecol 15:516–523

    Article  Google Scholar 

  • Castello JD, Leopold DJ, Smallidge PJ (1995) Pathogens, patterns, and processes in forest ecosystems. BioScience 45:16–24

    Article  Google Scholar 

  • Cavard X, Bergeron Y, Chen HYH et al (2011) Competition and facilitation between tree species change with stand development. Oikos 120:1683–1695

    Article  Google Scholar 

  • Colin F, Brunet Y, Vinckler I, Dhôte J-F (2008) Résistance aux vents forts des peuplements forestiers, et notamment des mélanges d’espèces. Rev For Fr LX:191–205

    Google Scholar 

  • Colin F, Vinkler I, Rou-Nivert P, Renaud J-P, Hervé J-C, Bock J Piton B (2009) Facteurs de risques de chablis dans les peuplements forestiers: les leçons tirées des tempêtes de 1999. In: Birot Y, Landmann G, Bonhême I (eds) La forêt face aux tempêtes. Editions Quae, p 177–228

    Google Scholar 

  • Coutts MP (1983) Root architecture and tree stability. Plant Soil 71:171–188

    Article  Google Scholar 

  • Cremer KW, Borough CJ, McKinnell FH, Carter PR (1982) Effects of stocking and thinning on wind damage in plantations. NZ J For Sci 12:244–268

    Google Scholar 

  • Dale VH, Joyce LA, McNulty S et al (2001) Climate change and forest disturbances: climate change can affect forests by altering the frequency, intensity, duration, and timing of fire, drought, introduced species, insect and pathogen outbreaks, hurricanes, windstorms, ice storms, or landslides. BioScience 51:723–734

    Article  Google Scholar 

  • Davison EM, Tay FCS (1987) The effect of waterlogging on infection of Eucalyptus marginata seedlings by Phytophthora cinnamomi. New Phytol 105:585–594

    Article  Google Scholar 

  • Dawson TE (1993) Hydraulic lift and water use by plants: implications for water balance, performance and plant-plant interactions. Oecologia 95:565–574

    Article  PubMed  Google Scholar 

  • de Magalhaes RMQ, Schwilk DW (2012) Leaf traits and litter flammability: evidence for non-additive mixture effects in a temperate forest. J Ecol 100:1153–1163

    Article  Google Scholar 

  • del Río M, Schütze G, Pretzsch H (2013) Temporal variation of competition and facilitation in mixed species forests in Central Europe. Plant Biol 16:166–176

    PubMed  Google Scholar 

  • del Río M, Pretzsch H, Ruíz‐Peinado R, Ampoorter E, Annighöfer P, Barbeito I, Fabrika M (2017) Species interactions increase the temporal stability of community productivity in Pinus sylvestrisFagus sylvatica mixtures across Europe. J Ecol. doi:10.1111/1365-2745.12727

    Google Scholar 

  • DeLong RL, Lewis KJ, Simard SW, Gibson S (2002) Fluorescent pseudomonad population sizes baited from soils under pure birch, pure Douglas-fir, and mixed forest stands and their antagonism toward Armillaria ostoyae in vitro. Can J For Res 32:2146–2159

    Article  Google Scholar 

  • Dhôte JF (2005) Implication of forest diversity in resistance to strong winds. In: Scherer-Lorenzen M, Körner C, Schulze ED (eds) Forest diversity and function – temperate and boreal systems, Ecological studies, vol 176. Springer, Berlin, Heidelberg, Germany, pp 291–308

    Chapter  Google Scholar 

  • Dimitrakopoulos AP, Papaioannou KK (2001) Flammability assessment of Mediterranean forest fuels. Fire Technol 37:143–152

    Article  Google Scholar 

  • Drouineau S, Laroussinie O, Birot Y et al (2000) Joint evaluation of storms, forest vunerability and their restoration. European Forest Institute Discussion Paper 9, Joensuu, Finland, 38 p

    Google Scholar 

  • Dulaurent AM, Rossi JP, Deborde C et al (2011) Honeydew feeding increased the longevity of two egg parasitoids of the pine processionary moth. J Appl Entomol 135:184–194

    Article  Google Scholar 

  • Dunham RA, Cameron AD (2000) Crown, stem and wood properties of wind-damaged and undamaged Sitka spruce. For Ecol Manage 135:73–81

    Article  Google Scholar 

  • Eis S (1972) Root grafts and their silvicultural implications. Can J For Res 2:111–120

    Article  Google Scholar 

  • Fernandes PM, Cruz MG (2012) Plant flammability experiments offer limited insight into vegetation–fire dynamics interactions. New Phytol 194:606–609

    Article  PubMed  Google Scholar 

  • Fernandes PM, Vega JA, Jiménez E, Rigolot E (2008) Fire resistance of European pines. For Ecol Manage 256:246–255

    Article  Google Scholar 

  • Flannigan MD, Amiro BD, Logan KA et al (2006) Forest fires and climate change in the 21st century. Mitig Adapt Strat Glob Chang 11:847–859

    Article  Google Scholar 

  • Fleming RA, Candau JN, McAlpine RS (2002) Landscape-scale analysis of interactions between insect defoliation and forest fire in central Canada. Clim Change 55:251–272

    Article  Google Scholar 

  • Forrester DI (2014) The spatial and temporal dynamics of species interactions in mixed-species forests: from pattern to process. For Ecol Manage 312:282–292

    Article  Google Scholar 

  • Forrester DI (2015) Transpiration and water-use efficiency in mixed-species forests versus monocultures: Effects of tree size, stand density and season. Tree Physiol 35:289–304

    Article  PubMed  Google Scholar 

  • Forrester DI, Theiveyanathan S, Collopy JJ, Marcar NE (2010) Enhanced water use efficiency in a mixed Eucalyptus globulus and Acacia mearnsii plantation. For Ecol Manage 259:1761–1770

    Article  Google Scholar 

  • Forrester DI, Bonal D, Dawud S et al (2016) Drought responses by individual tree species are not often correlated with tree species diversity in European forests. J Appl Ecol 53:1725-1734 doi:10.1111/1365-2664.12745

    Google Scholar 

  • Gardiner BA, Quine CP (2000) Management of forests to reduce the risk of abiotic damage – a review with particular reference to the effects of strong winds. For Ecol Manage 135:261–277

    Article  Google Scholar 

  • Gerlach JP, Reich PB, Puettmann K, Baker T (1997) Species, diversity, and density affect tree seedling mortality from Armillaria root rot. Can J For Res 27:1509–1512

    Article  Google Scholar 

  • Gill AM (1975) Fire and the Australian flora: a review. Aust For 38:4–25

    Article  Google Scholar 

  • Gill MJ (1997) Eucalypts and fire: interdependent or independent? In: Williams J, Woinarski J (eds) Eucalypt ecology: individuals to ecosystems. Cambridge University Press, Cambridge, pp 151–167

    Google Scholar 

  • González JR, Trasobares A, Palahí M, Pukkala T (2007) Predicting tree survival in burned forests in Catalonia (North-East Spain) for strategic forest planning. Ann For Sci 64:733–742

    Article  Google Scholar 

  • Grime JP (1979) Plant strategies and vegetation processes. Wiley, Chichester

    Google Scholar 

  • Grossiord C, Granier A, Ratcliffe S et al (2014a) Tree diversity does not always improve resistance of forest ecosystems to drought. Proc Natl Acad Sci U S A 111(41):14812–14815

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grossiord C, Gessler A, Granier A et al (2014b) Interspecific competition influences the response of oak transpiration to increasing drought stress in a mixed Mediterranean forest. For Ecol Manage 318:54–61

    Article  Google Scholar 

  • Grossiord C, Granier A, Gessler A et al (2014c) Does drought influence the relationship between biodiversity and ecosystem functioning in boreal forests? Ecosystems 17:394–404

    Article  CAS  Google Scholar 

  • Grossiord C, Gessler A, Granier A et al (2014d) Impact of interspecific interactions on the soil water uptake depth in a young temperate mixed species plantation. J Hydrol 519:3511–3519

    Article  Google Scholar 

  • Guyot V, Castagneyrol B, Vialatte A et al (2015) Tree diversity limits the impact of an invasive forest pest. PLoS One 10:e0136469

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Guyot V, Castagneyrol B, Vialatte A et al (2016) Tree diversity reduces pest damage in mature forests across Europe. Biol Lett 12:20151037

    Article  PubMed  PubMed Central  Google Scholar 

  • Haas SE, Hooten MB, Rizzo DM, Meentemeyer RK (2011) Forest species diversity reduces disease risk in a generalist plant pathogen invasion. Ecol Lett 14:1108–1116

    Article  PubMed  Google Scholar 

  • Hajek P, Seidel D, Leuschner C (2015) Mechanical abrasion, and not competition for light, is the dominant canopy interaction in a temperate mixed forest. For Ecol Manage 348:108–116

    Article  Google Scholar 

  • Hanewinkel M, Albrecht A, Schmidt M (2013) Influence of landscape and within stand characteristics on wind damage. In: Gardiner B, Schuck A, Schelhaas M-J, Orazio C, Blennow K, Nicoll B (eds) Living with storm damage to forests: What Science Can Tell Us, vol 3. European Forest Institute, Joensuu, pp 39–46

    Google Scholar 

  • Hantsch L, Bien S, Radatz S et al (2014a) Tree diversity and the role of non-host neighbour tree species in reducing fungal pathogen infestation. J Ecol 102:1673–1687

    Article  PubMed  PubMed Central  Google Scholar 

  • Hantsch L, Braun U, Haase J et al (2014b) No plant functional diversity effects on foliar fungal pathogens in experimental tree communities. Fungal Div 66:139–151

    Article  Google Scholar 

  • Hautier Y, Seabloom EW, Borer ET et al (2014) Eutrophication weakens stabilizing effects of diversity in natural grasslands. Nature 508:521–525

    Article  CAS  PubMed  Google Scholar 

  • Hector A, Hautier Y, Saner P et al (2010) General stabilizing effects of plant diversity on grassland productivity through population asynchrony and overyielding. Ecology 91:2213–2220

    Article  CAS  PubMed  Google Scholar 

  • IPCC (2013) Climate change 2013: The physical science basis. IPCC, Cambridge, UK

    Google Scholar 

  • Jactel H, Brockerhoff EG (2007) Tree diversity reduces herbivory by forest insects. Ecol Lett 10:835–848

    Article  PubMed  Google Scholar 

  • Jactel H, Menassieu P, Vetillard F et al (2006) Tree species diversity reduces the invasibility of maritime pine stands by the bast scale, Matsucoccus feytaudi (Homoptera: Margarodidae). Can J For Res 36:314–323

    Article  Google Scholar 

  • Jactel H, Nicoll BC, Branco M et al (2009) The influences of forest stand management on biotic and abiotic risks of damage. Ann For Sci 66:1–18

    Article  Google Scholar 

  • Jactel H, Birgersson G, Andersson S, Schlyter F (2011) Non-host volatiles mediate associational resistance to the pine processionary moth. Oecologia 166:703–711

    Article  CAS  PubMed  Google Scholar 

  • Jactel H, Petit J, Desprez-Loustau ML et al (2012) Drought effects on damage by forest insects and pathogens: a meta-analysis. Glob Chang Biol 18:267–276

    Article  Google Scholar 

  • Jäkel A, Roth M (2004) Conversion of single-layered Scots pine monocultures into close-to-nature mixed hardwood forests: effects on parasitoid wasps as pest antagonists. Eur J For Res 123:203–212

    Article  Google Scholar 

  • Johnson VJ (1975) Hardwood fuel-breaks for north eastern United States. J For 73:588–589

    Google Scholar 

  • Jucker T, Bouriaud O, Avacaritei D, Coomes DA (2014) Stabilizing effects of diversity on aboveground wood production in forest ecosystems: linking patterns and processes. Ecol Lett 17:1560–1569

    Article  PubMed  Google Scholar 

  • Kaitaniemi P, Riihimäki J, Koricheva J, Vehviläinen H (2007) Experimental evidence for associational resistance against the European pine sawfly in mixed tree stands. Silva Fennica 41:259–268

    Article  Google Scholar 

  • Kane JM, Varner JM, Hiers JK (2008) The burning characteristics of southeastern oaks: discriminating fire facilitators from fire impeders. For Ecol Manage 256:2039–2045

    Article  Google Scholar 

  • Keesing F, Belden LK, Daszak P et al (2010) Impacts of biodiversity on the emergence and transmission of infectious diseases. Nature 468:647–652

    Article  CAS  PubMed  Google Scholar 

  • Knoke T, Ammer C, Stimm B, Mosandl R (2008) Admixing broadleaved to coniferous tree species: a review on yield, ecological stability and economics. Eur J For Res 127:89–101

    Article  Google Scholar 

  • Kohler M, Nägele G, Sohn S, Bauhus J (2010) Can drought tolerance of Norway spruce (Picea abies (L.) Karst.) be increased through thinning? Eur J For Res 129:1109–1118

    Article  Google Scholar 

  • Korhonen K, Delatour C, Greig BJW, Schönhar S (1998) Silvicultural Control. In: Woodward S, Stenlid J, Karjalainen R, Hüttermann A (eds) Heterobasidion annosum: biology, ecology, impact and control. CAB International, pp 283–313

    Google Scholar 

  • Koricheva J, Vehviläinen H, Riihimäki J et al (2006) Diversification of tree stands as a means to manage pests and diseases in boreal forests: myth or reality? Can J For Res 36:324–336

    Article  Google Scholar 

  • Körner C (2002) Ökologie. In: Sitte P et al (eds) Strasburger Lehrbuch für Botanik. Spektrum Akademischer Verlag, Heidelberg, pp 930–932

    Google Scholar 

  • Kozlov MV, Lanta V, Zverev V, Zvereva EL (2015) Global patterns in background losses of woody plant foliage to insects. Glob Ecol Biogeogr 24:1126–1135

    Article  Google Scholar 

  • Kuhr M (2000) Grobwurzelarchitektur in Abhängigkeit von Baumart, Alter, Standort und sozialer Stellung. PhD thesis, University of Göttingen

    Google Scholar 

  • Kunert N, Schwendenmann L, Potvin C, Hölscher D (2012) Tree diversity enhances tree transpiration in a Panamanian forest plantation. J Appl Ecol 49:135–144

    Article  Google Scholar 

  • Lasky JR, Uriarte M, Boukili VK et al (2014) The relationship between tree biodiversity and biomass dynamics changes with tropical forest succession. Ecol Lett 17:1158–1167

    Article  PubMed  Google Scholar 

  • Latz E, Eisenhauer N, Rall BC et al (2012) Plant diversity improves protection against soil-borne pathogens by fostering antagonistic bacterial communities. J Ecol 100:597–604

    Article  Google Scholar 

  • Law BE, Falge E, Guc L et al (2002) Environmental controls over carbon dioxide and water vapor exchange of terrestrial vegetation. Agric For Meteorol 113:97–120

    Article  Google Scholar 

  • Lebourgeois F, Gomez N, Pinto P, Mérian P (2013) Mixed stands reduce Abies alba tree-ring sensitivity to summer drought in the Vosges mountains, western Europe. For Ecol Manage 303:61–71

    Article  Google Scholar 

  • Lichtenthaler HK (1998) The stress concept in plants: an introduction. Ann NY Acad Sci 851(1):187–198

    Article  CAS  PubMed  Google Scholar 

  • Lloret F, Keeling EG, Sala A (2011) Components of tree resilience: effects of successive low-growth episodes in old ponderosa pine forests. Oikos 120:1909–1920

    Article  Google Scholar 

  • Loehle C, Jones RH (1990) Adaptive significance of root grafting in trees. Funct Ecol 4:268–271

    Google Scholar 

  • Loreau M, de Mazancourt C (2008) Species synchrony and its drivers: neutral and non-neutral community dynamics in fluctuating environments. Am Nat 172:48–66

    Article  Google Scholar 

  • Lovett GM, Canham CD, Arthur MA et al (2006) Forest ecosystem responses to exotic pests and pathogens in eastern North America. BioScience 56:395–405

    Article  Google Scholar 

  • Lübbe T, Schuldt B, Coners H, Leuschner C (2015) Species diversity and identity effects on the water consumption of tree sapling assemblages under ample and limited water supply. Oikos 125:86–97

    Article  Google Scholar 

  • MacDonald GI, Hoff RJ (2001) Blister rust: an introduced plague. In: Tomback DF, Arno SF, Keane RE (eds) Whitebark pine communities, ecology and restoration. Island Press, Washington, DC, pp 193–220

    Google Scholar 

  • Mason WL (2002) Are irregular stands more windfirm? Forestry 75:347–355

    Article  Google Scholar 

  • Mason WL, Valinger E (2013) Managing forests to reduce storm damage. In: Gardiner BA, Schuck A, Schelhaas M-J, Orazio C, Blennow K, Nicoll B (eds) Living with storm damage to forests. What Science Can Tell Us, vol 3. EFI, Joensuu, Finland, pp 87–96

    Google Scholar 

  • McCracken AR, Dawson WM (1998) Short rotation coppice willow in Northern Ireland since 1973: development of the use of mixtures in the control of foliar rust (Melampsora spp.) Eur J For Pathol 28:241–250

    Article  Google Scholar 

  • Metz J, Annighöfer P, Schall P et al (2015) Site adapted admixed tree species reduce drought susceptibility of mature European beech. Glob Chang Biol 22:903–920

    Article  Google Scholar 

  • Millar CI, Stephenson NL (2015) Temperate forest health in an era of emerging mega-disturbance. Science 349:823–826

    Article  CAS  PubMed  Google Scholar 

  • Millar CI, Stephenson NL, Stephens SL (2007) Climate change and forests of the future: managing in the face of uncertainty. Ecol Appl 17:2145–2151

    Article  PubMed  Google Scholar 

  • Moore JR, Maguire DA (2004) Natural sway frequencies and damping ratios of trees: concepts, review and synthesis of previous studies. Trees 18:195–203

    Article  Google Scholar 

  • Moore GW, Bond BJ, Jones JA (2011) A comparison of annual transpiration and productivity in monoculture and mixed-species Douglas-fir and red alder stands. For Ecol Manage 262:2263–2270

    Article  Google Scholar 

  • Moreira F, Rego FC, Ferreira PG (2001) Temporal (1958–1995) pattern of change in a cultural landscape of northwestern Portugal: implications for fire occurrence. Landsc Ecol 16:557–567

    Article  Google Scholar 

  • Morrison DJ, Cruickshank MG, Lalumière A (2014) Control of laminated and Armillaria root diseases by stump removal and tree species mixtures: amount and cause of mortality and impact on yield after 40 years. For Ecol Manage 319:75–98

    Article  Google Scholar 

  • Muiruri EW, Rainio K, Koricheva J (2015) Do birds see the forest for the trees? Scale-dependent effects of tree diversity on avian predation of artificial larvae. Oecologia 180:619–630

    Article  PubMed  Google Scholar 

  • Neuner S, Albrecht A, Cullmann D et al (2015) Survival of Norway spruce remains higher in mixed stands under a dryer and warmer climate. Glob Chang Biol 21:935–946

    Article  PubMed  Google Scholar 

  • Noble IR, Slatyer RO (1980) The use of vital attributes to predict successional changes in plant communities subject to recurrent disturbances. Vegetatio 43:5–21

    Article  Google Scholar 

  • Nykänen ML, Peltola H, Quine C et al (1997) Factors affecting snow damage of trees with particular reference to European conditions. Silva Fenn 31:193–213

    Article  Google Scholar 

  • Örlander G, Karlsson C (2000) Influence of shelterwood density on survival and height increment of Picea abies advance growth. Scand J For Res 15:20–29

    Article  Google Scholar 

  • Ormeno E, Cespedes B, Sanchez IA et al (2009) The relationship between terpenes and flammability of leaf litter. For Ecol Manage 257:471–482

    Article  Google Scholar 

  • Otway SJ, Hector A, Lawton JH (2005) Resource dilution effects on specialist insect herbivores in a grassland biodiversity experiment. J Anim Ecol 74:234–240

    Article  Google Scholar 

  • Pausas JG, Lloret F (2007) Spatial and temporal patterns of plant functional types under simulated fire regimes. Int J Wildland Fire 16:484–492

    Article  Google Scholar 

  • Pausas JG, Vallejo VR (1999) The role of fire in European Mediterranean ecosystems. In: Chuvieco E (ed) Remote sensing of large wildfires. Springer, Berlin, pp 3–16

    Chapter  Google Scholar 

  • Pausas JG, Bladé C, Valdecantos A (2004a) Pines and oaks in the restoration of Mediterranean landscapes of Spain: new perspectives for an old practice – a review. Plant Ecol 171:209–220

    Article  Google Scholar 

  • Pausas JG, Bradstock RA, Keith DA, Keeley JE (2004b) Plant functional traits in relation to fire in crown-fire ecosystems. Ecology 85:1085–1100

    Article  Google Scholar 

  • Pautasso M, Holdenrieder O, Stenlid J (2005) Susceptibility to fungal pathogens of forests differing in tree diversity. In: Scherer-Lorenzen M, Körner C, Schulze E-D (eds) Forest diversity and function: temperate and boreal systems, Ecological Studies 176. Springer, Berlin, pp 263–289

    Chapter  Google Scholar 

  • Pedro MS, Rammer W, Seidl R (2015) Tree species diversity mitigates disturbance impacts on the forest carbon cycle. Oecologia 177:619–630

    Article  PubMed  Google Scholar 

  • Peltola HM (2006) Mechanical stability of trees under static loads. Am J Bot 93:1501–1511

    Article  PubMed  Google Scholar 

  • Peltola H, Kellomäki S, Hassinen A, Granander M (2000) Mechanical stability of Scots pine, Norway spruce and birch: an analysis of tree-pulling experiments in Finland. For Ecol Manage 135:143–153

    Article  Google Scholar 

  • Peltola H, Gardiner B, Nicholl B (2013) Mechanics of wind damage. In: Gardiner B, Schuck A, Schelhaas M-J, Orazio C, Blennow K, Nicoll B (eds) Living with storm damage to forests: What Science Can Tell Us, vol 3. European Forest Institute, Joensuu, pp 31–38

    Google Scholar 

  • Peterson DL, Johnson MC, Agee JK, et al (2005) Forest structure and fire hazard in dry forests of the Western United States. PNW-GTR-628, U.S. Department of Agriculture, Forest Service, Pacific Northwest Research Station, Portland, Oregon, 30 p

    Google Scholar 

  • Pickett STA, White P (1985) The ecology of natural disturbance and patch dynamics. Academic Press, Orlando, FL

    Google Scholar 

  • Piri T, Korhonen K, Sairanen A (1990) Occurrence of Heterobasidion annosum in pure and mixed spruce stands in southern Finland. Scand J For Res 5:113–125

    Article  Google Scholar 

  • Plath M, Dorn S, Riedel J et al (2012) Associational resistance and associational susceptibility: specialist herbivores show contrasting responses to tree stand diversification. Oecologia 169:477–487

    Article  PubMed  Google Scholar 

  • Pretzsch H, Schütze G (2009) Transgressive overyielding in mixed compared with pure stands of Norway spruce and European beech in Central Europe: evidence on stand level and explanation on individual tree level. Eur J For Res 128:183–204

    Article  Google Scholar 

  • Pretzsch H, Schütze G, Uhl E (2013) Resistance of European tree species to drought stress in mixed versus pure forests: evidence of stress release by inter-specific facilitation. Plant Biol 15:483–495

    Article  CAS  PubMed  Google Scholar 

  • Pretzsch H, Rötzer T, Matyssek R et al (2014) Mixed Norway spruce (Picea abies [L.] Karst) and European beech (Fagus sylvatica [L.]) stands under drought: from reaction pattern to mechanism. Trees 28:1305–1321

    Article  CAS  Google Scholar 

  • Puerta-Piñero C, Brotons L, Coll L, González-Olabarría JR (2012) Valuing acorn dispersal and resprouting capacity ecological functions to ensure Mediterranean forest resilience after fire. Eur J For Res 131:835–844

    Article  Google Scholar 

  • Putz FE, Coley PD, Lu K et al (1983) Uprooting and snapping of trees: structural determinants and ecological consequences. Can J For Res 13:1011–1020

    Article  Google Scholar 

  • Pyatt DG (1993) Multi-purpose forests on peatland. Biodivers Conserv 2:548–555

    Article  Google Scholar 

  • Reif A, Brucker U, Kratzer R et al (2010) Waldbewirtschaftung in Zeiten des Klimawandels – Synergien und Konfliktpotenziale zwischen Forstwirtschaft und Naturschutz. Naturschutz und Landschaftsplanung 42:261–266

    Google Scholar 

  • Rennenberg H, Seiler W, Matyssek R et al (2004) Die Buche (Fagus sylvatica L.) – ein Waldbaum ohne Zukunft im südlichen Mitteuropa? Allg Forst- und Jagdztg 175:210–224

    Google Scholar 

  • Rhoads AG, Hamburg SP, Fahey TJ et al (2002) Effects of an intense ice storm on the structure of a northern hardwood forest. Can J For Res 32:1763–1775

    Article  Google Scholar 

  • Rich RL, Frelich LE, Reich PB (2007) Wind-throw mortality in the southern boreal forest: effects of species, diameter and stand age. J Ecol 95:1261–1273

    Article  Google Scholar 

  • Root RB (1973) The organisation of a plant-arthropod association in simple and diverse habitats: the fauna of collards, Brassica olacea. Ecol Monogr 43:95–124

    Article  Google Scholar 

  • Rudnicki M, Lieffers VJ, Silins U (2003) Stand structure governs the crown collisions of lodgepole pine. Can J For Res 33:1238–1244

    Article  Google Scholar 

  • Ruel JC (1995) Understanding windthrow: silvicultural implications. For Chronicle 71:434–445

    Article  Google Scholar 

  • Schär C, Vidale PL, Lüthi D et al (2004) The role of increasing temperature variability in European summer heatwaves. Nature 427:332–335

    Article  PubMed  CAS  Google Scholar 

  • Schelhaas MJ, Nabuurs GJ, Schuck A (2003) Natural disturbances in the European forests in the 19th and 20th centuries. Glob Chang Biol 9:1620–1633

    Article  Google Scholar 

  • Scherer-Lorenzen M, Schulze E-D, Don A et al (2007) Exploring the functional significance of forest diversity: a new long-term experiment with temperate tree species (BIOTREE). Perspect Plant Ecol Evol Syst 9:53–70

    Article  Google Scholar 

  • Schmid I, Kazda M (2002) Root distribution of Norway spruce in monospecific and mixed stands on different soils. For Ecol Manage 159:37–47

    Article  Google Scholar 

  • Schönhar S (1990) Ausbreitung und Bekämpfung von Heterobasidion annosum in Fichtenbeständen auf basenreichen Lehmböden. Allg Forstzeitschrift 36:911–913

    Google Scholar 

  • Schroeder LM, Lindelöw Å (2002) Attacks on living spruce trees by the bark beetle Ips typographus (Col. Scolytidae) following a storm-felling: a comparison between stands with and without removal of wind-felled trees. Agric For Entomol 4:47–56

    Article  Google Scholar 

  • Schuldt A, Baruffol M, Böhnke M et al (2010) Tree diversity promotes insect herbivory in subtropical forests of south-east China. J Ecol 98:917–926

    Article  PubMed  PubMed Central  Google Scholar 

  • Schume H, Jost G, Hager H (2004) Soil water depletion and recharge patterns in mixed and pure forest stands of European beech and Norway spruce. J Hydrol 289:258–274

    Article  Google Scholar 

  • Schütz JP, Götz M, Schmid W, Mandallaz D (2006) Vulnerability of spruce (Picea abies) and beech (Fagus sylvatica) forest stands to storms and consequences for silviculture. Eur J For Res 125:291–302

    Article  Google Scholar 

  • Schwilk DW (2003) Flammability is a niche construction trait: canopy architecture affects fire intensity. Am Nat 162:725–733

    Article  PubMed  Google Scholar 

  • Schwilk DW, Caprio AC (2011) Scaling from leaf traits to fire behaviour: community composition predicts fire severity in a temperate forest. J Ecol 99:970–980

    Article  Google Scholar 

  • Seppälä R, Buck A, Katila P (eds) (2009) Adaptation of forests and people to climate change. A Global Assessment Report. IUFRO World Series vol 22, Helsinki, 224 p

    Google Scholar 

  • Seymour RS, White AS (2002) Natural disturbance regimes in northeastern North America—evaluating silvicultural systems using natural scales and frequencies. For Ecol Manage 155:357–367

    Article  Google Scholar 

  • Shea KR (1971) Disease and insect activity in relation to intensive culture of forests. In: XV IUFRO congress, Gainesville, Proceedings. Florida, USA, pp 109–117

    Google Scholar 

  • Slodicák M (1995) Thinning regime in stands of Norway spruce subjected to snow and wind damage. In: Couts MP, Grace J (eds) Wind and trees. Cambridge University Press, Cambridge, pp 436–447

    Chapter  Google Scholar 

  • Sohn J, Gebhardt T, Ammer C et al (2013) Mitigation of drought by thinning: short-term and long-term effects on growth and physiological performance of Norway spruce (Picea abies). For Ecol Manage 308:188–197

    Article  Google Scholar 

  • Spatz HC, Theckes B (2013) Oscillation damping in trees. Plant Sci 207:66–71

    Article  CAS  PubMed  Google Scholar 

  • Stanton ML (1983) Spatial patterns in the plant community and their effects upon insect search. In: Ahmad S (ed) Herbivorous insects: host seeking behavior and mechanism. Academic Press, New York, pp 125–156

    Chapter  Google Scholar 

  • Tàbara D, Saurí D, Cerdan R (2003) Forest fire risk management and public participation in changing socioenvironmental conditions: a case study in a Mediterranean region. Risk Anal 23:249–260

    Article  PubMed  Google Scholar 

  • Tahvanainen JO, Root RB (1972) The influence of vegetational diversity on the population ecology of a specialized herbivore, Phyllotreta cruciferae (Coleoptera: Chrysomelidae). Oecologia 10:321–346

    Article  PubMed  Google Scholar 

  • Taylor KL, Fonda RW (1990) Woody fuel structure and fire in subalpine fir forests, Olympic National Park, Washington. Can J For Res 20:193–199

    Article  Google Scholar 

  • Thurm EA, Uhl E, Pretzsch H (2016) Mixture reduces climate sensitivity of Douglas-fir stem growth. For Ecol Manage 376:205–220

    Article  Google Scholar 

  • Trumbore S, Brando P, Hartmann H (2015) Forest health and global change. Science 349:814–818

    Article  CAS  PubMed  Google Scholar 

  • Unsicker SB, Oswald A, Köhler G, Weisser WW (2008) Complementarity effects through dietary mixing enhance the performance of a generalist insect herbivore. Oecologia 156:313–324

    Article  PubMed  PubMed Central  Google Scholar 

  • v Lüpke B, Spellmann H (1997) Aspekte der Stabilität und des Wachstums von Mischbeständen aus Fichte und Buche als Grundlage für waldbauliche Entscheidungen. Forstarchiv 68:167–179

    Google Scholar 

  • Valinger E, Fridman J (2011) Factors affecting the probability of windthrow at stand level as a result of Gudrun winter storm in southern Sweden. For Ecol Manage 262:398–403

    Article  Google Scholar 

  • Van Altena C, van Logtestijn RS, Cornwell WK, Cornelissen JH (2012) Species composition and fire: non-additive mixture effects on ground fuel flammability. Front Plant Sci 3:63

    PubMed  PubMed Central  Google Scholar 

  • Van der Maarel E (1993) Some remarks on disturbance and its relations to diversity and stability. J Veg Sci 4:733–736

    Article  Google Scholar 

  • Van Der Werf GR, Randerson JT, Giglio L et al (2008) Climate controls on the variability of fires in the tropics and subtropics. Global Biogeochem Cycles 22:3. doi:10.1029/2007GB003122

    Google Scholar 

  • Vehviläinen H, Koricheva J, Ruohomäki K et al (2006) Effects of tree stand species composition on insect herbivory of silver birch in boreal forests. Basic Appl Ecol 7:1–11

    Article  Google Scholar 

  • Walker B, Kinzig A, Langridge J (1999) Plant attribute diversity, resilience, and ecosystem function: the nature and significance of dominant and minor species. Ecosystems 2:95–113

    Article  Google Scholar 

  • Warrillow M, Mou P (1999) Ice storm damage to forest tree species in the ridge and valley region of southwestern Virginia. J Torrey Bot Soc 126:147–158

    Article  Google Scholar 

  • White PS, Jentsch A (2001) The search for generality in studies of disturbance and ecosystem dynamics. In: Progress in botany. Springer, Berlin, Heidelberg, pp 399–450

    Chapter  Google Scholar 

  • White JA, Whitham TG (2000) Associational susceptibility of cottonwood to a box elder herbivore. Ecology 81:1795–1803

    Article  Google Scholar 

  • Woodward S, Stenlid J, Karjalainen R, Hüttermann A (eds) (1998) Heterobasidion annosum: biology, ecology, impact and control. CAB International, Wallingford, UK, 589 p

    Google Scholar 

  • Yachi S, Loreau M (1999) Biodiversity and ecosystem productivity in a fluctuating environment: the insurance hypothesis. Proc Natl Acad Sci U S A 96:57–64

    Article  Google Scholar 

  • Zapater M, Hossann C, Bréda N et al (2011) Evidence of hydraulic lift in a young beech and oak mixed forest using 18O soil water labelling. Trees 25:885

    Article  Google Scholar 

  • Zhang Q-H, Schlyter F (2004) Olfactory recognition and behavioural avoidance of angiosperm non-host volatiles by conifer bark beetles. Agric For Entomol 6:1–19

    Article  CAS  Google Scholar 

  • Zvereva EL, Zverev V, Kozlov MV (2012) Little strokes fell great oaks: minor but chronic herbivory substantially reduces birch growth. Oikos 121:2036–2043

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jürgen Bauhus .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer-Verlag GmbH Germany

About this chapter

Cite this chapter

Bauhus, J., Forrester, D.I., Gardiner, B., Jactel, H., Vallejo, R., Pretzsch, H. (2017). Ecological Stability of Mixed-Species Forests. In: Pretzsch, H., Forrester, D., Bauhus, J. (eds) Mixed-Species Forests. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-54553-9_7

Download citation

Publish with us

Policies and ethics