Skip to main content

Primary Hyperoxaluria

  • Chapter
  • First Online:
Pediatric Kidney Disease

Abstract

The primary hyperoxalurias (PH) types 1, 2 and 3 are autosomal recessive inherited defects of the glyoxylate metabolism leading to endogenous oxalate overproduction and markedly elevated urinary oxalate excretion. The clinical hallmarks of PH are recurrent urolithiasis and/or progressive nephrocalcinosis. Especially in patient suffering from PH 1 chronic inflammatory processes in the kidney often lead to early end stage renal disease (ESRD), and subsequently systemic deposition of calcium oxalate crystals, which turns PH into a lethal multisystemic disease. Diagnosis is too often delayed until ESRD or even after recurrence of oxalosis in missed cases proceeding to isolated kidney transplantation. Conservative treatment options, management on dialysis and transplantation strategy are discussed in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cochat P, Rumsby G. Primary hyperoxaluria. N Engl J Med. 2013;369(7):649–58.

    Article  CAS  PubMed  Google Scholar 

  2. Hoppe B, Beck BB, Milliner DS. The primary hyperoxalurias. Kidney Int. 2009;75:1264–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Belostotsky R, Seboun E, Idelson GH, et al. Mutations in DHDPSL are responsible for primary hyperoxaluria type III. Am J Hum Genet. 2010;87:392–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Monico CG, Rossetti S, Belostotsky R, et al. Primary hyperoxaluria type III gene HOGA1 (formerly DHDPSL) as a possible risk factor for idiopathic calcium oxalate urolithiasis. Clin J Am Soc Nephrol. 2011;6(9):2289–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Pitt JJ, Willis F, Tzanakos N, Belostotsky R, Frishberg Y. 4-hydroxyglutamate is a biomarker for primary hyperoxaluria type 3. JIMD Rep. 2015;15:1–6.

    PubMed  Google Scholar 

  6. Beck BB, Baasner A, Buescher A, et al. Novel findings in patients with primary hyperoxaluria type III and implications for advanced molecular testing strategies. Eur J Hum Genet. 2013;21(2):162–72.

    Article  CAS  PubMed  Google Scholar 

  7. Siener R, Ebert D, Nicolay C, Hesse A. Dietary risk factors for hyperoxaluria in calcium oxalate stone formers. Kidney Int. 2003;63(3):1037–43.

    Article  PubMed  Google Scholar 

  8. Habbig S, Beck BB, Hoppe B. Nephrocalcinosis and urolithiasis in children. Kidney Int. 2011;80(12):1278–91.

    Article  PubMed  Google Scholar 

  9. Sikora P, von Unruh GE, Beck BB, et al. [13C2]oxalate absorption in children with idiopathic calcium oxalate urolithiasis or primary hyperoxaluria. Kidney Int. 2008;73(10):1181–6.

    Article  CAS  PubMed  Google Scholar 

  10. Robijn S, Hoppe B, Vervaet BA, D’Haese PC, Verhulst A. Hyperoxaluria: a gut-kidney axis? Kidney Int. 2011;80(11):1146–58.

    Article  CAS  PubMed  Google Scholar 

  11. Vervaet BA, Verhulst A, De Broe ME, D’Haese PC. The tubular epithelium in the initiation and course of intratubular nephrocalcinosis. Urol Res. 2010;38(4):249–56.

    Article  PubMed  Google Scholar 

  12. Knauf F, Asplin JR, Granja I, et al. NALP3-mediated inflammation is a principal cause of progressive renal failure in oxalate nephropathy. Kidney Int. 2013;84(5):895–901.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Mulay SR, Kulkarni OP, Rupanagudi KV, et al. Calcium oxalate crystals induce renal inflammation by NLRP3-mediated IL-1beta secretion. J Clin Invest. 2013;123(1):236–46.

    Article  CAS  PubMed  Google Scholar 

  14. Hoppe B. An update on primary hyperoxaluria. Nat Rev Nephrol. 2012;8(8):467–75.

    Article  CAS  PubMed  Google Scholar 

  15. Beck B, Hoyer-Kuhn H, Göbel H, Habbig S, Hoppe B. Hyperoxaluria and systemic oxalosis: an update on current therapy and future directions. Exp Opin. 2013;22(1):117–29.

    CAS  Google Scholar 

  16. Hoppe B, Kemper MJ, Bökenkamp A, et al. Plasma calcium-oxalate supersaturation in children with primary hyperoxaluria and end stage renal disease. Kidney Int. 1999;56:268–74.

    Article  CAS  PubMed  Google Scholar 

  17. Hoppe B, Dittlich K, Fehrenbach H, Plum G, Beck BB. Reduction of plasma oxalate levels by oral application of Oxalobacter formigenes in 2 patients with infantile oxalosis. Am J Kidney Dis. 2011;58(3):453–5.

    Article  PubMed  Google Scholar 

  18. Hoppe B, Groothoff JW, Hulton SA, et al. Efficacy and safety of Oxalobacter formigenes to reduce urinary oxalate in primary hyperoxaluria. Nephrol Dial Transplant. 2011;26(11):3609–15.

    Article  PubMed  Google Scholar 

  19. Van Woerden CS, Groothoff JW, Wanders RJ, Davin JC, Wijburg FA. Primary hyperoxaluria type 1 in The Netherlands: prevalence and outcome. Nephrol Dial Transplant. 2003;18:273–9.

    Article  PubMed  Google Scholar 

  20. Hoppe B, Langman C. A United States survey on diagnosis, treatment and outcome of patients with primary hyperoxaluria. Pediatr Nephrol. 2003;18:986–91.

    Article  PubMed  Google Scholar 

  21. Cochat P, Liutkus A, Fargue S, Basmaison O, Ranchin B, Rolland MO. Primary hyperoxaluria type 1: still challenging! Pediatr Nephrol. 2006;21:1075–81.

    Article  PubMed  Google Scholar 

  22. Takayama T, Nagata M, Ichiyama A, Ozono S. Primary hyperoxaluria type 1 in Japan. Am J Nephrol. 2005;25:297–302. Erratum in: Am J Nephrol. 2005;25:416.

    Article  PubMed  Google Scholar 

  23. Kopp N, Leumann E. Changing pattern of primary hyperoxaluria in Switzerland. Nephrol Dial Transplant. 1995;0:2224–7.

    Article  CAS  Google Scholar 

  24. Hoppe B, Latta K, von Schnakenburg C, Kemper MJ, on behalf of the Arbeitsgemeinschaft für pädiatrische Nephrologie. Primary hyperoxaluria: the German experience. Am J Nephrol. 2005;25:276–81.

    Article  PubMed  Google Scholar 

  25. Lieske JC, Monico CG, Holmes WS, et al. International registry for primary hyperoxaluria and Dent’s disease. Am J Nephrol. 2005;25:290–6.

    Article  PubMed  Google Scholar 

  26. van Woerden C, Harambat J, Beck B, et al. The collaborative European cohort of primary hyperoxalurias: clinical and genetic characterization with prediction of outcome. Pediatr Nephrol. 2010;25:1911, O-75.

    Google Scholar 

  27. Kamoun A, Daudon M, Zghal A, et al. Primary hyperoxaluria: Tunisian experience apropos of 24 pediatric cases. Nephrologie. 1997;18(2):59–64.

    CAS  PubMed  Google Scholar 

  28. Gargah T, Khelil N, Youssef G, Karoui W, Lakhoua MR, Abdelmoula J. Primary hyperoxaluria type 1 in Tunisian children. Saudi J Kidney Dis Transpl. 2012;23(2):385–90.

    PubMed  Google Scholar 

  29. Hopp K, Cogal AG, Harkonarson H, Milliner DS, Harris PC. Estimated incidence of primary hyperoxaluria using population allele frequencies. [Abstract]. J Am Soc Nephrol. 2013;24:529A.

    Article  CAS  Google Scholar 

  30. Lepoutre C. Calculs multiples chez un enfant; infiltration du parenchyme rénal par desdépôts cristallins. J Urol Medicale Chir. 1925;20:424.

    Google Scholar 

  31. Archer HE, Dormer AE, Scowen EF, Watts RWE. Primary hyperoxaluria. Lancet. 1957;2:320–2.

    Article  Google Scholar 

  32. Danpure CJ, Jennings PR, Watts RWE. Enzymological diagnosis of primary hyperoxaluria type I by measurement of hepatic alanine:glyoxylate aminotransferase. Lancet. 1987;1(8528):289–91.

    Article  CAS  PubMed  Google Scholar 

  33. Danpure CJ, Lumb MJ, Birdsey GM, Zhang X. Alanine:glyoxylate aminotransferase peroxisome-to-mitochondrion mistargeting in human hereditary kidney stone disease. Biochim Biophys Acta. 1647;2003:70–5.

    Google Scholar 

  34. Danpure CJ. Molecular aetiology of primary hyperoxaluria type 1. Nephron Exp Nephrol. 2004;98:e39–44.

    Article  CAS  PubMed  Google Scholar 

  35. Williams EL, Acquaviva C, Amoroso A, et al. Primary hyperoxaluria type 1: update and additional mutation analysis of the AGXT gene. Hum Mutat. 2009;30(6):910–7.

    Article  CAS  PubMed  Google Scholar 

  36. de la Chapelle A, Wright FA. Linkage disequilibrium mapping in isolated populations: the example of Finland revisited. Proc Natl Acad Sci. 1998;95:12416–23.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Donaldson JC, Dise RS, Ritchie MD, Hanks SK. Nephrocystin-conserved domains involved in targeting to epithelial cell-cell junctions, interaction with filamins, and establishing cell polarity. J Biol Chem. 2002;277:29028–35.

    Article  CAS  PubMed  Google Scholar 

  38. Zhang X, Roe SM, Hou Y, Bartlam M, Rao Z, Pearl LH, Danpure CJ. Crystal structure of alanine:glyoxylate aminotransferase and the relationship between genotype and enzymatic phenotype in primary hyperoxaluria type 1. J Mol Biol. 2003;331:643–52.

    Article  CAS  PubMed  Google Scholar 

  39. Danpure CJ, Cooper PJ, Wise PJ, Jennings PR. An enzyme trafficking defect in two patients with primary hyperoxaluria type 1: peroxisomal alanine/glyoxylate aminotransferase rerouted to mitochondria. J Cell Biol. 1989;108(4):1345–52.

    Article  CAS  PubMed  Google Scholar 

  40. Rucktäschel R, Girzalsky W, Erdmann R. Protein import machineries of peroxisomes. Biochim Biophys Acta. 2011;1808(3):892–900.

    Article  PubMed  CAS  Google Scholar 

  41. Belostotsky R, Pitt JJ, Frishberg Y. Primary hyperoxaluria type III-a model for studying perturbations in glyoxylate metabolism. J Mol Med (Berl). 2012;90(12):1497–504.

    Article  CAS  Google Scholar 

  42. Coulter-Mackie MB. Preliminary evidence for ethnic differences in primary hyperoxaluria type 1 genotype. Am J Nephrol. 2005;25(3):264–8.

    Article  PubMed  Google Scholar 

  43. Lorenzo V, Alvarez A, Torres A, Torregrosa V, Hernández D, Salido E. Presentation and role of transplantation in adult patients with type 1 primary hyperoxaluria and the I244T AGXT mutation: single-center experience. Kidney Int. 2006;70:1115–9.

    Article  CAS  PubMed  Google Scholar 

  44. Fargue S, Lewin J, Rumsby G, Danpure CJ. Four of the most common mutations in primary hyperoxaluria type 1 unmask the cryptic mitochondrial targeting sequence of alanine:glyoxylate aminotransferase encoded by the polymorphic minor allele. J Biol Chem. 2013;288(4):2475–84.

    Article  CAS  PubMed  Google Scholar 

  45. Lumb MJ, Danpure CJ. Functional synergism between the most common polymorphism in human alanine:glyoxylate aminotransferase and four of the most common disease-causing mutations. J Biol Chem. 2000;275:36415–22.

    Article  CAS  PubMed  Google Scholar 

  46. Fargue S, Rumsby G, Danpure CJ. Multiple mechanisms of action of pyridoxine in primary Hyperoxaluria. Biochim Biophys Acta. 2013;1832(10):1776–83.

    Article  CAS  PubMed  Google Scholar 

  47. van Woerden CS, Groothoff JW, Wijburg FA, Annink C, Wanders RJ, Waterham HR. Clinical implications of mutation analysis in primary hyperoxaluria type 1. Kidney Int. 2004;66(2):746–52.

    Article  PubMed  Google Scholar 

  48. Santana A, Salido E, Torres A, Shapiro LJ. Primary hyperoxaluria type 1 in the Canary Islands: a conformational disease due to I244T mutation in the P11L-containing alanine:glyoxylate aminotransferase. Proc Natl Acad Sci U S A. 2003;100(12):7277–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Hoyer-Kuhn H, Kohbrok S, Volland R, et al. Vitamin B6 in primary hyperoxaluria I: first prospective trial after 40 years of practice. Clin J Am Soc Nephrol. 2014;9(3):468–77.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Cochat P, Hulton SA, Acquaviva C, et al. Primary hyperoxaluria type 1: indications for screening and guidance for diagnosis and treatment. Nephrol Dial Transplant. 2012;27(5):1729–36.

    Article  CAS  PubMed  Google Scholar 

  51. Pirulli D, Marangella M, Amoroso A. Primary hyperoxaluria: genotype-phenotype correlation. J Nephrol. 2003;16:297–309.

    CAS  PubMed  Google Scholar 

  52. Monico CG, Rossetti S, Olson JB, Milliner DS. Pyridoxine effect in type I primary hyperoxaluria is associated with the most common mutant allele. Kidney Int. 2005;67:1704–9.

    Article  CAS  PubMed  Google Scholar 

  53. Mandrile G, van Woerden CS, Paola Berchialla P, Beck BB, Acquaviva Bourdain C, Hulton SA, Rumsby G, on behalf of OxalEurope Consortium. Outcome of primary hyperoxaluria type 1 correlates with AGXT mutation type: data from a large European study. Kidney Int. 2014;86(6):1197–204.

    Article  CAS  PubMed  Google Scholar 

  54. Frishberg Y, Rinat C, Shalata A, et al. Intra-familial clinical heterogeneity, absence of genotype-phenotype correlation in primary hyperoxaluria type 1 in Israel. Am J Nephrol. 2005;25(3):269–75.

    Article  PubMed  Google Scholar 

  55. Hoppe B, Danpure CJ, Rumsby G, et al. A vertical (pseudodominant) pattern of inheritance in the autosomal recessive disease primary hyperoxaluria type I. Lack of relationship between genotype, enzymic phenotype and disease severity. Am J Kidney Dis. 1997;29:36–44.

    Article  CAS  PubMed  Google Scholar 

  56. Harambat J, van Stralen KJ, Espinosa L, European Society for Pediatric Nephrology/European Renal Association-European Dialysis and Transplant Association (ESPN/ERA-EDTA) Registry, et al. Characteristics and outcomes of children with primary oxalosis requiring renal replacement therapy. Clin J Am Soc Nephrol. 2012;7(3):458–65.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Bergstralh EJ, Monico CG, Lieske JC, et al. Transplantation outcomes in primary hyperoxaluria. Am J Transplant. 2010;10:2493–501.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Brinkert F, Ganschow R, Helmke K, et al. Transplantation procedures in children with primary hyperoxaluria type 1: outcome and longitudinal growth. Transplantation. 2009;87:1415–21.

    Article  PubMed  Google Scholar 

  59. Jamieson NV, European PHI Transplantation Study Group. A 20-year experience of combined liver/kidney transplantation for primary hyperoxaluria (PH1): the European PH1 transplant registry experience 1984–2004. Am J Nephrol. 2005;25:282–9.

    Article  PubMed  Google Scholar 

  60. Herrmann G, Krieg T, Weber M, Sidhu H, Hoppe B. Unusual painful sclerotic like plaques on the legs of a patient with late diagnosis of primary hyperoxaluria type I. Br J Dermatol. 2004;151:1104–7.

    Article  CAS  PubMed  Google Scholar 

  61. Lagies R, Beck BB, Hoppe B, Sreeram N, Udink Ten Cate FE. Apical sparing of longitudinal strain, left ventricular rotational abnormalities, and short-axis dysfunction in primary hyperoxaluria type 1. Circ Heart Fail. 2013;6(4):e45–7.

    Article  PubMed  Google Scholar 

  62. Cramer SD, Ferree PM, Lin K, Milliner DS, Holmes RP. The gene encoding hydroxypyruvate reductase (GRHPR) is mutated in patients with primary hyperoxaluria type II. Hum Mol Genet. 1999;8:2063–9.

    Article  CAS  PubMed  Google Scholar 

  63. Cregeen DP, Williams EL, Hulton S, Rumsby G. Molecular analysis of the glyoxylate reductase (GRHPR) gene and description of mutations underlying primary hyperoxaluria type 2. Hum Mutat. 2003;22:497–506.

    Article  PubMed  CAS  Google Scholar 

  64. van Schaftingen E, Draye JP, van Hoof F. Coenzyme specifity of mammelian liver D-Glycerate dehydrogenase. Eur J Biochem. 1989;186:355–9.

    Article  PubMed  Google Scholar 

  65. Baker PR, Cramer SD, Kennedy M, Assimos DG, Holmes RP. Glycolate and glyoxylate metabolism in HepG2 cells. Am J Physiol Cell Physiol. 2004;287(5):C1359–65.

    Article  CAS  PubMed  Google Scholar 

  66. Mdluli K, Booth MP, Rl B, Rumsby G. A preliminary account of the properties of recombinant human glyoxylate reductase (GRHPR), LDHA and LDHB with glyoxylate, and their potential roles in metabolism. Biochem Biophys Acta. 2005;1753:209–16.

    CAS  PubMed  Google Scholar 

  67. Giafi CF, Rumsby G. Kinetic analysis and tissue distribution of human D-glycerate dehydrogenase/glyoxylate reductase and its relevance to the diagnosis of primary hyperoxaluria type 2. Ann Clin Biochem. 1998;35:104–9.

    Article  CAS  PubMed  Google Scholar 

  68. Knight J, Holmes RP, Milliner DS, Monico CG, Cramer SD. Glyoxylate reductase activity in blood mononuclear cells and the diagnosis of primary hyperoxaluria type 2. Nephrol Dial Transplant. 2006;21:2292–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Williams HE, Smith Jr LH. L-glyceric aciduria. A new variant of primary hyperoxaluria. N Engl J Med. 1968;278(5):233–8.

    Article  CAS  PubMed  Google Scholar 

  70. Kemper MJ, Conrad S, Müller-Wiefel DE. Primary hyperoxaluria type 2. Eur J Pediatr. 1997;156:509–12.

    Article  CAS  PubMed  Google Scholar 

  71. Rumsby G, Sharma A, Cregeen DP, Solomon LR. Primary hyperoxaluria type 2 without L-glycericaciduria: is the disease under-diagnosed? Nephrol Dial Transplant. 2001;16:1697–9.

    Article  CAS  PubMed  Google Scholar 

  72. Milliner DS, Wilson DM, Smith LH. Phenotypic expression of primary hyperoxaluria: comparative features of types I and II. Kidney Int. 2001;59:31–6.

    Article  CAS  PubMed  Google Scholar 

  73. Wichmann G, Passauer J, Fischer R, Weise M, Gross P. A young patient with end-stage renal disease, dyspnoea, weakness, peripheral neuropathy and an unsuspected underlying disease. Nephrol Dial Transplant. 2003;18(8):1670–2.

    Article  PubMed  Google Scholar 

  74. Schulze MR, Wachter R, Schmeisser A, Fischer R, Strasser RH. Restrictive cardiomyopathy in a patient with primary hyperoxaluria type II. Clin Res Cardiol. 2006;95(4):235–40.

    Article  PubMed  Google Scholar 

  75. Riedel TJ, Johnson LC, Knight J, Hantgan RR, Holmes RP, Lowther WT. Structural and biochemical studies of human 4-hydroxy-2-oxoglutarate aldolase: implications for hydroxyproline metabolism in primary hyperoxaluria. PLoS One. 2011;6:e26021.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Williams EL, Bockenhauer D, van’t Hoff WG, et al. The enzyme 4.hydroxy-2-oxoglutarate aldolase is deficient in primary hyperoxaluria type 3. Nephrol Dial Transplant. 2012;27(8):3191–5.

    Article  CAS  PubMed  Google Scholar 

  77. Riedel TJ, Knight J, Murray MS, Milliner DS, Holmes RP, Lowther WT. 4-Hydroxy-2-oxoglutarate aldolase inactivity in primary hyperoxaluria type 3 and glyoxylate reductase inhibition. Biochim Biophys Acta. 2012;1822(10):1544–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Knight J, Jiang J, Assimos DG, Holmes RP. Hydroxyproline ingestion and urinary oxalate and glycolate excretion. Kidney Int. 2006;70:1929–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Laube N, Hoppe B, Hesse A. Problems in the investigation of urine from patients suffering from primary hyperoxaluria type 1. Urol Res. 2005;33(5):394–7.

    Article  CAS  PubMed  Google Scholar 

  80. Marangella M, Petrarulo M, Vitale C, Cosseddu D, Linari F. Plasma and urine glycolate assays for differentiating the hyperoxaluria syndromes. J Urol. 1992;148:986–9.

    CAS  PubMed  Google Scholar 

  81. Marangella M, Petrarulo M, Vitale C, Cosseddu D, Linari F. Plasma profiles and dialysis kinetics of oxalate in patients receiving hemodialysis. Nephron. 1992;60:64–70.

    Google Scholar 

  82. Feldkoetter M, Wei AZS, Ventzke A, Langman CB, Hoppe B. Urinary hydroxy-oxo-glutarate (HOG) as diagnostic factor for primary hyperoxaluria type 3. Nieren und Hochdruckkrankheiten, 43/2 2014, page 49, abstract 05.

    Google Scholar 

  83. Schouten JP, McElgunn CJ, Waaijer R, Zwijnenburg D, Diepvens F, Pals G. Relative quantification of 40 nucleic acid sequences by multiplex ligation dependent probe amplification. Nucleic Acids Res. 2002;15(12):e57.

    Article  Google Scholar 

  84. Hueppelshaeuser R, von Unruh GE, Habbig S, et al. Enteric hyperoxaluria, recurrent urolithiasis, and systemic oxalosis in patients with Crohn’s disease. Pediatr Nephrol. 2012;27(7):1103–9.

    Article  PubMed  Google Scholar 

  85. Leumann E, Hoppe B, Neuhaus T. Management of primary hyperoxaluria: efficacy of oral citrate administration. Pediatr Nephrol. 1993;7:207–11.

    Article  CAS  PubMed  Google Scholar 

  86. Hamm LL. Renal handling of citrate. Kidney Int. 1990;38:728–35.

    Article  CAS  PubMed  Google Scholar 

  87. Hatch M, Freel RW, Vaziri ND. Regulatory aspects of oxalate secretion in enteric oxalate elimination. J Am Soc Nephrol. 1999;10:S324–8.

    CAS  PubMed  Google Scholar 

  88. Hatch M, Freel RW. Intestinal transport of an obdurate anion: oxalate. Urol Res. 2005;33:1–16.

    Article  CAS  PubMed  Google Scholar 

  89. http://ods.od.nih.gov/factsheets/VitaminB6-HealthProfessional/.

  90. Musayev FN, Di Salvo ML, Saavedra MA, et al. Molecular basis of reduced pyridoxine 5'-phosphate oxidase catalytic activity in neonatal epileptic encephalopathy disorder. J Biol Chem. 2009;284:30949–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Leumann E, Matasovic A, Niederwieser A. Pyridoxine in primary hyperoxaluria type I. Lancet. 1986;2:340. (erratum 2:699).

    Article  CAS  PubMed  Google Scholar 

  92. Morgan SH, Maher ER, Purkiss P, Watts RW, Curtis JR. Oxalate metabolism in end-stage renal disease: the effect of ascorbic acid and pyridoxine. Nephrol Dial Transplant. 1988;3:28–32.

    CAS  PubMed  Google Scholar 

  93. Edwards P, Nemat S, Rose GA. Effects of oral pyridoxine upon plasma and 24-hour urinary oxalate levels in normal subjects and stone formers with idiopathic hypercalciuria. Urol Res. 1990;18:393–6.

    Article  CAS  PubMed  Google Scholar 

  94. Shah GM, Ross EA, Sabo A, Pichon M, Reynolds RD, Bhagavan H. Effects of ascorbic acid and pyridoxine supplementation on oxalate metabolism in peritoneal dialysis patients. AJKD. 1992;20:42–9.

    Article  CAS  PubMed  Google Scholar 

  95. Costello JF, Sadovnic MC, Smith M, Stolarski C. Effect of vitamin B6 supplementation on plasma oxalate and oxalate removal rate in hemodialysis patients. JASN. 1992;3:1018–24.

    CAS  PubMed  Google Scholar 

  96. Toussaint C. Pyridoxine-responsive PH1: treatment. J Nephrol. 1998;11 Suppl 1:49–50.

    PubMed  Google Scholar 

  97. Milliner DS, Eickholt JT, Bergstralh EJ, Wilson DM, Smith LH. Results of long-term treatment with orthophosphate and pyridoxine in patients with primary hyperoxaluria. NEJM. 1994;331:1553–8.

    Article  CAS  PubMed  Google Scholar 

  98. Gibbs DA, Watts RW. Biochemical studies on the treatment of primary hyperoxaluria. Arch Dis Child. 1967;42:505–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Holmgren G, Hornstrom T, Johansson S, Samuelson G. Primary hyperoxaluria (glycolic acid variant): a clinical and genetical investigation of eight cases. Ups J Med Sci. 1978;83:65–70.

    Article  CAS  PubMed  Google Scholar 

  100. Latta K, Brodehl J. Primary hyperoxaluria type I. Eur J Pediatr. 1990;149:518–22.

    Article  CAS  PubMed  Google Scholar 

  101. Monico CG, Olson JB, Milliner DS. Implications of genotype and enzyme phenotype in pyridoxine response of patients with type I primary hyperoxaluria. Am J Nephrol. 2005;25:183–8.

    Article  CAS  PubMed  Google Scholar 

  102. Fodor K, Wolf J, Erdmann R, Schliebs W, Wilmanns M. Molecular requirements for peroxisomal targeting of alanine-glyoxylate aminotransferase as an essential determinant in primary hyperoxaluria type 1. PLoS Biol. 2012;10(4):e1001309.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Hopper ED, Pittman AM, Fitzgerald MC, Tucker CL. In vivo and in vitro examination of stability of primary hyperoxaluria-associated human alanine:glyoxylate aminotransferase. J Biol Chem. 2008;283:30493–502.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Harambat J, Fargue S, Acquaviva C, et al. Genotype-phenotype correlation in primary hyperoxaluria type 1: the p.Gly170Arg AGXT mutation is associated with a better outcome. Kidney Int. 2010;77:443–9.

    Article  CAS  PubMed  Google Scholar 

  105. Oppici E, Montioli R, Lorenzetto A, Bianconi S, Borri Voltattorni C, Cellini B. Biochemical analyses are instrumental in identifying the impact of mutations on holo and/or apo-forms and on the region(s) of alanine:glyoxylate aminotransferase variants associated with primary hyperoxaluria type I. Mol Genet Metab. 2012;105:132–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Milliner DS. The primary hyperoxalurias: an algorithm for diagnosis. Am J Nephrol. 2005;25:154–60.

    Article  PubMed  Google Scholar 

  107. Costello JF, Sadovnic MC, Smith M, Stolarski C. Effect of vitamin B6 supplementation on plasma oxalate and oxalate removal rate in hemodialysis patients. J Am Soc Nephrol. 1992;3(4):1018–24.

    CAS  PubMed  Google Scholar 

  108. Allison MJ, Dawson KA, Mayberry WR, Foss JG. Oxalobacter formigenes gen. nov. sp. nov.: oxalate-degrading anaerobes that inhabit the gastrointestinal tract. Arch Microbiol. 1985;141:1–7.

    Article  CAS  PubMed  Google Scholar 

  109. Hatch M, Cornelius J, Allison M, Sidhu H, Peck A, Freel RW. Oxalobacter sp. reduces urinary oxalate excretion promoting enteric oxalate excretion. Kidney Int. 2006;69:1–8.

    Article  CAS  Google Scholar 

  110. Grujic D, Salido EC, Shenoy BC, et al. Hyperoxaluria is reduced and nephrocalcinosis prevented with an oxalate-degrading enzyme in mice with hyperoxaluria. Am J Nephrol. 2009;29:86–93.

    Article  CAS  PubMed  Google Scholar 

  111. Hatch M, Gjymishka A, Salido EC, Allison MJ, Freel RW. Enteric oxalate elimination is induced and oxalate is normalized in a mouse model of Primary Hyperoxaluria following intestinal colonization with Oxalobacter. Am J Physiol Gastrointest Liver Physiol. 2011;300:G461–9.

    Article  CAS  PubMed  Google Scholar 

  112. Illies F, Bonzel KE, Wingen AM, Latta K, Hoyer PF. Clearance and removal of oxalate in children on intensified dialysis for primary hyperoxaluria type 1. Kidney Int. 2006;70:1642–8.

    Article  CAS  PubMed  Google Scholar 

  113. Hoppe B, Graf D, Offner G, et al. Oxalic acid elimination in children with chronic renal failure: comparison between hemodialysis and peritoneal dialysis. Pediatr Nephrol. 1996;10:488–92.

    Article  CAS  PubMed  Google Scholar 

  114. Bunchman TE, Swartz RD. Oxalate removal in type I hyperoxaluria or acquired oxalosis using HD and equilibration PD. Perit Dial Int. 1994;14:81–4.

    CAS  PubMed  Google Scholar 

  115. Saborio P, Scheinman JI. Transplantation for primary hyperoxaluria in the United States. Kidney Int. 1999;56:1094–100.

    Article  CAS  PubMed  Google Scholar 

  116. Monico CG, Milliner DS. Combined liver-kidney and kidney alone transplantation in primary hyperoxaluria. Liver Transpl. 2001;7:954–63.

    Article  CAS  PubMed  Google Scholar 

  117. Nolkemper D, Kemper MJ, Burdelski M, et al. Long term results of pre-emptive liver transplantation in primary hyperoxaluria type 1. Pediatr Transplant. 2000;3:177–81.

    Article  Google Scholar 

  118. Filler G, Hoppe B. Combined liver-kidney transplantation for hyperoxaluria type II? Pediatr Transplant. 2014;18(3):237–9.

    Article  PubMed  Google Scholar 

  119. Beck BB, Habbig S, Dittrich K, et al. Liver cell transplantation in severe infantile oxalosis – a potential bridging procedure to orthotopic liver transplantation? Nephrol Dial Transplant. 2012;27(7):2984–9.

    Article  CAS  PubMed  Google Scholar 

  120. Rashid ST, Corbineau S, Hannan N, et al. Modeling inherited metabolic disorders of the liver using human induced pluripotent stem cells. J Clin Invest. 2010;120(9):3127–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Soto-Gutierrez A, Tafaleng E, Kelly V, Roy-Chowdhury J, Fox IJ. Modeling and therapy of human liver diseases using induced pluripotent stem cells: how far have we come? Hepatology. 2011;53(2):708–11.

    Article  PubMed  PubMed Central  Google Scholar 

  122. Espejel S, Roll GR, McLaughlin KJ, et al. Induced pluripotent stem cell-derived hepatocytes have the functional and proliferative capabilities needed for liver regeneration in mice. J Clin Invest. 2010;120(9):3120–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Salido E, Rodriguez-Pena M, Santana A, Beattie SG, Petry H, Torres A. Phenotypic correction of a mouse model for primary hyperoxaluria with adeno-associated virus gene transfer. Mol Ther. 2011;19:870–5.

    Article  CAS  PubMed  Google Scholar 

  124. Dutta C, Avitahl-Curtis N, Pursell N, et al. Inhibition of Glycolate Oxidase with Dicer-substrate siRNA reduces calcium oxalate deposition in a mouse model of primary Hyperoxaluria Type I. Mol Ther. 2016;24(4):770–8. doi:10.1038/mt.2016.4. Epub 2016 Jan 13.

    Google Scholar 

  125. Miyata N, Steffen J, Johnson ME, Fargue S, Danpure CJ, Koehler CM. Pharmacologic rescue of an enzyme-trafficking defect in primary hyperoxaluria 1. Proc Natl Acad Sci U S A. 2014;111(40):14406–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Bodo B. Beck or Bernd Hoppe .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Beck, B.B., Hoppe, B. (2016). Primary Hyperoxaluria. In: Geary, D., Schaefer, F. (eds) Pediatric Kidney Disease. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-52972-0_39

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-52972-0_39

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-52970-6

  • Online ISBN: 978-3-662-52972-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics