Skip to main content

Peptides as Skin Penetration Enhancers for Low Molecular Weight Drugs and Macromolecules

  • Chapter
Percutaneous Penetration Enhancers Chemical Methods in Penetration Enhancement

Abstract

The skin is the largest organ in the human body and constitutes a potential site for local and systemic drug delivery. However, the impermeable nature of the outermost layer of the skin called stratum corneum (SC) ensures a stringent barrier for transport of hydrophilic molecules and macromolecules into and across the skin. Hence, only small (<500 Da) and lipophilic (Log Pā€‰=ā€‰1ā€“3) molecules can be passively delivered through the skin. In particular, it is challenging to deliver hydrophilic drugs and macromolecules, such as proteins and nucleic acids, into and across the skin. To address these limitations, several physical and chemical skin penetration enhancement techniques have been proposed. Recently, peptides have emerged as successful skin penetration enhancers for both small molecular weight drugs and macromolecules. These peptides are called skin penetration enhancement peptides (SPEPs). Currently, majority of the SPEPs have been discovered from already-established cell-penetrating peptides, pore-forming antimicrobial peptides, or by screening random peptide displayed phage libraries. In this chapter, we have discussed the discovery of various classes of SPEPs and their mechanism of skin permeation enhancement.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Banchereau J, Steinman RM (1998) Dendritic cells and the control of immunity. Nature 392(6673):245ā€“252

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Baoum A, Ovcharenko D et al (2012) Calcium condensed cell penetrating peptide complexes offer highly efficient, low toxicity gene silencing. Int J Pharm 427(1):134ā€“142

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Barry BW (2004) Breaching the skinā€™s barrier to drugs. Nat Biotechnol 22(2):165ā€“167

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Bechara C, Sagan S (2013) Cell-penetrating peptides: 20 years later, where do we stand? FEBS Lett 587(12):1693ā€“1702

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Campton K, Ding W et al (2000) Tumor antigen presentation by dermal antigen-presenting cells. J Invest Dermatol 115(1):57ā€“61

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Celluzzi CM, Falo LD Jr (1997) Epidermal dendritic cells induce potent antigen-specific CTL-mediated immunity. J Invest Dermatol 108(5):716ā€“720

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Chauhan A, Tikoo A et al (2007) The taming of the cell penetrating domain of the HIV Tat: myths and realities. J Control Release 117(2):148ā€“162

    ArticleĀ  PubMed CentralĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Chen Y, Shen Y et al (2006) Transdermal protein delivery by a coadministered peptide identified via phage display. Nat Biotechnol 24(4):455ā€“460

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Cohen-Avrahami M, Aserin A et al (2010) H-II mesophase and peptide cell-penetrating enhancers for improved transdermal delivery of sodium diclofenac. Colloids Surf B Biointerfaces 77(2):131ā€“138

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Cohen-Avrahami M, Libster D et al (2012) Penetratin-induced transdermal delivery from H-II mesophases of sodium diclofenac. J Control Release 159(3):419ā€“428

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Cornwell PA, Barry BW et al (1994) Wide-angle X-ray diffraction of human stratum corneum: effects of hydration and terpene enhancer treatment. J Pharm Pharmacol 46(12):938ā€“950

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Crombez L, Charnet A et al (2007) A non-covalent peptide-based strategy for siRNA delivery. Biochem Soc Trans 35(Pt 1):44ā€“46

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Desai P, Patlolla RR et al (2010) Interaction of nanoparticles and cell-penetrating peptides with skin for transdermal drug delivery. Mol Membr Biol 27(7):247ā€“259

    ArticleĀ  PubMed CentralĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Dick IP, Scott RC (1992) Pig ear skin as an in-vitro model for human skin permeability. J Pharm Pharmacol 44(8):640ā€“645

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Duerr DM, White SJ et al (2004) Identification of peptide sequences that induce the transport of phage across the gastrointestinal mucosal barrier. J Virol Methods 116(2):177

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Edwards DA, Prausnitz MR et al (1995) Analysis of enhanced transdermal transport by skin electroporation. J Control Release 34(3):211ā€“221

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Frankenburg S, Grinberg I et al (2007) Immunological activation following transcutaneous delivery of HR-gp100 protein. Vaccine 25(23):4564ā€“4570

    ArticleĀ  PubMed CentralĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Ghosh B, Reddy LH et al (2000) Comparison of skin permeability of drugs in mice and human cadaver skin. Indian J Exp Biol 38(1):42ā€“45

    CASĀ  PubMedĀ  Google ScholarĀ 

  • Gorouhi F, Maibach HI (2009) Role of topical peptides in preventing or treating aged skin. Int J Cosmet Sci 31(5):327ā€“345

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Guan CP, Zhou MN et al (2008) The skin: an indispensable barrier. Exp Dermatol 17(12):1059ā€“1062

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Hammond SA, Tsonis C et al (2000) Transcutaneous immunization of domestic animals: opportunities and challenges. Adv Drug Deliv Rev 43(1):45ā€“55

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Hancock RE (1997) Peptide antibiotics. Lancet 349(9049):418ā€“422

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Haq IU, Chaudhry WN et al (2012) Bacteriophages and their implications on future biotechnology: a review. Virol J 9:9

    ArticleĀ  PubMed CentralĀ  PubMedĀ  Google ScholarĀ 

  • Ho A, Schwarze SR et al (2001) Synthetic protein transduction domains: enhanced transduction potential in vitro and in vivo. Cancer Res 61(2):474ā€“477

    Google ScholarĀ 

  • Hou YW, Chan MH et al (2007) Transdermal delivery of proteins mediated by non-covalently associated arginine-rich intracellular delivery peptides. Exp Dermatol 16(12):999ā€“1006

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Hsu T, Mitragotri S (2011) Delivery of siRNA and other macromolecules into skin and cells using a peptide enhancer. Proc Natl Acad Sci U S A 108(38):15816ā€“15821

    ArticleĀ  PubMed CentralĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Itoh T, Celis E (2005) Transcutaneous immunization with cytotoxic T-cell peptide epitopes provides effective antitumor immunity in mice. J Immunother 28(5):430ā€“437

    ArticleĀ  PubMed CentralĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Jin LH, Bahn JH et al (2001) Transduction of human catalase mediated by an HIV-1 TAT protein basic domain and arginine-rich peptides into mammalian cells. Free Radic Biol Med 31(11):1509ā€“1519

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Jones AT, Sayers EJ (2012) Cell entry of cell penetrating peptides: tales of tails wagging dogs. J Control Release 161(2):582ā€“591

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Kanikkannan N, Kandimalla K et al (2000) Structure-activity relationship of chemical penetration enhancers in transdermal drug delivery. Curr Med Chem 7(6):593ā€“608

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Kaushik S, Krishnan A et al (2001) Magainin-mediated disruption of stratum corneum lipid vesicles. Pharm Res 18(6):894ā€“896

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Kim YC, Ludovice PJ et al (2007) Transdermal delivery enhanced by magainin pore-forming peptide. J Control Release 122(3):375ā€“383

    ArticleĀ  PubMed CentralĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Kim YC, Late S et al (2008a) Biochemical enhancement of transdermal delivery with magainin peptide: modification of electrostatic interactions by changing pH. Int J Pharm 362(1ā€“2):20ā€“28

    ArticleĀ  PubMed CentralĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Kim YC, Ludovice PJ et al (2008b) Optimization of transdermal delivery using magainin pore-forming peptide. J Phys Chem Solid 69(5ā€“6):1560ā€“1563

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Kim YC, Ludovice PJ et al (2010) Transdermal delivery enhanced by antimicrobial peptides. J Biomed Nanotechnol 6(5):612ā€“620

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Kumar S, Sahdev P et al (2012) Identification of a novel skin penetration enhancement Peptide by phage display Peptide library screening. Mol Pharm 9(5):1320ā€“1330

    CASĀ  PubMedĀ  Google ScholarĀ 

  • Langer R (2004) Transdermal drug delivery: past progress, current status, and future prospects. Adv Drug Deliv Rev 56(5):557ā€“558

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Lim JM, Chang MY et al (2003) Penetration enhancement in mouse skin and lipolysis in adipocytes by TAT-GKH, a new cosmetic ingredient. J Cosmet Sci 54(5):483ā€“491

    CASĀ  PubMedĀ  Google ScholarĀ 

  • Lin CM, Huang K et al (2012) A simple, noninvasive and efficient method for transdermal delivery of siRNA. Arch Dermatol Res 304(2):139ā€“144

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Lindberg S, Copolovici DM et al (2011) Therapeutic delivery opportunities, obstacles and applications for cell-penetrating peptides. Ther Deliv 2(1):71ā€“82

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Lohcharoenkal W, Manosaroi A et al (2011) Potent enhancement of GFP uptake into HT-29 cells and rat skin permeation by coincubation with tat peptide. J Pharm Sci 100(11):4766ā€“4773

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Lopes LB, Brophy CM et al (2005) Comparative study of the skin penetration of protein transduction domains and a conjugated peptide. Pharm Res 22(5):750ā€“757

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Lopes LB, Furnish E et al (2008) Enhanced skin penetration of P20 phosphopeptide using protein transduction domains. Eur J Pharm Biopharm 68(2):441ā€“445

    ArticleĀ  PubMed CentralĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Ma Y, Zhao H et al (2002) Topical treatment with growth factors for tympanic membrane perforations: progress towards clinical application. Acta Otolaryngol 122(6):586ā€“599

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Madani F, Lindberg S et al (2011) Mechanisms of cellular uptake of cell-penetrating peptides. J Biophys 2011:414729

    ArticleĀ  PubMed CentralĀ  PubMedĀ  Google ScholarĀ 

  • Matsuzaki K (1998) Magainins as paradigm for the mode of action of pore forming polypeptides. Biochimica Et Biophysica Acta (Reviews on Biomembranes) 1376(3):391ā€“400

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Matsuzaki K, Murase O et al (1994) Orientational and aggregational states of magainin 2 in phospholipid bilayers. Biochemistry 33(11):3342ā€“3349

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Matsuzaki K, Nakamura A et al (1997) Modulation of magainin 2-lipid bilayer interactions by peptide charge. Biochemistry 36(8):2104ā€“2111

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • McAllister DV, Allen MG et al (2000) Microfabricated microneedles for gene and drug delivery. Annu Rev Biomed Eng 2:289ā€“313

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Mitragotri S, Farrell J et al (2000) Determination of threshold energy dose for ultrasound-induced transdermal drug transport. J Control Release 63(1ā€“2):41ā€“52

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Morris MC, Vidal P et al (1997) A new peptide vector for efficient delivery of oligonucleotides into mammalian cells. Nucleic Acids Res 25(14):2730ā€“2736

    ArticleĀ  PubMed CentralĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Morris MC, Depollier J et al (2001) A peptide carrier for the delivery of biologically active proteins into mammalian cells. Nat Biotechnol 19(12):1173ā€“1176

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Morris MC, Gros E et al (2007) A non-covalent peptide-based carrier for in vivo delivery of DNA mimics. Nucleic Acids Res 35(7), e49

    Google ScholarĀ 

  • Nakase I, Akita H et al (2012) Efficient intracellular delivery of nucleic acid pharmaceuticals using cell-penetrating peptides. Acc Chem Res 45(7):1132ā€“1139

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Nanda A, Nanda S et al (2006) Current developments using emerging transdermal technologies in physical enhancement methods. Curr Drug Deliv 3(3):233ā€“242

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Narishetty STK, Panchagnula R (2004) Transdermal delivery of zidovudine: effect of terpenes and their mechanism of action. J Control Release 95(3):367ā€“379

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Narishetty STK, Panchagnula R (2005) Effect of L-menthol and 1,8-cineole on phase behavior and molecular organization of SC lipids and skin permeation of zidovudine. J Control Release 102(1):59ā€“70

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Oliver JD 3rd, Anderson S et al (1992) Determination of glomerular size-selectivity in the normal rat with Ficoll. J Am Soc Nephrol 3(2):214ā€“228

    CASĀ  PubMedĀ  Google ScholarĀ 

  • Partidos CD, Beignon AS et al (2002) Applying peptide antigens onto bare skin: induction of humoral and cellular immune responses and potential for vaccination. J Control Release 85(1ā€“3):27ā€“34

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Partidos CD, Beignon AS et al (2003) Immunity under the skin: potential application for topical delivery of vaccines. Vaccine 21(7ā€“8):776ā€“780

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Patel LN, Zaro JL et al (2007) Cell penetrating peptides: intracellular pathways and pharmaceutical perspectives. Pharm Res 24(11):1977ā€“1992

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Patlolla RR, Desai PR et al (2010) Translocation of cell penetrating peptide engrafted nanoparticles across skin layers. Biomaterials 31(21):5598ā€“5607

    ArticleĀ  PubMed CentralĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Pople PV, Singh KK (2010) Targeting tacrolimus to deeper layers of skin with improved safety for treatment of atopic dermatitis. Int J Pharm 398(1ā€“2):165ā€“178

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Powers JPS, Hancock REW (2003) The relationship between peptide structure and antibacterial activity. Peptides 24(11):1681ā€“1691

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Prausnitz MR (2006) A peptide chaperone for transdermal drug delivery. Nat Biotechnol 24(4):416ā€“417

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Prausnitz MR, Noonan JS (1998) Permeability of cornea, sclera, and conjunctiva: a literature analysis for drug delivery to the eye. J Pharm Sci 87(12):1479ā€“1488

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Prausnitz MR, Mitragotri S et al (2004) Current status and future potential of transdermal drug delivery. Nat Rev Drug Discov 3(2):115ā€“124

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Priborsky J, Muhlbachova E (1990) Evaluation of in-vitro percutaneous absorption across human skin and in animal models. J Pharm Pharmacol 42(7):468ā€“472

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Rizwan M, Aqil M et al (2009) Enhanced transdermal drug delivery techniques: an extensive review of patents. Recent Pat Drug Deliv Formul 3(2):105ā€“124

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Rothbard JB, Garlington S et al (2000) Conjugation of arginine oligomers to cyclosporin A facilitates topical delivery and inhibition of inflammation. Nat Med 6(11):1253ā€“1257

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Scheindlin S (2004) Transdermal drug delivery: PAST, PRESENT, FUTURE. Mol Interv 4(6):308ā€“312

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  • Schutze-Redelmeier MP, Kong S et al (2004) Antennapedia transduction sequence promotes anti tumour immunity to epicutaneously administered CTL epitopes. Vaccine 22(15ā€“16):1985ā€“1991

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Seo N, Tokura Y et al (2000) Percutaneous peptide immunization via corneum barrier-disrupted murine skin for experimental tumor immunoprophylaxis. Proc Natl Acad Sci U S A 97(1):371ā€“376

    ArticleĀ  PubMed CentralĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Shah PP, Desai PR et al (2012) Enhanced skin permeation using polyarginine modified nanostructured lipid carriers. J Control Release 161(3):735ā€“745

    ArticleĀ  PubMed CentralĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Simeoni F, Morris MC et al (2003) Insight into the mechanism of the peptide-based gene delivery system MPG: implications for delivery of siRNA into mammalian cells. Nucleic Acids Res 31(11):2717ā€“2724

    ArticleĀ  PubMed CentralĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Simeoni F, Morris MC et al (2005) Peptide-based strategy for siRNA delivery into mammalian cells. Methods Mol Biol 309:251ā€“260

    CASĀ  PubMedĀ  Google ScholarĀ 

  • Souto EB, Muller RH (2008) Cosmetic features and applications of lipid nanoparticles (SLN, NLC). Int J Cosmet Sci 30(3):157ā€“165

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Splith K, Neundorf I (2011) Antimicrobial peptides with cell-penetrating peptide properties and vice versa. Eur Biophys J 40(4):387ā€“397

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Sundaram H, Mehta RC et al (2009) Topically applied physiologically balanced growth factors: a new paradigm of skin rejuvenation. J Drugs Dermatol 8(5 Suppl Skin Rejuenation):4ā€“13

    Google ScholarĀ 

  • Teeranachaideekul V, Boonme P et al (2008) Influence of oil content on physicochemical properties and skin distribution of Nile red-loaded NLC. J Control Release 128(2):134ā€“141

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Uchida T, Kanazawa T et al (2011) Development of an efficient transdermal delivery system of small interfering RNA using functional peptides, Tat and AT-1002. Chem Pharm Bull 59(2):196ā€“201

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  • Wan XM, Chen YP et al (2009) Identification of nose-to-brain homing peptide through phage display. Peptides 30(2):343ā€“350

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Wang YH, Chen CP et al (2006) Arginine-rich intracellular delivery peptides noncovalently transport protein into living cells. Biochem Biophys Res Commun 346(3):758ā€“767

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Zaffaroni A (1991) Overview and evolution of therapeutic systems. Ann N Y Acad Sci 618:405ā€“421

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Zasloff M (1987) Magainins, a class of antimicrobial peptides from Xenopus skin: isolation, characterization of two active forms, and partial cDNA sequence of a precursor. Proc Natl Acad Sci U S A 84(15):5449ā€“5453

    ArticleĀ  PubMed CentralĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Zhang T, Qu H et al (2010) Transmembrane delivery and biological effect of human growth hormone via a phage displayed peptide in vivo and in vitro. J Pharm Sci 99(12):4880ā€“4891

    Google ScholarĀ 

  • Zhao B, Guo Y et al (2012) Genetically engineered epidermal growth factor conjugate crosses cell membrane. Appl Biochem Biotechnol 166(6):1463ā€“1471

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hemachand Tummala .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kumar, S., Narishetty, S.T., Tummala, H. (2015). Peptides as Skin Penetration Enhancers for Low Molecular Weight Drugs and Macromolecules. In: Dragicevic, N., Maibach, H. (eds) Percutaneous Penetration Enhancers Chemical Methods in Penetration Enhancement. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-47039-8_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-47039-8_21

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-47038-1

  • Online ISBN: 978-3-662-47039-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics