Skip to main content

Morphological Models for Inhomogeneous Particles: Light Scattering by Aerosols, Cometary Dust, and Living Cells

  • Chapter
  • First Online:
Light Scattering Reviews, Volume 11

Part of the book series: Springer Praxis Books ((PRAXIS))

Abstract

Particle populations in nature can often be composed of different chemical components that are either externally or internally mixed. By “external mixture ”, we refer to an ensemble of particles in which different chemical species are contained in physically separated particles; an “internal mixture ” refers to the case in which different chemical components are contained in the same particles. Examples of internal mixtures are liquid-phase aerosols containing water and dissolved sodium chloride. In that case, the two chemical species are homogeneously mixed on the molecular level. Other examples are solid-phase light-absorbing carbon (LAC) aggregates onto which a coating of liquid-phase material has condensed. In the latter case, we are dealing with an inhomogeneous mixture of different chemical species. It is such inhomogeneous particles that will be the focus of this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Bibliography

  • Ackerman TP, Toon OB (1981) Absorption of visible radiation in atmospheres containing mixtures of absorbing and nonabsorbing particles. Appl Opt 20:3661–3668

    Article  Google Scholar 

  • Adachi K, Buseck PR (2008) Internally mixed soot, sulfates, and organic matter in aerosol particles from Mexico City. Atmos Chem Phys 8:6469–6481

    Article  Google Scholar 

  • Adachi K, Chung SH, Friedrich H, Buseck PR (2007) Fractal parameters of individual soot particles determined using electron tomography: implications for optical properties. J Geophys Res 112:D14202. doi:10.1029/2006JD008296

    Article  Google Scholar 

  • Adachi K, Chung S, Buseck PR (2010) Shapes of soot aerosol particles and implications for their effects on climate. J Geophys Res 115:D15206. doi:10.1029/2009JD012868

    Article  Google Scholar 

  • Alberts B, Bray D, Lewis J, Raff M, Roberts K, Watson J (1989) Molecular biology of the cell. Garland Publishing, New York

    Google Scholar 

  • Babenko VA (2010) Electromagnetic scattering in disperse media. Springer, Berlin

    Google Scholar 

  • Bi L, Yang P, Kattawar G, Kahn R (2009) Single-scattering properties of triaxial ellipsoidal particles for a size parameter range from the Rayleigh to geometric-optics regimes. Appl Opt 48:114–126

    Article  Google Scholar 

  • Bi L, Yang P, Kattawar G, Kahn R (2010) Modeling optical properties of mineral aerosol particles by using nonsymmetric hexahedra. Appl Opt 49:334–342

    Article  Google Scholar 

  • Bohren CF (1986) Applicability of effective-medium theories to problems of scattering and absorption by nonhomogeneous atmospheric particles. J Atmos Sci 43:468–475

    Article  Google Scholar 

  • Bohren CF, Huffman DR (1983) Absorption and scattering of light by small particles. Wiley-VCH, Weinheim

    Google Scholar 

  • Bond TC, Bergstrom RW (2006) Light absorption by carbonaceous particles: an investigative review. Aerosol Sci Technol 40:27–67

    Article  Google Scholar 

  • Bond TC, Habib G, Bergstrom RW (2006) Limitations in the enhancement of visible light absorption due to mixing state. J Geophys Res 111:D20211. doi:10.1029/2006JD007315

    Article  Google Scholar 

  • Bradley J (2004) Interplanetary dust particles. In: Holland H, Turekian K (eds) Treatise on geochemistry. Elsevier, Amsterdam, pp 689–711

    Google Scholar 

  • Bradley J, Humecki H, Germani M (1992) Combined infrared and analytical electron microscope studies of interplanetary dust particles. Astrophys J 394:643–651

    Article  Google Scholar 

  • Brownlee D, Tsou P, Aléon J, Alexander C, Araki T, Bajt S, Baratta G, Bastien R, Bland P, Bleuet P, Borg J, Bradley J, Brearley A, Brenker F, Brennan S, Bridges J, Browning N, Brucato J, Bullock E, Burchell M, Busemann H, Butterworth A, Chaussidon M, Cheuvront A, Chi M, Cintala M, Clark B, Clemett S, Cody G, Colangeli L, Cooper G, Cordier P, Daghlian C, Dai Z, D’Hendecourt L, Djouadi Z, Dominguez G, Duxbury T, Dworkin J, Ebel D, Economou T, Fakra S, Fairey S, Fallon S, Ferrini G, Ferroir T, Fleckenstein H, Floss C, Flynn G, Franchi I, Fries M, Gainsforth Z, Gallien J-P, Genge M, Gilles M, Gillet P, Gilmour J, Glavin D, Gounelle M, Grady M, Graham G, Grant P, Green S, Grossemy F, Grossman L, Grossman J, Guan Y, Hagiya K, Harvey R, Heck P, Herzog G, Hoppe P, Horz F, Huth J, Hutcheon I, Ignatyev K, Ishii H, Ito M, Jacob D, Jacobsen C, Jacobsen S, Jones S, Joswiak D, Jurewicz A, Kearsley A, Keller L, Khodja H, Kilcoyne A, Kissel J, Krot A, Langenhorst F, Lanzirotti A, Le L, Leshin L, Leitner J, Lemelle L, Leroux H, Liu M-C, Luening K, Lyon I, MacPherson G, Marcus M, Marhas K, Marty B, Matrajt G, McKeegan K, Meibom A, Mennella V, Messenger K, Messenger S, Mikouchi T, Mostefaoui S, Nakamura T, Nakano T, Newville M, Nittler L, Ohnishi I, Ohsumi K, Okudaira K, Papanastassiou D, Palma R, Palumbo M, Pepin R, Perkins D, Perronnet M, Pianetta P, Rao W, Rietmeijer F, Robert F, Rost D, Rotundi A, Ryan R, Sandford S, Schwandt C, See T, Schlutter D, Sheffield-Parker J, Simionovici A, Simon S, Sitnitsky I, Snead C, Spencer M, Stadermann F, Steele A, Stephan T, Stroud R, Susini J, Sutton S, Suzuki Y, Taheri M, Taylor S, Teslich N, Tomeoka K, Tomioka N, Toppani A, Trigo-Rodrguez J, Troadec D, Tsuchiyama A, Tuzzolino A, Tyliszczak T, Uesugi K, Velbel M, Vellenga J, Vicenzi E, Vincze L, Warren J, Weber I, Weisberg M, Westphal A, Wirick S, Wooden D, Wopenka B, Wozniakiewicz P, Wright I, Yabuta H, Yano H, Young E, Zare R, Zega T, Ziegler K, Zimmerman L, Zinner E, Zolensky M (2006) Comet 81P/Wild 2 under a microscope. Science 314:1711–1716

    Article  Google Scholar 

  • Chang H, Charalampopoulos TT (1990) Determination of the wavelength dependence of refractive indices of flame soot. Proc R Soc Lond A 430:577–591

    Article  Google Scholar 

  • Cheng T, Wu Y, Chen H (2014) Effects of morphology on the radiative properties of internally mixed light absorbing carbon aerosols with different aging status. Opt Express 22:15904–15917

    Article  Google Scholar 

  • Chýlek P, Videen G, Geldart DJW, Dobbie JS, Tso HCW (2000) Effective medium approximations for heterogeneous particles. In: Mishchenko MI, Hovenier JW, Travis LD (eds) Light scattering by nonspherical particles. Academic Press, San Diego, pp 274–308

    Google Scholar 

  • Colbeck I, Appleby L, Hardman EJ, Harrison RM (1990) The optical properties and morphology of cloud-processed carbonaceous smoke. J Aerosol Sci 21:527–538

    Article  Google Scholar 

  • Coz E, Leck C (2011) Morphology and state of mixture of atmospheric soot aggregates during the winter season over southern Asia—A quantitative approach. Tellus 63B:107116

    Google Scholar 

  • Dabrowska D, Muñoz O, Moreno F, Nousiainen T, Zubko E (2012) Effect of the orientation of the optic axis on simulated scattering matrix elements of small birefringent particles. Opt Lett 37:3252–3254

    Article  Google Scholar 

  • Draine BT (2000) The discrete dipole approximation for light scattering by irregular targets. In: Mishchenko MI, Hovenier JW, Travis LD (eds) Light scattering by nonspherical particles. Academic Press, San Diego, pp 131–144

    Chapter  Google Scholar 

  • Draine BT, Flatau PJ (1994) Discrete-dipole approximation for scattering calculations. J Opt Soc Am A 11:1491–1499

    Article  Google Scholar 

  • Dubovik O, Sinyuk A, Lapyonok T, Holben BN, Mishchenko MI, Yang P, Eck TF, Volten H, Muñoz O, Veihelmann B, van der Zande WJ, Leon J-F, Sorokin M, Slutsker I (2006) Application of spheroid models to account for aerosol particle nonsphericity in remote sensing of desert dust. J Geophys Res 111:D11208

    Article  Google Scholar 

  • Dunn AK (2007) Modelling of light scattering from inhomogeneous biological cells. In: Hoekstra A, Maltsev VP, Videen G (eds) Optics of biological particles. Springer, Dordrecht, pp 19–29

    Chapter  Google Scholar 

  • Durant A, Bonadonna C, Horwell C (2010) Atmospheric and environmental impacts of volcanic particulates. Elements 6:235–240

    Article  Google Scholar 

  • Eddington AS (1926) The internal constitution of the stars. Cambridge University Press, London

    Google Scholar 

  • Fuller KA (1995) Scattering and absorption cross sections of compounded spheres III. Spheres containing arbitrarily located spherical inhomogeneities. J Opt Soc Am A 12:893–904

    Article  Google Scholar 

  • Fuller KA, Malm WC, Kreidenweis SM (1999) Effects of mixing on extinction by carbonaceous particles. J Geophys Res 104:15941–15954

    Article  Google Scholar 

  • Gasteiger J, Wiegner M, Groß S, Freudenthaler V, Toledano C, Tesche M, Kandler K (2011) Modelling lidar-relevant optical properties of complex mineral dust aerosols. Tellus 63B:725–741

    Article  Google Scholar 

  • Greenberg J (1982) What are comets made of? A model based on interstellar dust. In: Wilkening L (ed) comets. University of Arizona Press, Tuscon, pp 131–163

    Google Scholar 

  • Greenberg J, Hage J (1990) From interstellar dust to comets—A unification of observational constraints. Astrophys J 361:260–274

    Article  Google Scholar 

  • Gupta R, Vaidya D, Bobbie J, Chýlek P (2006) Scattering properties and composition of cometary dust. Astrophys Space Sci 301:21–31

    Article  Google Scholar 

  • Hanner M, Bradley J (2004) Effective medium approximations for heterogeneous particles. In: Festou M, Keller H, Weaver H (eds) Comets II. University of Arizona Press, Tucson, pp 555–564

    Google Scholar 

  • Hess M, Koepke P, Schult I (1998) Optical properties of aerosols and clouds: The software package OPAC. Bull Am Met Soc 79:831–844

    Article  Google Scholar 

  • Ishii H, Bradley J, Rong Dai Z, Chi M, Kearsley A, Burchell M, Browning N, Molster F (2008) Comparison of comet 81P/Wild 2 dust with interplanetary dust from comets. Science 319:447–450

    Article  Google Scholar 

  • Ishimoto H, Zaizen Y, Uchiyama A, Masuda K, Mano Y (2010) Shape modeling of mineral dust particles for light-scattering calculations using the spatial poissonvoronoi tessellation. J Quant Spectrosc Radiat Transfer 111:2434–2443

    Article  Google Scholar 

  • Jeong G, Nousiainen T (2014) TEM analysis of the internal structures and mineralogy of asian dust particles and the implications for optical modeling. Atmos Chem Phys 14:7233–7254

    Article  Google Scholar 

  • Jessberger E, Christoforidis A, Kissel J (1988) Aspects of the major element composition of Halley’s dust. Nature 332:691–695

    Article  Google Scholar 

  • Jones AR (2006) Light scattering in combustion. In: Kokhanovsky A (ed) Light scattering reviews. Springer, Berlin, pp 393–444

    Chapter  Google Scholar 

  • Kahnert M (2010a) Modelling the optical and radiative properties of freshly emitted light absorbing carbon within an atmospheric chemical transport model. Atmos Chem Phys 10:1403–1416

    Article  Google Scholar 

  • Kahnert M (2010b) Numerically exact computation of the optical properties of light absorbing carbon aggregates for wavelength of 200 nm 12.2 μm. Atmos Chem Phys 10:8319–8329

    Article  Google Scholar 

  • Kahnert M (2010c) On the discrepancy between modelled and measured mass absorption cross sections of light absorbing carbon aerosols. Aerosol Sci Technol 44:453–460

    Article  Google Scholar 

  • Kahnert M (2015) Modelling radiometric properties of inhomogeneous mineral dust particles: Applicability and limitations of effective medium theories. J Quant Spectrosc Radiat Transfer 152:16–27

    Article  Google Scholar 

  • Kahnert M, Devasthale A (2011) Black carbon fractal morphology and short-wave radiative impact: a modelling study. Atmos Chem Phys 11:11745–11759

    Article  Google Scholar 

  • Kahnert M, Nousiainen T, Lindqvist H, Ebert M (2012) Optical properties of light absorbing carbon aggregates mixed with sulfate: assessment of different model geometries for climate forcing calculations. Opt Express 20:10042–10058

    Article  Google Scholar 

  • Kahnert M, Nousiainen T, Lindqvist H (2013) Models for integrated and differential scattering optical properties of encapsulated light absorbing carbon aggregates. Opt Express 21:7974–7992

    Article  Google Scholar 

  • Kahnert M, Nousiainen T, Lindqvist H (2014) Review: model particles in atmospheric optics. J Quant Spectrosc Radiat Transfer 146:41–58

    Article  Google Scholar 

  • Kalashnikova O, Kahn R, Sokolik I, Li W-H (2005) Ability of multiangle remote sensing observations to identify and distinguish mineral dust types: optical models and retrievals of optically thick plumes. J Geophys Res 110:D18S14

    Google Scholar 

  • Kandler K, Schütz L, Deutscher C, Hofmann H, Jäckel S, Knippertz P, Lieke K, Massling A, Schladitz A, Weinzierl B, Zorn S, Ebert M, Jaenicke R, Petzold A, Weinbruch S (2009) Size distribution, mass concentration, chemical and mineralogical composition, and derived optical parameters of the boundary layer aerosol at Tinfou, Morocco, during SAMUM 2006. Tellus 61B:32–50

    Article  Google Scholar 

  • Keller L, Messenger S, Bradley J (2000) Analysis of a deuterium-rich interplanetary dust particle (IDP) and implications for presolar material in IDPs. J Geophys Res Space Phys 105:2156–2202

    Google Scholar 

  • Kemppinen O, Nousiainen T, Jeong GY (2015) Effects of dust particle internal structure on light scattering. Atmos Chem Phys Discuss 15:20349–20394

    Article  Google Scholar 

  • Kimura H, Kolokolova L, Mann I (2006) Light scattering by cometary dust numerically simulated with aggregate particles consisting of identical spheres. Astron Astrophys 449:1243–1254

    Article  Google Scholar 

  • Kiselev N, Velichco S, Jockers K, Rosenbush V, Kikuchi S (2006) Database of comet polarimetry. EAR-C-COMPIL-5-DB-COMET-POLARIMETRY-V1.0. NASA Planetary Data System

    Google Scholar 

  • Kocifaj M, Videen G (2008) Optical behavior of composite carbonaceous aerosols: DDA and EMT approaches. J Quant Spectrosc Radiat Transfer 109:1404–1416

    Article  Google Scholar 

  • Kokhanovsky AA (2004) Light scattering media optics: problems and solutions. Springer, Berlin

    Google Scholar 

  • Kolokolova L, Hanner M, Levasseur-Regourd A-C, Gustafson B (2004) Physical properties of cometary dust from light scattering and thermal emission. In: Festou M, Keller U, Weaver H (eds) Comets II. University of Arizona Press, Tucson, pp 577–604

    Google Scholar 

  • Krotkov N, Flittner D, Krueger A, Kostinski A, Riley C, Rose W, Torres O (1999) Effect of particle non-sphericity on satellite monitoring of drifting volcanic ash clouds. J Quant Spectrosc Radiat Transfer 63:613–630

    Article  Google Scholar 

  • Kylling A, Kahnert M, Lindqvist H, Nousiainen T (2014) Volcanic ash infrared signature: porous non-spherical ash particle shapes compared to homogeneous spherical ash particles. Atmos Meas Tech 7:919–929

    Article  Google Scholar 

  • Lasue J, Levasseur-Regourd A-C (2006) Porous irregular aggregates of sub-micron sized grains to reproduce cometary dust light scattering observations. J Quant Spectrosc Radiat Transfer 100:220–236

    Article  Google Scholar 

  • Lasue J, Levasseur-Regourd A-C, Hadamcik E, Alcouffe G (2009) Cometary dust properties retrieved from polarization observations: application to C/1995 O1 Hale-Bopp and 1P/Halley. Icarus 199:129–144

    Article  Google Scholar 

  • Lawler M, Brownlee D (1992) CHON as a component of dust from comet Halley. Nature 359:810812

    Article  Google Scholar 

  • Levasseur-Regourd A-C, Mukai T, Lasue J, Okada Y (2007) Physical properties of cometary and interplanetary dust. Planet Space Sci 55:1010–1020

    Article  Google Scholar 

  • Lieke K, Kristensen T, Korsholm U, Sørensen J, Kandler K, Weinbruch S, Ceburnis D, Ovadnevaite J, ODowd C, Bilde M (2013) Characterization of volcanic ash from the 2011 grímsvötn eruption by means of single-particle analysis. Atmos Environ 79:411–420

    Article  Google Scholar 

  • Lindqvist H, Muinonen K, Nousiainen T (2009) Light scattering by coated Gaussian and aggregate particles. J Quant Spectrosc Radiat Transfer 110:1398–1410

    Article  Google Scholar 

  • Lindqvist H, Nousiainen T, Zubko E, Muñoz O (2011) Optical modeling of vesicular volcanic ash particles. J Quant Spectrosc Radiat Transfer 112:1871–1880

    Article  Google Scholar 

  • Lindqvist H, Jokinen O, Kandler K, Scheuvens D, Nousiainen T (2014) Single scattering by realistic, inhomogeneous mineral dust particles with stereogrammetric shapes. Atmos Chem Phys 14:143–157

    Article  Google Scholar 

  • Liu C, Capjak CE (2006) Effects of cellular fine structure on scattered light pattern. IEEE Trans Nanobiosci 5:76–82

    Article  Google Scholar 

  • Liu L, Mishchenko MI (2007) Scattering and radiative properties of complex soot and soot-containing aggregate particles. J Quant Spectrosc Radiat Transfer 106:262–273

    Article  Google Scholar 

  • Liu L, Mishchenko MI, Arnott WP (2008) A study of radiative properties of fractal soot aggregates using the superposition T-matrix method. J Quant Spectrosc Radiat Transfer 109:2656–2663

    Article  Google Scholar 

  • Liu C, Panetta RL, Yang P, Macke A, Baran AJ (2012) Modeling the scattering properties of mineral aerosols using concave fractal polyhedra. Appl Opt 52:640–652

    Article  Google Scholar 

  • Lumme K, Penttilä A (2011) Model of light scattering by dust particles in the solar system: applications to cometary comae and planetary regoliths. J Quant Spectrosc Radiat Transfer 112:1658–1670

    Article  Google Scholar 

  • Mackowski DW, Mishchenko MI (1996) Calculation of the T matrix and the scattering matrix for ensembles of spheres. J Opt Soc Am A 13:2266–2278

    Article  Google Scholar 

  • Mackowski DW, Mishchenko MI (2011) A multiple sphere T-matrix Fortran code for use on parallel computer clusters. J Quant Spectrosc Radiat Transfer 112:2182–2192

    Article  Google Scholar 

  • Markkanen J, Penttilä A, Peltoniemi J, Muinonen K (2015) Model for light-scattering by cometary dust. Planet Space Sci 118:164–172

    Article  Google Scholar 

  • McFiggans G, Artaxo P, Baltensperger U, Coe H, Facchini MC, Feingold G, Fuzzi S, Gysel M, Laaksonen A, Lohmann U, Mentel TF, Murphy DM, O’Dowd CD, Snider JR, Weingartner E (2006) The effect of physical and chemical aerosol properties on warm cloud droplet activation. Atmos Chem Phys 6:2593–2649

    Article  Google Scholar 

  • Merikallio S, Muñoz O, Sundström A-M, Virtanen T, Horttanainen M, de Leeuw G, Nousiainen T (2015) Optical modeling of volcanic ash particles using ellipsoids. J Geophys Res Atmos 120:4102–4116

    Article  Google Scholar 

  • Mishchenko MI, Lacis AA, Carlson BE, Travis LD (1995) Nonsphericity of dust-like tropospheric aerosols: implications for aerosol remote sensing and climate modeling. Geophys Res Lett 22:1077–1080

    Article  Google Scholar 

  • Mishchenko MI, Liu L, Travis LD, Lacis AA (2004) Scattering and radiative properties of semi-external versus external mixtures of different aerosol types. J Quant Spectrosc Radiat Transfer 88:139–147

    Article  Google Scholar 

  • Mishchenko MI, Dlugach ZM, Zakharova NT (2014) Direct demonstration of the concept of unrestricted effective-medium approximation. Opt Lett 39:3935–3938

    Article  Google Scholar 

  • Mukai S, Mukai T, Kikuchi S (1991) Scattering properties of cometary dust based on polarimetric data. In: Levasseur-Regourd A-C, Hasegawa H (eds) Origin and evolution of interplanetary dust. Springer, Berlin, pp 249–252

    Google Scholar 

  • Muñoz O, Volten H, Hovenier JW, Veihelmann B, van der Zande WJ, Waters LBFM, Rose WI (2004) Scattering matrices of volcanic ash particles of Mount St. Helens, Redoubt, and Mount Spurr volcanoes. J Geophys Res 109

    Google Scholar 

  • Niemeier U, Timmreck C, Graf H-F, Kinne S, Rast S, Self S (2009) Initial fate of fine ash and sulfur from large volcanic eruptions. Atmos Chem Phys 9:9043–9057

    Article  Google Scholar 

  • Nousiainen T, Kandler K (2015) Light scattering by atmospheric mineral dust particles. In: Kokhanovsky A (ed) Light scattering reviews, vol 9, Chap 1. Springer, Berlin, 430 pp

    Google Scholar 

  • Nousiainen T, Vermeulen K (2003) Comparison of measured single-scattering matrix of feldspar particles with T-matrix simulations using spheroids. J Quant Spectrosc Radiat Transfer 79–80:1031–1042

    Article  Google Scholar 

  • Nousiainen T, Muinonen K, Räisänen P (2003) Scattering of light by Saharan particles in a modified ray-optics approximation. J Geophys Res 108. doi:10.1029/2001JD001277

  • Nousiainen T, Kahnert M, Veihelmann B (2006) Light scattering modeling of small feldspar aerosol particles using polyhedral prisms and spheroids. J Quant Spectrosc Radiat Transfer 101:471–487

    Article  Google Scholar 

  • Nousiainen T, Zubko E, Niemi JV, Kupiainen K, Lehtinen M, Muinonen K, Videen G (2009) Single-scattering modeling of thin, birefringent mineral-dust flakes using the discrete-dipole approximation. J Geophys Res 114:D07207. doi:10.1029/2008JD011564

    Article  Google Scholar 

  • Nousiainen T, Kahnert M, Lindqvist H (2011) Can particle shape information be retrieved from light-scattering observations using spheroidal model particles? J. Quant Spectrosc Radiat Transfer 112:2213–2225

    Google Scholar 

  • Orlova DY, Yurkin MA, Hoekstra AG, Maltsev VP (2008) Light scattering by neutrophils: model, simulation, and experiment. J Biomed Opt 13:054057

    Article  Google Scholar 

  • Petrova E, Jockers K, Kiselev N (2000) Light scattering by aggregates with sizes comparable to the wavelength: An application to cometary dust. Icarus 148:526–536

    Article  Google Scholar 

  • Purcell EM, Pennypacker CR (1973) Scattering and absorption of light by nonspherical dielectric grains. Astrophys J 186:705–714

    Article  Google Scholar 

  • Räisänen P, Haapanala P, Chung CE, Kahnert M, Makkonen R, Tonttila J, Nousiainen T (2013) Impact of dust particle non-sphericity on climate simulations. Q J R Meteorol Soc 139:2222–2232

    Article  Google Scholar 

  • Ramachandran G, Reist PC (1995) Characterization of morphological changes in agglomerates subject to condensation and evaporation using multiple fractal dimensions. Aerosol Sci Technol 23:431–442

    Article  Google Scholar 

  • Sandford S, Aléon J, Alexander C, Araki T, Bajt S, Baratta G, Borg J, Bradley J, Brownlee D, Brucato J, Burchell M, Busemann H, Butterworth A, Clemett S, Cody G, Colangeli L, Cooper G, D’Hendecourt L, Djouadi Z, Dworkin J, Ferrini G, Fleckenstein H, Flynn G, Franchi I, Fries M, Gilles M, Glavin D, Gounelle M, Grossemy F, Jacobsen C, Keller L, Kilcoyne A, Leitner J, Matrajt G, Meibom A, Mennella V, Mostefaoui S, Nittler L, Palumbo M, Papanastassiou D, Robert F, Rotundi A, Snead C, Spencer M, Stadermann F, Steele A, Stephan T, Tsou P, Tyliszczak T, Westphal A, Wirick S, Wopenka B, Yabuta H, Zare R, Zolensky M (2006) Organics captured from comet 81P/Wild 2 by the Stardust spacecraft. Science 314:1720–1724

    Article  Google Scholar 

  • Scarnato B, Vahidinia S, Richard DT, Kirchstetter TW (2013) Effects of internal mixing and aggregate morphology on optical properties of black carbon using a discrete dipole approximation model. Atmos Chem Phys 13:5089–5101

    Article  Google Scholar 

  • Scheuvens D, Kandler K, Küpper M, Lieke K, Zorn S, Ebert M, Schütz L, Weinbruch S (2011) Indiviual-particle analysis of airborne dust samples collected over Morocco in 2006 during SAMUM 1. Tellus 63B:512–530

    Article  Google Scholar 

  • Schmidt K, Yurkin M, Kahnert M (2012) A case study on the reciprocity in light scattering computations. Opt Express 20:23253–23274

    Article  Google Scholar 

  • Schnaiter M, Horvath H, Möhler O, Naumann K-H, Saathoff H, Schöck OW (2003) UV-VIS-NIR spectral optical properties of soot and soot-containing aerosols. J Aerosol Sci 34:1421–1444

    Article  Google Scholar 

  • Schnaiter M, Linke C, Moehler O, Naumann K-H, Saathoff H, Wagner R, Schurath U, Wehner B (2005) Absorption amplification of black carbon internally mixed with secondary organic aerosol. J Geophys Res 110:D19204. doi:10.1029/2005JD006046

    Article  Google Scholar 

  • Schumann U, Weinzierl B, Reitebuch O, co authors (2011) Airborne observations of the Eyjafjalla volcano ash cloud over Europe during air space closure in April and May 2010. Atmos Chem Phys 11:2245–2279

    Google Scholar 

  • Sihvola A (1999) Electromagnetic mixing formulas and applications. Institution of Electrical Engineers, London

    Book  Google Scholar 

  • Skorupski K, Mroczka J, Riefler N, Oltmann H, Will S, Wriedt T (2013) Impact of morphological parameters onto simulated light scattering patterns. J Quant Spectrosc Radiat Transfer 119:53–66

    Article  Google Scholar 

  • Starosta MS, Dunn AK (2010) Far-field superposition method for three-dimensional computation of light scattering from multiple cells. J Biomed Opt 15:055006

    Article  Google Scholar 

  • Stevenson J, Millington S, Beckett F, Swindles G, Thordarson T (2015) Big grains go far: reconciling tephrochronology with atmospheric measurements of volcanic ash. Atmos Meas Tech D 8:65–120

    Article  Google Scholar 

  • van Poppel LH, Friedrich H, Spinsby J, Chung SH, Seinfeld JH, Buseck PR (2005) Electron tomography of nanoparticle clusters: Implications for atmospheric lifetimes and radiative forcing of soot. Geophys Res Lett 32:L24811. doi:10.1029/2005GL024461

    Article  Google Scholar 

  • Veihelmann B, Nousiainen T, Kahnert M, van der Zande WJ (2006) Light scattering by small feldspar particles simulated using the gaussian random sphere geometry. J Quant Spectrosc Radiat Transfer 100(1–3):393–405

    Article  Google Scholar 

  • Videen G, Chýlek P (1998) Scattering by a composite sphere with an absorbing inclusion and effective medium approximations. Opt Commun 158:1–6

    Article  Google Scholar 

  • Videen G, Zubko E, Sun W, Shkuratov Y, Yuffa A (2015) Mixing rules and morphology dependence of the scatterer. J Quant Spectrosc Radiat Transfer 150:68–75

    Article  Google Scholar 

  • Vilaplana R, Moreno F, Molina A (2006) Study of the sensitivity of size-averaged scattering matrix elements of nonspherical particles to changes in shape, porosity and refractive index. J Quant Spectrosc Radiat Transfer 100:415–428

    Article  Google Scholar 

  • Wang Z, Zhang H, Jing X, Wei X (2013) Effect of non-spherical dust aerosol on its direct radiative forcing. Atmos Res 120–121:112–126

    Article  Google Scholar 

  • Whittet DCB (2003) Dust in the galactic environment. Institute of Physics Publishing, Bristol

    Google Scholar 

  • Worringen A, Ebert M, Trautmann T, Weinbruch S, Helas G (2008) Optical properties of internally mixed ammonium sulfate and soot particles—A study of individual aerosol particles and ambient aerosol populations. Appl Opt 47:3835–3845

    Article  Google Scholar 

  • Wriedt T, Wilkens J, Hellmers J (2010) Differentiating between sintered and non-sintered aggregates. In: Muinonen K, Penttilä A, Lindqvist H, Nousiainen T, Videen G (eds) Electromagnetic and Light Stattering XII. University of Helsinki, Helsinki, pp 322–325

    Google Scholar 

  • Wu Y, Cheng T, Zheng L, Chen H (2015a) Effect of morphology on the optical properties of soot aggregated with spheroidal monomers. J Quant Spectrosc Radiat Transfer

    Google Scholar 

  • Wu Y, Cheng T, Zheng L, Chen H (2015b) A study of optical properties of soot aggregates composed of poly-disperse monomers using the superposition T-matrix method. Aerosol Sci Technol 49:941–949

    Article  Google Scholar 

  • Wu Y, Cheng T, Zheng L, Chen H, Xu H (2015c) Single scattering properties of semi-embedded soot morphologies with intersecting and non-intersecting surfaces of absorbing spheres and non-absorbing host. J Quant Spectrosc Radiat Transfer 157:1–13

    Article  Google Scholar 

  • Xing Z, Hanner M (1997) Light scattering by aggregate particles. Astron Astrophys 324:805–820

    Google Scholar 

  • Xu Y, Gustafson BÅS (2001) A generalized multiparticle Mie solution: further experimental verification. J Quant Spectrosc Radiat Transfer 70:395–419

    Article  Google Scholar 

  • Yanamandra-Fisher P, Hanner M (1999) Optical properties of nonspherical particles of size comparable to the wavelength of light: application to comet dust. Icarus 139:388–389

    Article  Google Scholar 

  • Yurkin MA, Hoekstra AG (2011) The discrete-dipole-approximation code ADDA: capabilities and known limitations. J Quant Spectrosc Radiat Transfer 112:2234–2247

    Article  Google Scholar 

  • Zhang J, Feng Y, Moran MS, Lu JQ, Yang LV, Sa Y, Zhang N, Dong L, Hu X-H (2013) Analysis of cellular objects through diffraction images acquired by flow cytometry. Opt Express 21:2481924828

    Google Scholar 

  • Zhao Y, Ma L (2009) Assessment of two fractal scattering models for the prediction of the optical characteristics of soot aggregates. J Quant Spectrosc Radiat Transfer 110:315–322

    Article  Google Scholar 

  • Zolensky M, Zega T, Yano H, Wirick S, Westphal A, Weisberg M, Weber I, Warren J, Velbel M, Tsuchiyama A, Tsou P, Toppani A, Tomioka N, Tomeoka K, Teslich N, Taheri M, Susini J, Stroud R, Stephan T, Stadermann F, Snead C, Simon S, Simionovici A, See T, Robert F, Rietmeijer F, Rao W, Perronnet M, Papanastassiou D, Okudaira K, Ohsumi K, Ohnishi I, Nakamura-Messenger K, Nakamura T, Mostefaoui S, Mikouchi T, Meibom A, Matrajt G, Marcus M, Leroux H, Lemelle L, Le L, Lanzirotti A, Langenhorst F, Krot A, Keller L, Kearsley A, Joswiak D, Jacob D, Ishii H, Harvey R, Hagiya K, Grossman L, Grossman J, Graham G, Gounelle M, Gillet P, Genge M, Flynn G, Ferroir T, Fallon S, Ebel D, Rong Dai Z, Cordier P, Clark B, Chi M, Butterworth A, Brownlee D, Bridges J, Brennan S, Brearley A, Bradley J, Bleuet P, Bland P, Bastien R (2006) Mineralogy and petrology of comet 81P/Wild 2 nucleus samples. Science 314(5806):1735–1739

    Article  Google Scholar 

  • Zubko E, Furusho R, Kawabata K, Yamamoto T, Muinonen K, Videen G (2011) Interpretation of photo-polarimetric observations of comet 17P/Holmes. J Quant Spectrosc Radiat Transfer 112:1848–1863

    Article  Google Scholar 

  • Zubko E, Muinonen K, Muñoz O, Nousiainen T, Shkuratov Y, Sun W, Videen G (2013) Light scattering by feldspar particles: comparison of model agglomerate debris particles with laboratory samples. J Quant Spectrosc Radiat Transfer 131:175–187

    Article  Google Scholar 

  • Zubko E, Muinonen K, Videen G, Kiselev N (2014) Dust in comet C/1975 V1 (West). Mon Not R Astron Soc 440:2928–2943

    Article  Google Scholar 

Download references

Acknowledgements

We wish to thank Gi Jeong, Konrad Kandler, Osku Kemppinen, Hannakaisa Lindqvist and Olga Muñoz for their contributions to the figures and for helpful comments. M. Kahnert acknowledges funding by the Swedish Research Council (Vetenskapsrådet) under contract 621-2011-3346. T. Nousiainen acknowledges funding by the Academy of Finland and the Finnish Funding Agency for Technology and Innovation (TEKES). J. Markkanen was financed through ERC Advanced Grant No 320773 entitled “Scattering and Absorption of ElectroMagnetic waves in ParticuLate media” (SAEMPL).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Kahnert .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kahnert, M., Nousiainen, T., Markkanen, J. (2016). Morphological Models for Inhomogeneous Particles: Light Scattering by Aerosols, Cometary Dust, and Living Cells. In: Kokhanovsky, A. (eds) Light Scattering Reviews, Volume 11. Springer Praxis Books. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-49538-4_6

Download citation

Publish with us

Policies and ethics