Skip to main content

Advertisement

Log in

How does silviculture affect storm damage in forests of south-western Germany? Results from empirical modeling based on long-term observations

  • Original Paper
  • Published:
European Journal of Forest Research Aims and scope Submit manuscript

Abstract

Storms represent the most important disturbance factor in forests of Central Europe. Using data from long-term growth and yield experiments in Baden-Wuerttemberg (south-western Germany), which permit separation of storm damage from other causes of mortality for individual trees, we investigated the influence of soil, site, forest stand, and tree parameters on storm damage, especially focusing on the influence of silvicultural interventions. For this purpose, a four-step modeling approach was applied in order to extract the main risk factors for (1) the general stand-level occurrence of storm damage, (2) the occurrence of total stand damage, and (3) partial storm damage within stands. The estimated stand-level probability of storm damage obtained in step 3 was then offset in order to describe the damage potential for the individual trees within each partially damaged stand (4). Generalized linear mixed models were applied. Our results indicate that tree species and stand height are the most important storm risk factors, also for characterizing the long-term storm risk. Additionally, data on past timber removals and selective thinnings appear more important for explaining storm damage predisposition than for example stand density, soil and site conditions or topographic variables. When quantified with a weighting method (summarizing the relative weight of single predictors or groups of predictors), removals could explain up to 20% of storm risk. The stepwise modeling approach proved an important methodological feature of the analysis, since it enabled consideration of the large number of observations without damage (“zero inflation”) in a statistically correct way. These results form a reliable basis for quantifying forest management’s direct impact on the risk of storm damage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Achim A, Ruel J-C, Gardiner BA, Laflamme G, Meunier S (2005) Modelling the vulnerability of balsam fir forests to wind damage. For Ecol Manag 204:35–50

    Article  Google Scholar 

  • Albrecht A (2009) Sturmschadensanalysen langfristiger waldwachstumskundlicher Versuchsflächendaten in Baden-Württemberg. Dissertation, University of Freiburg

  • Albrecht A, Schindler D, Grebhan K, Kohnle U, Mayer H (2009) Sturmaktivität über der nordatlantisch-europäischen Region vor dem Hintergrund des Klimawandels—eine Literaturübersicht. Allg Forst Jagdzeitung 180:109–118

    Google Scholar 

  • Aldinger E, Seemann D, Konnert V (1996) Wurzeluntersuchungen auf Sturmwurfflächen 1990 in Baden-Württemberg. Mitt Ver Forstl Standortskunde u Forstpflanzenzüchtung 38:11–24

    Google Scholar 

  • Allison PD (1999) Logistic regression using the SAS-system: theory and application. SAS Institute Inc., Cary, NC

    Google Scholar 

  • Becquey J, Riou-Nivert P (1987) L’existence de zones de stabilité des peuplements. Conséquences sur la gestion. Revue Forestière Française 39:323–334

    Article  Google Scholar 

  • Blennow K, Olofsson E (2007) The probability of wind damage in forestry under a changed wind climate. Climatic Change 87:347–360

    Article  Google Scholar 

  • BMVEL (2006) Results from the National Forest Inventory 2001/2, German Federal Ministry of Food, Agriculture and Consumer Protection, electronic document, http://www.bundeswaldinventur.de/enid/98bb5c5ea761ec258d9e6e619a27f9b2,0/76.html, 2 August 2006

  • Bohn U, Neuhäusl R (2000/2003) Map of the natural vegetation of Europe. Landwirtschaftsverlag, Münster

  • Brunet Y, Fourcaud T, Achim A, Belcher R (2003) The VENFOR project: wind and forest interactions from the tree scale to the landscape scale. In: Ruck B et al. (ed) Wind effects on trees. Laboratory for Building and Environmental Aerodynamics, University of Karlsruhe, pp 3–8

    Google Scholar 

  • Burschel P, Huss J (1997) Grundriss des Waldbaus: ein Leitfaden für Studium und Praxis. Parey, Berlin

    Google Scholar 

  • Cameron AC, Trivedi PK (1998) Regression analysis of count data. Cambridge University Press, Cambridge

    Google Scholar 

  • Cameron AC, Trivedi PK (2005) Microeconometrics: methods and applications. Cambridge University Press, Cambridge

    Google Scholar 

  • Collett D (2003) Modelling binary data. Chapman Hall/CRC, Boca Raton

    Google Scholar 

  • Cremer KW, Borough CJ, McKinnel FH, Carter PR (1982) Effects of stocking and thinning on wind damage in plantations. N Z J For Sci 12:244–268

    Google Scholar 

  • Cucchi V, Meredieu C, Stokes A, Fd Coligny, Suarez J, Gardiner BA (2005) Modelling the windthrow risk for simulated forest stands of maritime pine (pinus pinaster Ait.). For Ecol Manag 213:184–196

    Article  Google Scholar 

  • Dierschke H (1994) Pflanzensoziologie: grundlagen und methoden. Ulmer, Stuttgart

    Google Scholar 

  • Dobbertin M (2002) Influence of stand structure and site factors on wind damage comparing the storms Vivian and Lothar. For Snow Landscape Res 77:187–205

    Google Scholar 

  • Dupont S, Brunet Y (2008) Impact of forest edge shape on tree stability: a large-eddy simulation study. Forestry 81:299–315

    Article  Google Scholar 

  • Fahrmeir L, Kneib T, Lang S (2007) Regression, 1st edn. Springer, Berlin

    Google Scholar 

  • Fraser AI (1964) Wind tunnel and other related studies on coniferous trees and tree crops. Scottish For 18:84–92

    Google Scholar 

  • Gardiner BA, Peltola H, Kellomäki S (2000) Comparison of two models for predicting the critical wind speeds required to damage coniferous trees. Ecol Modell 129:1–23

    Article  Google Scholar 

  • Gardiner BA, Byrne KE, Hale S, Kamimura K, Mitchell SJ, Peltola H, Ruel JC (2008) A review of mechanistic modelling of wind damage risk to forests. Forestry 81(3):447–463

    Article  Google Scholar 

  • Gönen M (2007) Analyzing receiver operating characteristic curves with SAS. The SAS Institute Inc., Cary, NC

    Google Scholar 

  • Gromke C, Ruck B (2008) Aerodynamic modelling of trees for small-scale wind tunnel studies. Forestry 81:243–258

    Article  Google Scholar 

  • Hanewinkel M (2005) Neural networks for assessing the risk of windthrow on the forest division level: a case study in southwest Germany. Eur J For Res 124:243–249

    Article  Google Scholar 

  • Hanewinkel M, Breidenbach J, Neef T, Kublin E (2008) 77 years of natural disturbances in a mountain forest area—the influence of storm, snow and insect damage analysed with a long-term time-series. Can J For Res 38:2249–2261

    Article  Google Scholar 

  • Hasenauer H, Monserud RA (1996) A crown ratio model for Austrian forests. For Ecol Manag 1996:49–60

    Article  Google Scholar 

  • Heneka P, Hofherr T, Ruck B, Kottmeier C (2006) Winter storm risk of residential structures—model development and application to the German state of Baden-Württemberg. Nat Hazards Earth Syst Sci 6:721–733

    Article  Google Scholar 

  • Hosmer DW, Lemeshow S (2000) Applied logistic regression. Wiley, New York

    Book  Google Scholar 

  • Jalkanen A, Mattila U (2000) Logistic regression models for wind and snow damage in northern Finland based on the national forest inventory data. For Ecol Manag 135:315–330

    Article  Google Scholar 

  • Keil M, Kiefl R, Strunz G (2005) CORINE land cover 2000—Europaweit harmonisierte Aktualisierung der Landnutzungsdaten für Deutschland, Abschlussbericht, Deutsches Zentrum für Luft- und Raumfahrt e.V. http://www.corine.dfd.dlr.de/media/download/clc2000_endbericht_de.pdf. Accessed 17 November 2008

  • King SL (2002) Using ROC curves to compare neural networks and logistic regression for modeling individual noncatastrophic tree mortality. In: Van Sambeek JW et al (eds) Proceedings of the 13th central hardwood forest conference; Gen. Tech. Rep. NC-234. U.S. Department of Agriculture, Forest Service, North Central Research Station, St. Paul, MN, pp 349–358

    Google Scholar 

  • König A (1995) Sturmgefährdung von Beständen im Altersklassenwald. Dissertation, Technical University of Munich

  • Kramer H, Akça A (1995) Leitfaden zur Waldmesslehre, 3rd edn. J. D. Sauerländer’s, Frankfurt a. M

    Google Scholar 

  • Kramer MG, Hansen AJ, Taper ML, Kissinger EJ (2001) Abiotic controls on long-term windthrow disturbance and temperate rain forest dynamics in southeast Alaska. Ecology 82:2749–2768

    Article  Google Scholar 

  • Kuhr M (1999) Grobwurzelarchitektur in Abhängigkeit von Baumart, Alter, Standort und sozialer Stellung. Dissertation, University of Göttingen

  • Ledermann T (2002) Ein Einwuchsmodell aus den Daten der Österreichischen Waldinventur 1981–1996. Centralblatt für das gesamte Forstwesen 119:40–76

    Google Scholar 

  • Littell RC, Milliken GA, Stroup WW, Wolfinger RD, Schabenberger O (2006) SAS for mixed models. SAS Institute Inc., Cary, NC

    Google Scholar 

  • Lohmander P, Helles F (1987) Windthrow probability as a function of stand characteristics and shelter. Scand J For Res 2:227–238

    Article  Google Scholar 

  • Maccurrach RS (1991) Spacing: an option for reducing storm damage. Scott For 45:285–297

    Google Scholar 

  • Maindonald J, Braun J (2007) Data analysis and graphics using R—an example-based approach. Cambridge University Press, Cambridge

    Google Scholar 

  • Mason WL (2002) Are irregular stands more windfirm? Forestry 75:347–355

    Article  Google Scholar 

  • Mayer H (1987) Wind-induced tree sways. Trees 1:195–206

    Article  Google Scholar 

  • Mayer P, Brang P, Dobbertin M, Hallenbarter D, Renaud J-P, Walthert L, Zimmermann S (2005) Forest storm damage is more frequent on acidic soils. Ann For Sci 62:303–311

    Article  CAS  Google Scholar 

  • Meng SX, Huang S, Lieffers VJ, Nunifu T, Yang Y (2008) Wind speed and crown class influence the height-diameter relationship of lodgepole pine: nonlinear mixed effects modeling. For Ecol Manag 256:570–577

    Article  Google Scholar 

  • Mitchell SJ, Hailemariam T, Kulis Y (2001) Empirical modeling of cutblock edge windthrow risk on Vancouver Island, Canada, using stand level information. For Ecol Manag 154:117–130

    Article  Google Scholar 

  • Mitscherlich G (1971) Wald, Wachstum und Umwelt—2. Band: Waldklima und Wasserhaushalt. J. D. Sauerländer’s, Frankfurt

    Google Scholar 

  • MLR-BaWü (1999) Richtlinie landesweiter Waldentwicklungstypen, Landesforstverwaltung Baden-Württemberg. self-published, Stuttgart

  • Morse AP, Brunet Y, Devalance M, Gamboa-Marrufo M, Irvine MR, Marshall BJ, Paw UKT (2003) The venfor project: the role of forest edges in the patterns of turbulence development—findings from a field experiment, wind tunnel experiment and a large eddy simulation model experiment. In: Ruck B et al. (ed) Wind effects on trees. Laboratory for Building and Environmental Aerodynamics, University of Karlsruhe, pp 33–38

    Google Scholar 

  • Müller F (2002) Modellierung von Sturm-, Schnee- und Rotfäulerisiko in Fichtenbeständen auf Einzelbaumebene. Dissertation, Technical University of Munich

  • Nagel TA, Diaci J (2006) Intermediate wind disturbance in an old-growth beech-fir forest in southeastern Slovenia. Can J For Res 36:629–638

    Article  Google Scholar 

  • Neter J, Maynes ES (1970) On the appropriateness of the correlation coefficient with a 0, 1 dependent variable. J Am Stat Assoc 65:501–509

    Article  Google Scholar 

  • Nicoll BC, Easton EP, Milner AD, Walker C, Coutts MP (1995) Wind stability factors in tree selection: distribution of biomass within root systems of Sitka spruce clones. In: Coutts MP, Grace J (eds) Wind and trees. Cambridge University Press, Cambridge, pp 276–292

    Chapter  Google Scholar 

  • Nielsen CCN (1990) Einflüsse von Pflanzabstand und Stammzahlhaltung auf Wurzelform, Wurzelbiomasse, Verankerung sowie auf Biomassenverteilung im Hinblick auf die Sturmfestigkeit der Fichte. J. D. Sauerländer’s, Frankfurt a. M

    Google Scholar 

  • Nielsen CCN (1995) Recommendations for stabilisation of Norway spruce stands based on ecological surveys. In: Coutts MP, Grace J (eds) Wind and trees. Cambridge University Press, Cambridge, pp 424–435

    Chapter  Google Scholar 

  • Nykänen M-L, Peltola H, Quine C, Kellomäki S, Broadgate M (1997) Factors affecting snow damage of trees with particular reference to European conditions. Silva Fennica 31:193–213

    Google Scholar 

  • Päätalo M-L (2000) Risk of snow damage in unmanaged and managed stands of scots pine, Norway spruce and birch. Scand J For Res 15:530–541

    Article  Google Scholar 

  • Peltola H, Nykänen M-L, Kellomäki S (1997) Model computations on the critical combination of snow loading and windspeed for snow damage of Scots pine, Norway spruce and birch sp at stand edge. For Ecol Manag 95:229–241

    Article  Google Scholar 

  • Peltola H, Kellomäki S, Väisänen H, Ikonen V-P (1999) A mechanistic model for assessing the risk of wind and snow damage to single trees and stands of Scots pine, Norway Spruce and birch. Can J For Res 29:647–661

    Article  Google Scholar 

  • Peterson CJ (2000) Catastrophic wind damage to North American forests and the potential impact of climate change. Sci Total Environ 262:287–311

    Article  PubMed  CAS  Google Scholar 

  • Petty JA, Worrel R (1981) Stability of coniferous tree stems in relation to damage by snow. Forestry 54:115–128

    Article  Google Scholar 

  • Pretzsch H (2002) Grundlagen der Waldwachstumsforschung, 1st edn. Parey/Blackwell, Berlin, p 414

    Google Scholar 

  • Quine C (1995) Assessing the risk of wind damage to forests: practice and pitfalls. In: Coutts MP, Grace J (eds) Wind and trees. Cambridge University Press, Cambridge, pp 379–403

    Chapter  Google Scholar 

  • Rössler G (2007) Nahm Kyrill Rücksicht auf die Durchforstungsstärke? Forstzeitung 11:24–25

    Google Scholar 

  • Rottmann M (1985) Schneebruchschäden in Nadelholzbeständen. J. D. Sauerländer’s, Frankfurt a. M

    Google Scholar 

  • Ruel J-C, Pin D, Spacek L, Cooper K, Benoit R (1997) The estimation of wind exposure for windthrow hazard rating: comparison between Strongblow, MC2, Topex and a wind tunnel study. Forestry 70:253–266

    Article  Google Scholar 

  • Saidani N (2004) Erkennung von Sturmschäden im Wald auf der Basis kleinmaßstäbiger Luftbilder und Entwicklung eines Modells zur Abschätzung der Sturmgefährdung der Wälder auf der Basis von räumlichen Daten. Dissertation, University of Freiburg

  • Schelhaas M-J, Nabuurs G-J, Schuck A (2003) Natural disturbances in the European forest in the 19th and 20th centuries. Glob Chang Biol 9:1620–1633

    Article  Google Scholar 

  • Schindler D, Grebhan K, Albrecht A, Schönborn J (2009) Modeling the wind damage probability in forests in Southwestern Germany for the 1999 winter storm ‘Lothar’. Int J Biometeorol. doi: 10.1007/s00484-00009-00242-00483

  • Schmid-Haas P, Bachofen H (1991) Die Sturmgefährdung von Einzelbäumen und Beständen. Schweizerische Zeitschrift für das Forstwesen 142:477–504

    Google Scholar 

  • Schmidt M, Hanewinkel M, Kändler G, Kublin E, Kohnle U (2010) An inventory-based approach for modeling single tree storm damage—experiences with the winter storm 1999 in southwestern Germany. Can J For Res 40(8):1636–1652

    Article  Google Scholar 

  • Schmoeckel J (2005) Orographischer Einfluss auf die Strömung abgeleitet aus Sturmschäden im Schwarzwald während des Orkans “Lothar”. Dissertation, University of Karlsruhe

  • Schütz J-P, Götz M, Schmid W, Mandallaz D (2006) Vulnerability of spruce (Picea abies) and beech (Fagus sylvatica) forest stands to storms and consequences for silviculture. Eur J For Res 125:291–302

    Article  Google Scholar 

  • Scott RE, Mitchell SJ (2005) Empirical modelling of windthrow risk in partially harvested stands using tree, neighbourhood, and stand attributes. For Ecol Manag 218:193–209

    Article  Google Scholar 

  • Shifley SR, Ek AR, Burk TE (1993) A generalized methodology for estimating forest ingrowth at multiple threshold diameters. For Sci 36:776–798

    Google Scholar 

  • Slodicák M (1995) Thinning regime in stands of norway spruce subjected to snow and wind damage. In: Coutts MP, Grace J (eds) Wind and trees. Cambridge University Press, Cambridge, pp 436–447

    Chapter  Google Scholar 

  • Stokes A, Fitter AH, Coutts MP (1995) Responses of young trees to wind: effects on root growth. In: Coutts MP, Grace J (eds) Wind and trees. Cambridge University Press, Cambridge, pp 264–275

    Chapter  Google Scholar 

  • Stokes ME, Davis CS, Koch GG (2000) Categorical data analysis using the SAS system. SAS Institute Inc., Cary, NC

    Google Scholar 

  • Telewski FW (1995) Wind-induced physiological and developmental responses in trees. In: Coutts MP, Grace J (eds) Wind and trees. Cambridge University Press, Cambridge, pp 237–263

    Chapter  Google Scholar 

  • The SAS Institute Inc (2006) The GLIMMIX Procedure - June 2006. http://support.sas.com/rnd/app/papers/glimmix.pdf. Accessed 8 December 2008

  • Therneau TM, Atkinson B (2008) R port by brian ripley, rpart: recursive partitioning, R package version 3.1-41, 3.1-35, http://mayoresearch.mayo.edu/mayo/research/biostat/splusfunctions.cfm. Accessed 7 July 2010

  • Valinger E, Fridman J (1997) Modelling probability of snow and wind damage in Scots pine stands using tree characteristics. For Ecol Manag 97(3):215–222

    Article  Google Scholar 

  • Valinger E, Lundqvist L (1992) The influence of thinning and nitrogen fertilisation on the frequency of snow and wind induced stand damage in forests. Scott For 46:311–320

    Google Scholar 

  • Venables WN, Ripley BD (2002) Modern applied statistics with S. Springer, New York

    Google Scholar 

  • Wangler F (1974) Die Sturmgefährdung der Wälder in Südwestdeutschland—Eine waldbauliche Auswertung der Sturmkatastrophe 1967. Dissertation, University of Freiburg

  • Weiskittel AR, Kenefic LS, Seymour RS, Phillips LM (2009) Long-term effects of precommercial thinning on the stem dimensions, form and branch characteristics of red spruce and balsam fir crop trees in Maine, USA. Scand J For Res 43:397–409

    Google Scholar 

  • Wilson JD (1984) Determining a topex score. Scott For 38:251–256

    Google Scholar 

  • Wilson JS (2004) Vulnerability to wind damage in managed landscapes of the coastal Pacific Northwest. For Ecol Manag 191:341–351

    Article  Google Scholar 

  • Wood CJ (1995) Understanding wind forces on trees. In: Coutts MP, Grace J (eds) Wind and trees. Cambridge University Press, Cambridge, pp 133–164

    Chapter  Google Scholar 

  • Zeileis A, Kleiber C, Jackman S (2008) Regression models for count data in R. J Stat Soft 27:1–25

    Google Scholar 

Download references

Acknowledgments

This study was funded by the German Federal Ministry of Education and Research under funding code 0330622. The authors are responsible for the contents of this publication. The authors would like to thank Dr. Edgar Kublin for statistical consulting and Ms. Robin Hillestad for language reviewing of this publication. Two anonymous reviewers helped improving this manuscript by giving helpful comments and constructive suggestions.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Axel Albrecht.

Additional information

Communicated by H. Mayer.

This article belongs to the special issue ‘Wind Effects on Trees’.

Appendix

Appendix

See Table 6.

Table 6 List of all tested predictor variables, their coding and summary statistics

Rights and permissions

Reprints and permissions

About this article

Cite this article

Albrecht, A., Hanewinkel, M., Bauhus, J. et al. How does silviculture affect storm damage in forests of south-western Germany? Results from empirical modeling based on long-term observations. Eur J Forest Res 131, 229–247 (2012). https://doi.org/10.1007/s10342-010-0432-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10342-010-0432-x

Keywords

Navigation