Skip to main content
Log in

Intestinal transport of an obdurate anion: oxalate

  • Review
  • Published:
Urological Research Aims and scope Submit manuscript

Abstract

In this review, we focus on the role of gastrointestinal transport of oxalate primarily from a contemporary physiological standpoint with an emphasis on those aspects that we believe may be most important in efforts to mitigate the untoward effects of oxalate. Included in this review is a general discussion of intestinal solute transport as it relates to oxalate, considering cellular and paracellular avenues, the transport mechanisms, and the molecular identities of oxalate transporters. In addition, we review the role of the intestine in oxalate disease states and various factors affecting oxalate absorption

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hatch M, Freel RW (1995) Oxalate transport across intestinal and renal epithelia. In: Khan SR (ed) Calcium oxalate in biological systems. CRC, Boca Raton, p 217

  2. Holmes RP, Assimos DG (2004) The Impact of dietary oxalate on kidney stone formation. Urol Res (in press)

  3. Verkoelen CF, Romijn JC (1996) Oxalate transport and calcium oxalate renal stone disease. Urol Res 24: 183

    Article  CAS  PubMed  Google Scholar 

  4. Reuss L (2001) Tight junction permeability to ions and water. In: Cereijido M, Anderson J (eds) Tight junctions. CRC, Boca Raton, p 61

  5. Hatch M, Freel RW, Vaziri ND (1994) Intestinal excretion of oxalate in chronic renal failure. J Am Soc Nephrol 5: 1339

    CAS  PubMed  Google Scholar 

  6. Hatch M, Freel RW, Vaziri ND (1993) Characteristics of the transport of oxalate and other ions across rabbit proximal colon. Pflugers Arch 423: 206

    Article  CAS  PubMed  Google Scholar 

  7. Hatch M, Freel RW, Vaziri ND (1994) Mechanisms of oxalate absorption and secretion across the rabbit distal colon. Pflugers Arch 426: 101

    Article  CAS  PubMed  Google Scholar 

  8. Chen Z, Ye Z, Zeng L,Yang W (2003) Clinical investigation on gastric oxalate absorption. Chin Med J 116: 1749

    CAS  PubMed  Google Scholar 

  9. Hautmann RE (1993) The stomach: a new and powerful oxalate absorption site in man. J Urol 149: 1401

    CAS  PubMed  Google Scholar 

  10. Fromter E, Diamond J (1972) Route of passive ion permeation in epithelia. Nat New Biol 235: 9

    CAS  PubMed  Google Scholar 

  11. Diamond KL, Fox CC, Barch DH (1988) Role of cecal pH in intestinal oxalate absorption in the rat. J Lab Clin Med 112: 352

    CAS  PubMed  Google Scholar 

  12. Hatch M, Freel RW (1995) Alterations in intestinal transport of oxalate in disease states. Scanning Microsc, 9: 1121–1126

    Google Scholar 

  13. Binder HJ (1974) Intestinal oxalate absorption. Gastroenterology 67: 441

    CAS  PubMed  Google Scholar 

  14. Dobbins JW, Binder HJ (1977) Importance of the colon in enteric hyperoxaluria. N Engl J Med 296: 298

    CAS  PubMed  Google Scholar 

  15. Earnest DL (1974) Enteric hyperoxaluria. Adv Internal Med 24: 407

    Google Scholar 

  16. Freel RW, Hatch M, Earnest DL,Goldner AM (1980) Oxalate transport across the isolated rat colon. A re-examination. Biochim Biophys Acta 600: 838

    CAS  PubMed  Google Scholar 

  17. Hatch M, Freel RW, Goldner AM,Earnest DL (1984) Oxalate and chloride absorption by the rabbit colon: sensitivity to metabolic and anion transport inhibitors. Gut 25: 232

    CAS  PubMed  Google Scholar 

  18. Knickelbein RG, Aronson PS, Dobbins JW (1986) Oxalate transport by anion exchange across rabbit ileal brush border. J Clin Invest 77: 170

    CAS  PubMed  Google Scholar 

  19. Knickelbein RG, Dobbins JW (1990) Sulfate and oxalate exchange for bicarbonate across the basolateral membrane of rabbit ileum. Am J Physiol 259: G807

    CAS  PubMed  Google Scholar 

  20. Hatch M, Freel RW, Vaziri ND (1999) Regulatory aspects of oxalate secretion in enteric oxalate elimination. J Am Soc Nephrol 10 [Suppl 14]: S324

  21. Freel RW, Hatch M, Vaziri ND (1998) Conductive pathways for chloride and oxalate in rabbit ileal brush-border membrane vesicles. Am J Physiol 275: C748

    CAS  PubMed  Google Scholar 

  22. Ko SB, Zeng W, Dorwart MR, Luo X, Kim KH, Millen L, Goto H, Naruse S, Soyombo A, Thomas PJ, Muallem S (2004) Gating of CFTR by the STAS domain of SLC26 transporters. Nat Cell Biol 6: 343

    Article  CAS  PubMed  Google Scholar 

  23. Lamprecht G, Heil A, Baisch S, Lin-Wu E, Yun CC, Kalbacher H, Gregor M, Seidler U (2002) The down regulated in adenoma (dra) gene product binds to the second PDZ domain of the NHE3 kinase A regulatory protein (E3KARP), potentially linking intestinal Cl-/HCO3-exchange to Na+/H+ exchange. Biochemistry 41: 12336

    Article  CAS  PubMed  Google Scholar 

  24. Lohi H, Lamprecht G, Markovich D, Heil A, Kujala M, Seidler U, Kere J (2003) Isoforms of SLC26A6 mediate anion transport and have functional PDZ interaction domains. Am J Physiol Cell Physiol 284: C769

    CAS  PubMed  Google Scholar 

  25. Greeley T, Shumaker H, Wang Z, Schweinfest CW, Soleimani M (2001) Downregulated in adenoma and putative anion transporter are regulated by CFTR in cultured pancreatic duct cells. Am J Physiol Gastrointest Liver Physiol 281: G1301

    CAS  PubMed  Google Scholar 

  26. Mount DB, Romero MF (2004) The SLC26 gene family of multifunctional anion exchangers. Pflugers Arch 447: 710

    Article  CAS  PubMed  Google Scholar 

  27. Markovich D (2001) Physiological roles and regulation of mammalian sulfate transporters. Physiol Rev 81: 1499

    CAS  PubMed  Google Scholar 

  28. Byeon MK, Westerman MA, Maroulakou IG, Henderson KW, Suster S, Zhang XK, Papas TS, Vesely J, Willingham MC, Green JE, Schweinfest CW (1996) The down-regulated in adenoma (DRA) gene encodes an intestine-specific membrane glycoprotein. Oncogene 12: 387

    CAS  PubMed  Google Scholar 

  29. Jacob P, Rossmann H, Lamprecht G, Kretz A, Neff C, Lin-Wu E, Gregor M, Groneberg DA, Kere J, Seidler U (2002) Down-regulated in adenoma mediates apical Cl/HCO3 exchange in rabbit, rat, and human duodenum. Gastroenterology 122: 709

    CAS  PubMed  Google Scholar 

  30. Rajendran VM, Black J, Ardito TA, Sangan P, Alper SL, Schweinfest C, Kashgarian M, Binder HJ (2000) Regulation of DRA and AE1 in rat colon by dietary Na depletion. Am J Physiol Gastrointest Liver Physiol 279: G931

    CAS  PubMed  Google Scholar 

  31. Melvin JE, Park K, Richardson L, Schultheis PJ, Shull GE (1999) Mouse down-regulated in adenoma (DRA) is an intestinal Cl/HCO3 exchanger and is up-regulated in colon of mice lacking the NHE3 Na+/H+ exchanger. J Biol Chem 274: 22855

    Article  CAS  PubMed  Google Scholar 

  32. Tyagi S, Kavilaveettil RJ, Alrefai WA, Alsafwah S, Ramaswamy K, Dudeja PK (2001) Evidence for the existence of a distinct SO4−−-OH exchange mechanism in the human proximal colonic apical membrane vesicles and its possible role in chloride transport. Exp Biol Med (Maywood) 226: 912

    Google Scholar 

  33. Wang Z, Petrovic S, Mann E, Soleimani M (2002) Identification of an apical Cl/HCO3 exchanger in the small intestine. Am J Physiol Gastrointest Liver Physiol 282: G573

    CAS  PubMed  Google Scholar 

  34. Chernova MN, Jiang L, Shmukler BE, Schweinfest CW, Blanco P, Freedman SD, Stewart AK, Alper SL (2003) Acute regulation of the SLC26A3 congenital chloride diarrhoea anion exchanger (DRA) expressed in Xenopus oocytes. J Physiol 549: 3

    Article  CAS  PubMed  Google Scholar 

  35. Moseley RH, Hoglund P, Wu GD, Silberg DG, Haila S, De la Chapelle A, Holmberg C, Kere J (1999) Downregulated in adenoma gene encodes a chloride transporter defective in congenital chloride diarrhea. Am J Physiol 276: G185

    CAS  PubMed  Google Scholar 

  36. Silberg DG, Wang W, Moseley RH,Traber PG (1995) The Down regulated in Adenoma (dra) gene encodes an intestine-specific membrane sulfate transport protein. J Biol Chem 270: 11897

    Article  CAS  PubMed  Google Scholar 

  37. Byeon MK, Frankel A, Papas TS, Henderson KW, Schweinfest CW (1998) Human DRA functions as a sulfate transporter in Sf9 insect cells. Protein Expr Purif 12: 67

    Article  CAS  PubMed  Google Scholar 

  38. Morozumi M, Green M, Freel RW, Hatch M (2004) The effect of oxalate loading or acidified media on the expression of mRNA encoding candidate oxalate transporters in Caco-2 monolayers. In: Gohel MDI, Au DWT (eds) Kidney stones: inside and out. Hong Kong Polytechnic University, Hong Kong, p 170

  39. Alrefai WA, Tyagi S, Mansour F, Saksena S, Syed I, Ramaswamy K, Dudeja PK (2001) Sulfate and chloride transport in Caco-2 cells: differential regulation by thyroxine and the possible role of DRA gene. Am J Physiol Gastrointest Liver Physiol 280: G603

    CAS  PubMed  Google Scholar 

  40. Xie Q, Welch R, Mercado A, Romero MF, Mount DB (2002) Molecular characterization of the murine Slc26a6 anion exchanger: functional comparison with Slc26a1. Am J Physiol Renal Physiol 283: F826

    PubMed  Google Scholar 

  41. Petrovic S, Ju X, Barone S, Seidler U, Alper SL, Lohi H, Kere J, Soleimani M (2003) Identification of a basolateral Cl/HCO3 exchanger specific to gastric parietal cells. Am J Physiol Gastrointest Liver Physiol 284: G1093

    CAS  PubMed  Google Scholar 

  42. Jiang Z, Grichtchenko II, Boron WF, Aronson PS (2002) Specificity of anion exchange mediated by mouse Slc26a6. J Biol Chem 277: 33963

    Article  CAS  PubMed  Google Scholar 

  43. Aronson PS (2002) Ion exchangers mediating NaCl transport in the renal proximal tubule. Cell Biochem Biophys 36: 147

    Article  CAS  PubMed  Google Scholar 

  44. Petrovic S, Ma L, Wang Z, Soleimani M (2003) Identification of an apical Cl/HCO3 exchanger in rat kidney proximal tubule. Am J Physiol Cell Physiol 285: C608

    CAS  PubMed  Google Scholar 

  45. Knauf F, Yang CL, Thomson RB, Mentone SA, Giebisch G, Aronson PS (2001) Identification of a chloride-formate exchanger expressed on the brush border membrane of renal proximal tubule cells. Proc Natl Acad Sci U S A 98: 9425

    Article  CAS  PubMed  Google Scholar 

  46. Beck L, Silve C (2001) Molecular aspects of renal tubular handling and regulation of inorganic sulfate. Kidney Int 59: 835

    CAS  PubMed  Google Scholar 

  47. Karniski LP, Lotscher M, Fucentese M, Hilfiker H, Biber J, Murer H (1998) Immunolocalization of sat-1 sulfate/oxalate/bicarbonate anion exchanger in the rat kidney. Am J Physiol 275: F79

    CAS  PubMed  Google Scholar 

  48. Lee A, Beck L, Markovich D (2003) The mouse sulfate anion transporter gene Sat1 (Slc26a1): cloning, tissue distribution, gene structure, functional characterization, and transcriptional regulation thyroid hormone. DNA Cell Biol 22: 19

    Article  CAS  PubMed  Google Scholar 

  49. Regeer RR, Lee A, Markovich D (2003) Characterization of the human sulfate anion transporter (hsat-1) protein and gene (SAT1; SLC26A1). DNA Cell Biol 22: 107

    Article  CAS  PubMed  Google Scholar 

  50. Hatch M, Green ML, Freel RW (2003) Oxalate transport: intestine. http://www.niddk.nih.gov/fund/other/Oxalosis/Hatch.pdf

  51. Haila S, Saarialho-Kere U, Karjalainen-Lindsberg ML, Lohi H, Airola K, Holmberg C, Hastbacka J, Kere J, Hoglund P (2000) The congenital chloride diarrhea gene is expressed in seminal vesicle, sweat gland, inflammatory colon epithelium, and in some dysplastic colon cells. Histochem Cell Biol 113: 279

    CAS  PubMed  Google Scholar 

  52. Scott DA, Karniski LP (2000) Human pendrin expressed in Xenopus laevis oocytes mediates chloride/formate exchange. Am J Physiol Cell Physiol 278: C207

    CAS  PubMed  Google Scholar 

  53. Romero MF, Fulton CM, Boron WF (2004) The SLC4 family of HCO3 transporters. Pflugers Arch 447: 495

    Article  CAS  PubMed  Google Scholar 

  54. Charney AN, Egnor RW, Henner D, Rashid H, Cassai N, Sidhu GS (2004) Acid-base effects on intestinal Cl absorption and vesicular trafficking. Am J Physiol Cell Physiol 286: C1062

    Article  CAS  PubMed  Google Scholar 

  55. Alrefai WA, Tyagi S, Nazir TM, Barakat J, Anwar SS, Hadjiagapiou C, Bavishi D, Sahi J, Malik P, Goldstein J, Layden TJ, Ramaswamy K, Dudeja PK (2001) Human intestinal anion exchanger isoforms: expression, distribution, and membrane localization. Biochim Biophys Acta 1511: 17

    CAS  PubMed  Google Scholar 

  56. Rajendran VM, Binder HJ (2000) Characterization and molecular localization of anion transporters in colonic epithelial cells. Ann N Y Acad Sci 915: 15

    CAS  PubMed  Google Scholar 

  57. Alper SL, Rossmann H, Wilhelm S, Stuart-Tilley AK, Shmukler BE, Seidler U (1999) Expression of AE2 anion exchanger in mouse intestine. Am J Physiol 277: G321

    CAS  PubMed  Google Scholar 

  58. Knickelbein RG, Aronson PS, Dobbins JW (1985) Substrate and inhibitor specificity of anion exchangers on the brush border membrane of rabbit ileum. J Membr Biol 88: 199

    CAS  PubMed  Google Scholar 

  59. Jennings ML, Adame MF (1996) Characterization of oxalate transport by the human erythrocyte band 3 protein. J Gen Physiol 107: 145

    Article  CAS  PubMed  Google Scholar 

  60. Costello JF, Smith M, Stolarski C, Sadovnic MJ (1992) Extrarenal clearance of oxalate increases with progression of renal failure in the rat. J Am Soc Nephrol 3: 1098

    CAS  PubMed  Google Scholar 

  61. Hatch M, Freel RW, Vaziri ND (1998) Local upregulation of colonic angiotensin II receptors enhances potassium excretion in chronic renal failure. Am J Physiol 274: F275

    CAS  PubMed  Google Scholar 

  62. Hatch M, Freel RW, Vaziri ND (1999) AT1 receptor up-regulation in intestine in chronic renal failure is segment specific. Pflugers Arch 437: 881

    Article  CAS  PubMed  Google Scholar 

  63. Hatch M, Freel RW (2003) Angiotensin II involvement in adaptive enteric oxalate excretion in rats with chronic renal failure induced by hyperoxaluria. Urol Res 31: 426

    Article  CAS  PubMed  Google Scholar 

  64. Hatch M, Freel RW (2003) Renal and intestinal handling of oxalate following oxalate loading in rats. Am J Nephrol 23: 18

    Article  CAS  PubMed  Google Scholar 

  65. Worcester EM, Kles KA, Gerber GS (2004) Colonic oxalate flux is increased in a rat model of enteric hyperoxaluria and stones. Urol Res 32: 170

    Google Scholar 

  66. Fairclough PD, Feest TG, Chadwick VS, Clark ML (1977) Effect of sodium chenodeoxycholate on oxalate absorption from the excluded human colon—a mechanism for ‘enteric’ hyperoxaluria. Gut 18: 240

    CAS  PubMed  Google Scholar 

  67. Dobbins JW, Binder HJ (1976) Effect of bile salts and fatty acids on the colonic absorption of oxalate. Gastroenterology 70: 1096

    CAS  PubMed  Google Scholar 

  68. Saunders DR, Sillery J, McDonald GB (1975) Regional differences in oxalate absorption by rat intestine: evidence for excessive absorption by the colon in steatorrhoea. Gut 16: 543

    CAS  PubMed  Google Scholar 

  69. Kathpalia SC, Favus MJ, Coe FL (1984) Evidence for size and charge permselectivity of rat ascending colon. Effects of ricinoleate and bile salts on oxalic acid and neutral sugar transport. J Clin Invest 74: 805

    CAS  PubMed  Google Scholar 

  70. Hatch M, Freel RW, Goldner AM, Earnest DL (1983) Comparison of effects of low concentrations of ricinoleate and taurochenodeoxycholate on colonic oxalate and chloride absorption. Gastroenterology 84: 1181

    Google Scholar 

  71. Hatch M, Freel RW, Goldner AM, Earnest DL (1981) Effect of bile salt on active oxalate transport in the colon. In: Kasper H, Goebell H (eds) Colon and nutrition. MTP, Lancaster, p 299

  72. Earnest DL, Williams HE, Admirand WH (1975) A physicochemical basis for treatment of enteric hyperoxaluria. Trans Assoc Am Physicians 88: 224

    CAS  PubMed  Google Scholar 

  73. Liebman M, Landis W (1988) Relationship of mineral balance to oxalate degradation during high oxalate feeding. Nutr Rep Int 38: 313

    CAS  Google Scholar 

  74. Archer HE, Dormer AE, Scowen EE, Watts RWE (1957) Studies on the urinary excretion of oxalate. Clin Sci (Lond) 16: 405

    Google Scholar 

  75. Zarembski PM, Hodgkinson A (1969) Some factors influencing the urinary excretion of oxalic acid in man. Clin Chim Acta 25: 1

    Article  CAS  PubMed  Google Scholar 

  76. Chadwick VS, Modha K, Dowling RH (1973) Mechanism for hyperoxaluria in patients with ileal dysfunction. N Engl J Med 289: 172

    CAS  PubMed  Google Scholar 

  77. Hatch M.(1978) The pathophysiology of calcium oxalate nephrolithiasis. In: Medicine. Trinity College, Dublin, p 101

  78. Hylander E, Jarnum S, Jensen HJ, Thale M (1978) Enteric hyperoxaluria: dependence on small intestinal resection, colectomy, and steatorrhoea in chronic inflammatory bowel disease. Scand J Gastroenterol 13: 577

    CAS  PubMed  Google Scholar 

  79. Holmes RP, Goodman HO, Assimos DG (2001) Contribution of dietary oxalate to urinary oxalate excretion. Kidney Int 59: 270

    Article  CAS  PubMed  Google Scholar 

  80. Liebman M, Chai W (1997) Effect of dietary calcium on urinary oxalate excretion after oxalate loads. Am J Clin Nutr 65: 1453

    CAS  PubMed  Google Scholar 

  81. Von Unruh GE, Voss S, Sauerbruch T, Hesse A (2003) Reference range for gastrointestinal oxalate absorption measured with a standardized [13C2]oxalate absorption test. J Urol 169: 687

    PubMed  Google Scholar 

  82. Hesse A, Schneeberger W, Engfeld S, Von Unruh G E, Sauerbruch T (1999) Intestinal hyperabsorption of oxalate in calcium oxalate stone formers: application of a new test with [13C2]oxalate. J Am Soc Nephrol 10 [Suppl 14]: S329

  83. Rampton DS, Kasidas GP, Rose GA, Sarner M (1979) Oxalate loading test: a screening test for steatorrhoea. Gut 20: 1089

    CAS  PubMed  Google Scholar 

  84. Lindsjo M, Danielson BG, Fellstrom B, Lithell H, Ljunghall S (1989) Intestinal absorption of oxalate and calcium in patients with jejunoileal bypass. Scand J Urol Nephrol 23: 283

    CAS  PubMed  Google Scholar 

  85. Siener R, Ebert D, Nicolay C, Hesse A (2003) Dietary risk factors for hyperoxaluria in calcium oxalate stone formers. Kidney Int 63: 1037

    Article  PubMed  Google Scholar 

  86. Hesse A, Strenge A, Bach D, Vahlensieck W (1981) Oxalate loading test for the diagnosis of oxalate hyperabsorption. In: Smith LH, Robertson WG, Finlayson B (eds) Urolithiasis: clinical and basic research. Plenum, New York, p 779

  87. Berg W, Haerting R, Bothor C, Meinig S, Eschholz A, Schulze HP (1990) Diagnosis of intestinal oxalate hyperabsorption in patients with idiopathic recurrent calcium oxalate urinary calculi (in German). Urologe A 29: 148

    CAS  PubMed  Google Scholar 

  88. Lindsjo M, Danielson BG, Fellstrom B, Ljunghall S (1989) Intestinal oxalate and calcium absorption in recurrent renal stone formers and healthy subjects. Scand J Urol Nephrol 23: 55

    CAS  PubMed  Google Scholar 

  89. Tiselius HG, Ahlstrand C, Lundstrom B, Nilsson MA (1981) [14C]Oxalate absorption by normal persons, calcium oxalate stone formers, and patients with surgically disturbed intestinal function. Clin Chem 27: 1682

    CAS  PubMed  Google Scholar 

  90. Caspary WF (1977) Intestinal oxalate absorption. I. Absorption in vitro. Res Exp Med (Berl) 171: 13

    Google Scholar 

  91. Das S, Joseph B, Dick AL (1979) Renal failure owing to oxalate nephrosis after jejunoileal bypass. J Urol 121: 506

    CAS  PubMed  Google Scholar 

  92. Marangella M, Fruttero B, Bruno M, Linari F (1982) Hyperoxaluria in idiopathic calcium stone disease: further evidence of intestinal hyperabsorption of oxalate. Clin Sci (Lond) 63: 381

    Google Scholar 

  93. Barilla DE, Notz C, Kennedy D, Pak CY (1978) Renal oxalate excretion following oral oxalate loads in patients with ileal disease and with renal and absorptive hypercalciurias. Effect of calcium and magnesium. Am J Med 64: 579

    Article  CAS  PubMed  Google Scholar 

  94. Erickson SB, Cooper K, Broadus AE, Smith LH, Werness PG, Binder HJ, Dobbins JW (1984) Oxalate absorption and postprandial urine supersaturation in an experimental human model of absorptive hypercalciuria. Clin Sci (Lond) 67: 131

    Google Scholar 

  95. Krishnamurthy MS, Hruska KA, Chandhoke PS (2003) The urinary response to an oral oxalate load in recurrent calcium stone formers. J Urol 169: 2030

    Article  CAS  PubMed  Google Scholar 

  96. Earnest DL, Johnson G, Williams HE, Admirand WH (1974) Hyperoxaluria in patients with ileal resection: an abnormality in dietary oxalate absorption. Gastroenterology 66: 1114

    CAS  PubMed  Google Scholar 

  97. Yamakawa K, Kawamura J (1990) Oxalate: OH exchange across rat renal cortical brush border membrane. Kidney Int 37: 1105

    CAS  PubMed  Google Scholar 

  98. Liebman M, Costa G (2000) Effects of calcium and magnesium on urinary oxalate excretion after oxalate loads. J Urol 163: 1565

    Article  CAS  PubMed  Google Scholar 

  99. Nishiura JL, Martini LA, Mendonca CO, Schor N, Heilberg IP (2002) Effect of calcium intake on urinary oxalate excretion in calcium stone-forming patients. Braz J Med Biol Res 35: 669

    CAS  PubMed  Google Scholar 

  100. De O GMC, Martini LA, Baxmann AC, Nishiura JL, Cuppari L, Sigulem DM, Heilberg IP (2003) Effects of an oxalate load on urinary oxalate excretion in calcium stone formers. J Ren Nutr 13: 39

    Article  PubMed  Google Scholar 

  101. Hess B, Jost C, Zipperle L, Takkinen R, Jaeger P (1998) High-calcium intake abolishes hyperoxaluria and reduces urinary crystallization during a 20-fold normal oxalate load in humans. Nephrol Dial Transplant 13: 2241

    Article  CAS  PubMed  Google Scholar 

  102. Jaeger P, Portmann L, Jacquet AF, Burckhardt P (1985) Influence of the calcium content of the diet on the incidence of mild hyperoxaluria in idiopathic renal stone formers. Am J Nephrol 5: 40

    CAS  PubMed  Google Scholar 

  103. Morozumi M, Ogawa Y (2000) Impact of dietary calcium and oxalate ratio on urinary stone formation in rats. Mol Urol 4: 313

    CAS  PubMed  Google Scholar 

  104. Hossain RZ, Ogawa Y, Morozumi M, Hokama S, Sugaya K (2003) Milk and calcium prevent gastrointestinal absorption and urinary excretion of oxalate in rats. Front Biosci 8: a117

    CAS  PubMed  Google Scholar 

  105. Sharma V, Schwille PO (1992) Effect of calcium on oxalate uptake and transport by the rat intestine. Scand J Clin Lab Invest 52: 339

    CAS  PubMed  Google Scholar 

  106. Hossain RZ, Ogawa Y, Morozumi M, Sugaya K, Hatano T (2003) Urinary oxalic acid excretion differs after oral loading of rats with various oxalate salts. Int J Urol 10: 43

    Article  CAS  PubMed  Google Scholar 

  107. Messa P, Marangella M, Paganin L, Codardini M, Cruciatti A, Turrin D, Filiberto Z, Mioni G (1997) Different dietary calcium intake and relative supersaturation of calcium oxalate in the urine of patients forming renal stones. Clin Sci (Lond) 93: 257

    Google Scholar 

  108. Massey LK, Roman-Smith H, Sutton RA (1993) Effect of dietary oxalate and calcium on urinary oxalate and risk of formation of calcium oxalate kidney stones. J Am Diet Assoc 93: 901

    Article  CAS  PubMed  Google Scholar 

  109. Curhan GC Curhan SG (1994) Dietary factors and kidney stone formation. Compr Ther 20: 485

    CAS  PubMed  Google Scholar 

  110. Curhan GC, Willett WC, Rimm EB, Stampfer MJ (1993) A prospective study of dietary calcium and other nutrients and the risk of symptomatic kidney stones. N Engl J Med 328: 833

    Article  CAS  PubMed  Google Scholar 

  111. Curhan GC, Willett WC, Speizer FE, Spiegelman D, Stampfer MJ (1997) Comparison of dietary calcium with supplemental calcium and other nutrients as factors affecting the risk for kidney stones in women. Ann Intern Med 126: 497

    CAS  PubMed  Google Scholar 

  112. Masai M, Ito H, Kotake T (1995) Effect of dietary intake on urinary oxalate excretion in calcium renal stone formers. Br J Urol 76: 692

    CAS  PubMed  Google Scholar 

  113. Naya Y, Ito H, Masai M, Yamaguchi K (2000) Effect of dietary intake on urinary oxalate excretion in calcium oxalate stone formers in their forties. Eur Urol 37: 140

    Article  CAS  PubMed  Google Scholar 

  114. Lemann JJr, Pleuss JA, Worcester EM, Hornick L, Schrab D, Hoffmann RG (1996) Urinary oxalate excretion increases with body size and decreases with increasing dietary calcium intake among healthy adults. Kidney Int 49: 200

    CAS  PubMed  Google Scholar 

  115. Curhan GC, Willett WC, Knight EL, Stampfer MJ (2004) Dietary factors and the risk of incident kidney stones in younger women: Nurses’ Health Study II. Arch Intern Med 164: 885

    Article  PubMed  Google Scholar 

  116. Stauffer JQ (1977) Hyperoxaluria and intestinal disease. The role of steatorrhea and dietary calcium in regulating intestinal oxalate absorption. Am J Dig Dis 22: 921

    CAS  PubMed  Google Scholar 

  117. Stauffer JQ (1977) Hyperoxaluria and calcium oxalate nephrolithiasis after jejunoileal bypass. Am J Clin Nutr 30: 64

    CAS  PubMed  Google Scholar 

  118. Hylander E, Jarnum S, Nielsen K (1980) Calcium treatment of enteric hyperoxaluria after jejunoileal bypass for morbid obesity. Scand J Gastroenterol 15: 349

    CAS  PubMed  Google Scholar 

  119. Hylander E, Jarnum S, Kempel K, Thale M (1980) The absorption of oxalate, calcium, and fat after jejunoileal bypass. A prospective study. Scand J Gastroenterol 15: 343

    CAS  PubMed  Google Scholar 

  120. Earnest DL (1977) Perspectives on incidence, etiology, and treatment of enteric hyperoxaluria. Am J Clin Nutr 30: 72

    CAS  PubMed  Google Scholar 

  121. Berg W, Bothor C, Pirlich W, Janitzky V (1986) Influence of magnesium on the absorption and excretion of calcium and oxalate ions. Eur Urol 12: 274

    CAS  PubMed  Google Scholar 

  122. Hatch M, Schepers A, Grunberger I, Godec CJ (1991) A retrospective analysis of the metabolic status of stone formers in the New York City metropolitan areas. N Y State J Med 91: 196

    CAS  PubMed  Google Scholar 

  123. Tiselius HG, Almgard LE, Larsson L, Sorbo B (1978) A biochemical basis for grouping of patients with urolithiasis. Eur Urol 4: 241

    CAS  PubMed  Google Scholar 

  124. Yendt ER (1970) Renal calculi. Can Med Assoc J 102: 479

    CAS  PubMed  Google Scholar 

  125. Trinchieri A, Mandressi A, Luongo P, Longo G, Pisani E (1991) The influence of diet on urinary risk factors for stones in healthy subjects and idiopathic renal calcium stone formers. Br J Urol 67: 230

    CAS  PubMed  Google Scholar 

  126. Faragalla FF, Gerschoff SN (1963) Interrelations among magnesium, vitamin B6, sulfur, and phosphorus in the formation of kidney stones in the rat. J Nutr 81: 60

    CAS  PubMed  Google Scholar 

  127. Griffith HM, O’Shea B, Maguire M, Koegh B, Kevany JP (1986) A case-control study of dietary intake of renal stone patients. II. Urine biochemistry and stone analysis. Urol Res 14: 75

    CAS  PubMed  Google Scholar 

  128. Welshman SG, McGeown MG (1975) The relationship of the urinary cations, calcium, magnesium, sodium and potassium, in patients with renal calculi. Br J Urol 47: 237

    CAS  PubMed  Google Scholar 

  129. Su CJ, Shevock PN, Khan SR, Hackett RL (1991) Effect of magnesium on calcium oxalate urolithiasis. J Urol 145: 1092

    CAS  PubMed  Google Scholar 

  130. Moore CA, Bunce GE (1964) Reduction in frequency of renal calculus formation by oral magnesium administration. A preliminary report. Invest Urol 15: 7

    CAS  PubMed  Google Scholar 

  131. Johansson G, Backman U, Danielson BG, Fellstrom B, Ljunghall S, Wikstrom B (1980) Biochemical and clinical effects of the prophylactic treatment of renal calcium stones with magnesium hydroxide. J Urol 124: 770

    CAS  PubMed  Google Scholar 

  132. Straub B, Muller M, Schrader M, Goessl C, Heicappell R, Miller K (2002) Intestinal and renal handling of oxalate in magnesium-deficient rats. Evaluation of intestinal in vivo 14C-oxalate perfusion. BJU Int 90: 312

    Article  CAS  PubMed  Google Scholar 

  133. Rattan V, Thind SK, Jethi RK, Nath R (1993) Intestinal absorption of calcium and oxalate in magnesium-deficient rats. Magnes Res 6: 3

    CAS  PubMed  Google Scholar 

  134. Danpure CJ, Jennings PR, Watts RW (1987) Enzymological diagnosis of primary hyperoxaluria type 1 by measurement of hepatic alanine: glyoxylate aminotransferase activity. Lancet 1: 289

    Article  CAS  PubMed  Google Scholar 

  135. Sharma S, Sidhu H, Narula R, Thind SK, Nath R (1990) Comparative studies on the effect of vitamin A, B1 and B6 deficiency on oxalate metabolism in male rats. Ann Nutr Metab 34: 104

    CAS  PubMed  Google Scholar 

  136. Gupta R, Sidhu H, Rattan V, Thind SK, Nath R (1988) Oxalate uptake in intestinal and renal brush-border membrane vesicles (BBMV) in vitamin B6-deficient rats. Biochem Med Metab Biol 39: 190

    Article  CAS  PubMed  Google Scholar 

  137. Curhan GC, Willett WC, Rimm EB, Stampfer MJ (1996) A prospective study of the intake of vitamins C and B6, and the risk of kidney stones in men. J Urol 155: 1847

    Article  CAS  PubMed  Google Scholar 

  138. Curhan GC, Willett WC, Speizer FE, Stampfer MJ (1999) Intake of vitamins B6 and C and the risk of kidney stones in women. J Am Soc Nephrol 10: 840

    CAS  PubMed  Google Scholar 

  139. Simon JA, Hudes ES (1999) Relation of serum ascorbic acid to serum vitamin B12, serum ferritin, and kidney stones in US adults. Arch Intern Med 159: 619

    Article  CAS  PubMed  Google Scholar 

  140. Sowers MR, Jannausch M, Wood C, Pope SK, Lachance LL, Peterson B (1998) Prevalence of renal stones in a population-based study with dietary calcium, oxalate, and medication exposures. Am J Epidemiol 147: 914

    CAS  PubMed  Google Scholar 

  141. Griffith HM, O’Shea B, Keogh B, Kevany JP (1986) A case-control study of dietary intake of renal stone patients. I. Preliminary analysis. Urol Res 14: 67

    CAS  PubMed  Google Scholar 

  142. Power C, Barker DJ, Nelson M, Winter PD (1984) Diet and renal stones: a case-control study. Br J Urol 56: 456

    CAS  PubMed  Google Scholar 

  143. Hatch M, Mulgrew S, Bourke E, Keogh B, Costello J (1980) Effect of megadoses of ascorbic acid on serum and urinary oxalate. Eur Urol 6: 166

    CAS  PubMed  Google Scholar 

  144. Chalmers AH, Cowley DM, Brown JM (1986) A possible etiological role for ascorbate in calculi formation. Clin Chem 32: 333

    CAS  PubMed  Google Scholar 

  145. Tiselius HG, Almgard LE (1977) The diurnal urinary excretion of oxalate and the effect of pyridoxine and ascorbate on oxalate excretion. Eur Urol 3: 41

    CAS  PubMed  Google Scholar 

  146. Briggs M (1976) Vitamin-C-induced hyperoxaluria. Lancet 1: 154

    Article  CAS  Google Scholar 

  147. Takenouchi K, Aso K, Kawase K, Ichikawa H, Shiomi T (1966) On the metabolites of ascorbic acid, especially oxalic acid, eliminated in urine, following the administration of large amounts of ascorbic acid. J Vitaminol (Kyoto) 12: 49

    Google Scholar 

  148. Fituri N, Allawi N, Bentley M, Costello J (1983) Urinary and plasma oxalate during ingestion of pure ascorbic acid: a re-evaluation. Eur Urol 9: 312

    CAS  PubMed  Google Scholar 

  149. Tsao CS, Salimi SL (1984) Effect of large intake of ascorbic acid on urinary and plasma oxalic acid levels. Int J Vitam Nutr Res 54: 245

    CAS  PubMed  Google Scholar 

  150. Wandzilak TR, D’Andre SD, Davis PA, Williams HE (1994) Effect of high dose vitamin C on urinary oxalate levels. J Urol 151: 834

    CAS  PubMed  Google Scholar 

  151. Gerster H (1997) No contribution of ascorbic acid to renal calcium oxalate stones. Ann Nutr Metab 41: 269

    CAS  PubMed  Google Scholar 

  152. Urivetzky M, Kessaris D, Smith AD (1992) Ascorbic acid overdosing: a risk factor for calcium oxalate nephrolithiasis. J Urol 147: 1215

    CAS  PubMed  Google Scholar 

  153. Schwille PO, Schmiedl A, Herrmann U, Manoharan M, Fan J, Sharma V, Gottlieb D (2000) Ascorbic acid in idiopathic recurrent calcium urolithiasis in humans--does it have an abettor role in oxalate, and calcium oxalate crystallization? Urol Res 28: 167

    Article  CAS  PubMed  Google Scholar 

  154. Baxmann AC, De O GMC, Heilberg IP (2003) Effect of vitamin C supplements on urinary oxalate and pH in calcium stone-forming patients. Kidney Int 63: 1066

    Article  CAS  PubMed  Google Scholar 

  155. Auer BL, Auer D, Rodgers AL (1998) The effect of ascorbic acid ingestion on the biochemical and physicochemical risk factors associated with calcium oxalate kidney stone formation. Clin Chem Lab Med 36: 143

    Article  CAS  PubMed  Google Scholar 

  156. Traxer O, Huet B, Poindexter J, Pak C, Pearle M (2003) Effect of ascorbic acid consumption on urinary stone risk factors. J Urol 170: 402

    PubMed  Google Scholar 

  157. Levine M, Conry-Cantilena C, Wang Y, Welch RW, Washko PW, Dhariwal KR, Park JB, Lazarev A, Graumlich JF, King J, Cantilena LR (1996) Vitamin C pharmacokinetics in healthy volunteers: evidence for a recommended dietary allowance. Proc Natl Acad Sci U S A 93: 3704

    Article  CAS  PubMed  Google Scholar 

  158. Robertson WG (1985) Dietary factors important in calcium stone-formation. In: Schwille PO et al. (eds) Urolithiasis and related clinical research. Plenum, New York, p 61

  159. Griffith HM, O’Shea B, Kevany JP, McCormick JS (1981) A control study of dietary factors in renal stone formation. Br J Urol 53: 416

    CAS  PubMed  Google Scholar 

  160. Ebisuno S, Morimoto S, Yoshida T, Fukatani T, Yasukawa S, Ohkawa T (1986) Rice-bran treatment for calcium stone formers with idiopathic hypercalciuria. Br J Urol 58: 592

    CAS  PubMed  Google Scholar 

  161. Ebisuno S, Morimoto S, Yasukawa S, Ohkawa T (1991) Results of long-term rice bran treatment on stone recurrence in hypercalciuric patients. Br J Urol 67: 237

    CAS  PubMed  Google Scholar 

  162. Ohkawa T, Ebisuno S, Kitagawa M, Morimoto S, Miyazaki Y, Yasukawa S (1984) Rice bran treatment for patients with hypercalciuric stones: experimental and clinical studies. J Urol 132: 1140

    CAS  PubMed  Google Scholar 

  163. Ohkawa T, Ebisuno S, Kitagawa M, Morimoto S, Miyazaki Y (1983) Rice bran treatment for hypercalciuric patients with urinary calculous disease. J Urol 129: 1009

    CAS  PubMed  Google Scholar 

  164. Shah PJ, Williams G, Green NA (1980) Idiopathic hypercalciuria: its control with unprocessed bran. Br J Urol 52: 426

    CAS  PubMed  Google Scholar 

  165. Gleeson MJ, Thompson AS, Mehta S, Griffith DP (1990) Effect of unprocessed wheat bran on calciuria and oxaluria in patients with urolithiasis. Urology 35: 231

    CAS  PubMed  Google Scholar 

  166. Tizzani A, Casetta G, Piana P, Vercelli D (1989) Wheat bran in the selective therapy of absorptive hypercalciuria: a study performed on 18 lithiasic patients. J Urol 142: 1018

    CAS  PubMed  Google Scholar 

  167. Strohmaier WL, Kalchthaler M, Bichler KH (1988) Calcium metabolism in normal and in hypercalciuric patients on Farnolith, a dietary fibre preparation. Urol Res 16: 437

    Article  CAS  PubMed  Google Scholar 

  168. Ala-Opas M, Elomaa I, Porkka L, Alfthan O (1987) Unprocessed bran and intermittent thiazide therapy in prevention of recurrent urinary calcium stones. Scand J Urol Nephrol 21: 311

    CAS  PubMed  Google Scholar 

  169. Robertson WG (1987) Diet and calcium stones. Miner Electrolyte Metab 13: 228

    CAS  PubMed  Google Scholar 

  170. Ito H, Kotake T, Masai M (1996) In vitro degradation of oxalic acid by human feces. Int J Urol 3: 207

    CAS  PubMed  Google Scholar 

  171. Hokama S, Honma Y, Toma C, Ogawa Y (2000) Oxalate-degrading Enterococcus faecalis. Microbiol Immunol 44: 235

    CAS  PubMed  Google Scholar 

  172. Campieri C, Campieri M, Bertuzzi V, Swennen E, Matteuzzi D, Stefoni S, Pirovano F, Centi C, Ulisse S, Famularo G ,De Simone C (2001) Reduction of oxaluria after an oral course of lactic acid bacteria at high concentration. Kidney Int 60: 1097

    Article  CAS  PubMed  Google Scholar 

  173. Allison MJ, Dawson KA, Mayberry WR, Foss JG (1985) Oxalobacter formigenes gen. nov., sp. nov.: oxalate-degrading anaerobes that inhabit the gastrointestinal tract. Arch Microbiol 141: 1

    Google Scholar 

  174. Allison MJ, Daniel SL,Cornick NA (1995) Oxalate-degrading bacteria. In: Khan SR (ed) Calcium oxalate in biological systems. CRC, Boca Raton, p 131

  175. Dawson KA, Allison MJ, Hartman PA (1980) Characteristics of anaerobic oxalate-degrading enrichment cultures from the rumen. Appl Environ Microbiol 40: 840

    CAS  PubMed  Google Scholar 

  176. Doane LT, Liebman M, Caldwell DR (1989) Microbial oxalate degradation: effects on oxalate and calcium balance in humans. Nutr Res 9: 957

    CAS  Google Scholar 

  177. Sidhu H, Hoppe B, Hesse A, Tenbrock K, Bromme S, Rietschel E, Peck AB (1998) Absence of Oxalobacter formigenes in cystic fibrosis patients: a risk factor for hyperoxaluria. Lancet 352: 1026

    Article  CAS  PubMed  Google Scholar 

  178. Neuhaus TJ, Belzer T, Blau N, Hoppe B, Sidhu H, Leumann E (2000) Urinary oxalate excretion in urolithiasis and nephrocalcinosis. Arch Dis Child 82: 322

    Article  CAS  PubMed  Google Scholar 

  179. Troxel SA, Sidhu H, Kaul P, Low RK (2003) Intestinal Oxalobacter formigenes colonization in calcium oxalate stone formers and its relation to urinary oxalate. J Endourol 17: 173

    Article  PubMed  Google Scholar 

  180. Kwak C, Kim HK, Kim EC, Choi MS,Kim HH (2003) Urinary oxalate levels and the enteric bacterium Oxalobacter formigenes in patients with calcium oxalate urolithiasis. Eur Urol 44: 475

    Article  CAS  PubMed  Google Scholar 

  181. Mikami K, Akakura K, Takei K, Ueda T, Mizoguchi K, Noda M, Miyake M, Ito H (2003) Association of absence of intestinal oxalate degrading bacteria with urinary calcium oxalate stone formation. Int J Urol 10: 293

    Article  PubMed  Google Scholar 

  182. Sidhu H, Schmidt ME, Cornelius JG, Thamilselvan S, Khan SR, Hesse A, Peck AB (1999) Direct correlation between hyperoxaluria/oxalate stone disease and the absence of the gastrointestinal tract-dwelling bacterium Oxalobacter formigenes: possible prevention by gut recolonization or enzyme replacement therapy. J Am Soc Nephrol 10 [Suppl 14]: S334

  183. Kumar R, Mukherjee M, Bhandari M, Kumar A, Sidhu H, Mittal RD (2002) Role of Oxalobacter formigenes in calcium oxalate stone disease: a study from North India. Eur Urol 41: 318

    Article  CAS  PubMed  Google Scholar 

  184. Mittal RD, Kumar R, Mittal B, Prasad R, Bhandari M (2003) Stone composition, metabolic profile and the presence of the gut-inhabiting bacterium Oxalobacter formigenes as risk factors for renal stone formation. Med Princ Pract 12: 208

    Article  CAS  PubMed  Google Scholar 

  185. Kleinschmidt K, Mahlmann A, Hautmann R (1994) Microbial degradation of dietary oxalate in the human gut and urinary oxalate concentrations in patients with calcium oxalate urolithiasis and control persons. Investig Urol (Berl) 5: 222

    Google Scholar 

  186. Goldkind L, Cave DR, Jaffin B, Robinson W, Bliss CM (1985) A new factor in enteric hyperoxaluria: Oxalobacter formigenes. Am J Gastroenterol 80: 860

    Google Scholar 

  187. Goldkind L, Cave DR, Jaffin B, Bliss CM, Allison MJ (1986) Bacterial oxalate metabolism in the human colon: a possible factor in enteric hyperoxaluria. Gastroenterology 90: 1431

    Google Scholar 

  188. Allison MJ, Cook HM, Milne DB, Gallagher S, Clayman RV (1986) Oxalate degradation by gastrointestinal bacteria from humans. J Nutr 116: 455

    CAS  PubMed  Google Scholar 

  189. Argenzio RA, Liacos JA, Allison MJ (1988) Intestinal oxalate-degrading bacteria reduce oxalate absorption and toxicity in guinea pigs. J Nutr 118: 787

    CAS  PubMed  Google Scholar 

  190. Duncan SH, Richardson AJ, Kaul P, Holmes RP, Allison MJ, Stewart CS (2002) Oxalobacter formigenes and its potential role in human health. Appl Environ Microbiol 68: 3841

    Article  CAS  PubMed  Google Scholar 

  191. James LF, Butcher JE (1972) Halogeton poisoning of sheep: effect of high level oxalate intake. J Anim Sci 35: 1233

    CAS  PubMed  Google Scholar 

  192. James LF, Street JC, Butcher JE (1967) In vitro degradation of oxalate and of cellulose by rumen ingesta from sheep fed Halogeton glomeratus. J Anim Sci 26: 1438

    CAS  PubMed  Google Scholar 

  193. Morris MP, Garcia-Rivera J (1955) The destruction of oxalates by the rumen contents of cows. J Dairy Sci 38: 1169

    CAS  Google Scholar 

  194. Watts PS (1957) Decomposition of oxalic acid in vitro by rumen contents. Aust J Agric Res 8: 266

    CAS  Google Scholar 

  195. Allison MJ, Littledike ET, Jamrs LF (1977) Changes in ruminal oxalate degradation rates associated with adaptation to oxalate ingestion. J Anim Sci 45: 1173

    CAS  PubMed  Google Scholar 

  196. Allison MJ, Reddy CA (1984) Adaptations of gastrointestinal bacteria in response to changes in dietary oxalate and nitrate. In: Klug MJ, Reddy CA (eds) Current perspectives in microbial ecology. American Society of Microbiology, Washington, p 248

  197. McKenzie RA, Balney BJ, Gartner RJW (1981) The effect of dietary oxalate on calcium, phosphorus and magnesium balance in horses. J Agric Sci Camb 97: 69

    CAS  Google Scholar 

  198. Allison MJ, Cook HM (1981) Oxalate degradation by microbes of the large bowel of herbivores: the effect of dietary oxalate. Science 212: 675

    CAS  PubMed  Google Scholar 

  199. Daniel SL, Hartman PA, Allison MJ (1993) Intestinal colonization of laboratory rats by anaerobic oxalate-degrading bacteria: effects on the urinary and faecal excretion of dietary oxalate. MicrobEcol Health Dis 6: 277

    Google Scholar 

  200. Sidhu H, Allison MJ, Chow JM, Clark A, Peck AB (2001) Rapid reversal of hyperoxaluria in a rat model after probiotic administration of Oxalobacter formigenes. J Urol 166: 1487

    Article  CAS  PubMed  Google Scholar 

  201. Sidhu H, Enatska L, Ogden S, Williams WN, Allison MJ, Peck AB (1997) Evaluating children in the Ukraine for colonization with the intestinal bacterium Oxalobacter formigenes, using a polymerase chain reaction-based detection system. Mol Diagn 2: 89

    CAS  PubMed  Google Scholar 

  202. Daniel SL, Hartman PA, Allison MJ (1987) Microbial degradation of oxalate in the gastrointestinal tracts of rats. Appl Environ Microbiol 53: 1793

    CAS  PubMed  Google Scholar 

  203. Cornelius JG, Peck AB (2004) Colonization of the neonatal rat intestinal tract from environmental exposure to the anaerobic bacterium Oxalobacter formigenes. J Med Microbiol 53: 249

    Article  PubMed  Google Scholar 

Download references

Acknowledgement

Work in the authors’ laboratory was supported by The Oxalosis and Hyperoxaluria Foundation and NIH NIDDK (DK56245, DK55944).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marguerite Hatch.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hatch, M., Freel, R.W. Intestinal transport of an obdurate anion: oxalate. Urol Res 33, 1–16 (2005). https://doi.org/10.1007/s00240-004-0445-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00240-004-0445-3

Keywords

Navigation