Skip to main content

Advertisement

Log in

Comparative Study of the Skin Penetration of Protein Transduction Domains and a Conjugated Peptide

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose.

We examined the ability of a protein transduction domain (PTD), YARA, to penetrate in the skin and carry a conjugated peptide, P20. The results with YARA were compared to those of a well-known PTD (TAT) and a control, nontransducing peptide (YKAc). The combined action of PTDs and lipid penetration enhancers was also tested.

Methods.

YARA, TAT, YKAc, P20, YARA-P20, and TAT-P20 were synthesized by Fmoc chemistry. Porcine ear skin mounted in a Franz diffusion cell was used to assess the topical and transdermal delivery of fluorescently tagged peptides in the presence or absence of lipid penetration enhancers (monoolein or oleic acid). The peptide concentrations in the skin (topical delivery) and receptor phase (transdermal delivery) were assessed by spectrofluorimetry. Fluorescence microscopy was used to visualize the peptides in different skin layers.

Results.

YARA and TAT, but not YKAc, penetrated abundantly in the skin and permeated modestly across this tissue. Monoolein and oleic acid did not enhance the topical and transdermal delivery of TAT or YARA but increased the topical delivery of YKAc. Importantly, YARA and TAT carried a conjugated peptide, P20, into the skin, but the transdermal delivery was very small. Fluorescence microscopy confirmed that free and conjugated PTDs reached viable layers of the skin.

Conclusions.

YARA and TAT penetrate in the porcine ear skin in vitro and carry a conjugated model peptide, P20, with them. Thus, the use of PTDs can be a useful strategy to increase topical delivery of peptides for treatment of cutaneous diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. 1. M. R. Prausnitz, S. Mitragotri, and R. Langer. Current status and future potential of transdermal drug delivery. Nat. Rev. Drug Discov. 3:115–124 (2004).

    Article  CAS  PubMed  Google Scholar 

  2. 2. K. C. Madison. Barrier function of the skin: “La Raison d’etre” of the epidermis. J. Invest. Dermatol. 121:231–241 (2003).

    Article  CAS  PubMed  Google Scholar 

  3. 3. B. Barry. Breaching the skin’s barrier to drugs. Nat. Biotechnol. 22:165–167 (2004).

    Article  CAS  PubMed  Google Scholar 

  4. 4. P. Karande, A. Jain, and S. Mitragotri. Discovery of transdermal penetration enhancers by high-throughput screening. Nat. Biotechnol. 22:192–197 (2004).

    Article  CAS  PubMed  Google Scholar 

  5. 5. G. Cevc, A. Schatzlein, and G. Blume. Transdermal drug carriers: basic properties, optimizations and transfer efficiency in the case of epicutaneously applied peptides. J. Control. Rel. 36:3–16 (1995).

    Article  CAS  Google Scholar 

  6. 6. B. Godin and E. Touitou. Mechanism of bacitracin permeation enhancement through the skin and cellular membranes from an ethosomal carrier. J. Control. Rel. 94:365–379 (2004).

    Article  CAS  Google Scholar 

  7. 7. O. Pillai, V. Nair, and R. Panchagnula. Transdermal iontophoresis of insulin: IV. Influence of chemical enhancers. Int. J. Pharm. 269:109–120 (2004).

    Article  CAS  PubMed  Google Scholar 

  8. 8. Y. N. Kalia, A. Naik, J. Garrison, and R. H. Guy. Iontophoretic drug delivery. Adv. Drug Deliv. Rev. 56:619–658 (2004).

    Article  CAS  PubMed  Google Scholar 

  9. 9. S. Mitragotri. Synergistic effect of enhancers for transdermal drug delivery. Pharm. Res. 17:1354–1359 (2000).

    CAS  PubMed  Google Scholar 

  10. 10. H. D. C. Smyth, G. Becket, and S. Mehta. Effect of permeation enhancer pretreatment on the iontophoresis of luteinizing hormone releasing hormone (LHRH) through human epidermal membrane (HEM). J. Pharm. Sci. 9:11296–11307 (2002).

    Google Scholar 

  11. 11. R. R. Boinpally, S. L. Zhou, G. Devraj, P. K. Anne, S. Poondru, and B. R. Jasti. Iontophoresis of lecithin vesicles of clyclosporin A. Int. J. Pharm. 274:185–190 (2004).

    CAS  PubMed  Google Scholar 

  12. 12. M. Lindgren, M. Hallbrink, A. Prochiantz, and U. Langel. Cell-penetrating peptides. Trends Pharmacol. Sci. 21:99–103 (2000).

    CAS  PubMed  Google Scholar 

  13. 13. S. R. Schwarze and S. F. Dowdy. In vivo protein transduction: intracellular delivery of biologically active proteins, compounds and DNA. Trends Pharmacol. Sci. 21:45–48 (2000).

    CAS  PubMed  Google Scholar 

  14. 14. M. Lundberg, S. Wikstrom, and M. Johansson. Cell surface adherence and endocytosis of protein transduction domains. Mol. Ther. 8:143–150 (2003).

    CAS  PubMed  Google Scholar 

  15. 15. E. L. Snyder and S. F. Dowdy. Cell penetrating peptides in drug delivery. Pharm. Res. 21:389–393 (2004).

    CAS  PubMed  Google Scholar 

  16. 16. J. Zaro and W. C. Shen. Quantitative comparison of membrane transduction and endocytosis of oligopeptides. Biochem. Biophys. Res. Commun. 307:241–247 (2003).

    CAS  PubMed  Google Scholar 

  17. 17. S. R. Schwarze, A. Ho, A. Vocero Akbani, and S. F. Dowdy. In vivo protein transduction: delivery of a biologically active protein into the mouse. Science 285:1569–1572 (1999).

    CAS  PubMed  Google Scholar 

  18. 18. C. R. Flynn, P. Komalavilas, D. Trssier, J. Thresher, E. E. Niederkofler, C. M. Dreiza, R. W. Nelson, A. Panitch, L. Joshi, and C. M. Brophy. Transduction of biologically active motifs of the small heat shock related protein HSP20 leads to relaxation of vascular smooth muscle. FASEB J. 17:1358–1360 (2003).

    CAS  PubMed  Google Scholar 

  19. 19. V. P. Torchilin and T. S. Levchenko. TAT-liposomes: a novel intracellular drug carrier. Curr. Prot. Pept. Sci 4:133–140 (2003).

    CAS  Google Scholar 

  20. 20. S. Console, C. Marty, C. García-Escheverría, R. Schwendener, and K. Ballmer-Hefer. Antennapedia and HIV transactivator (TAT) “protein transaction domains” promote endocytosis of high molecular weight cargo upon binding to cell surface glycosaminoglycans. J. Biol. Chem. 278:35109–35114 (2003).

    CAS  PubMed  Google Scholar 

  21. 21. D. Derossi, S. Calvet, A. Trembleau, A. Brunissen, G. Chassaing, and A. Prochiantz. Cell internalization of the third helix of Antennapedia homeodomain is receptor-independent. J. Biol. Chem. 271:18188–18193 (1996).

    CAS  PubMed  Google Scholar 

  22. 22. E. Vives, P. Brodin, and B. Lebleu. A truncated HIV-1 Tat protein basic domain rapidly translocates through the plasma membrane and accumulates in the cell nucleus. J. Biol. Chem. 272:16010–16017 (1997).

    CAS  PubMed  Google Scholar 

  23. 23. J. P. Richard, K. Melikov, E. Vives, C. Ramos, B. Verbeure, M. J. Gait, L. V. Chernomordik, and B. Lebleu. Cell penetrating peptides: a reevaluation of the mechanism of cellular uptake. J. Biol. Chem. 278:585–590 (2003).

    CAS  PubMed  Google Scholar 

  24. 24. P. E. G. Thoren, D. Persson, P. Isakson, M. Goksor, A. Onfelt, and B. Norden. Uptake of analogs of penetratin, TAT (48–60) and oligoarginine in live cells. Biochem. Biophys. Res. Commun. 307:100–107 (2003).

    CAS  PubMed  Google Scholar 

  25. 25. J. B. Rothbard, S. Garlington, Q. Lin, T. Kirschberg, E. Kreider, P. L. Mcgrane, P. A. Wender, and P. A. Khavari. Conjugation of arginine oligomers to cyclosporin A facilitates topical delivery and inhibition of inflammation. Nat. Med. 6:1253–1257 (2000).

    CAS  PubMed  Google Scholar 

  26. 26. J. M. Lim, M. Y. Chang, S. G. Park, N. G. Kang, Y. S. Song, Y. H. Lee, Y. C. Yoo, W. G. Cho, S. Y. Choi, and S. H. Kang. Penetration enhancement in mouse skin and lipolysis in adipocytes by TAT-GKH, a new cosmetic ingredient. J. Cosmet. Sci. 54:483–491 (2003).

    CAS  PubMed  Google Scholar 

  27. 27. M. P. M. Schutze-Redelmeier, S. Kong, M. B. Bally, and J. P. Dutz. Antennapedia transduction sequence promotes anti tumor immunity to epicutaneously administered CTL epitopes. Vaccine 22:1985–1991 (2004).

    CAS  PubMed  Google Scholar 

  28. 28. A. Ho, S. R. Schwarze, S. J. Mermelstein, G. Waksman, and S. Dowdy. Synthetic protein transduction domains: enhanced transduction potential in vitro and in vivo. Cancer Res. 61:474–477 (2001).

    CAS  PubMed  Google Scholar 

  29. 29. D. J. Tessier, P. Komalavilas, B. Liu, C. K. Kent, J. S. Thresher, C. M. Dreiza, A. Panitch, L. Joshi, E. Furnish, W. Stone, R. Fowl, and C. M. Brophy. Transduction of peptides analogs of the small heat shock-related protein HSP20 inhibits intimal hyperplasia. J. Vasc. Surg. 40:106–114 (2004).

    PubMed  Google Scholar 

  30. 30. D. J. Tessier, P. Komalavilas, E. McLemore, J. Thresher, and C. M. Brophy. Sildenafil-induced vasorelaxation is associated with increases in the phosphorylation of the heat shock-related protein 20 (HSP20). J. Surg. Res. 118:21–25 (2004).

    CAS  PubMed  Google Scholar 

  31. 31. M. Foldvari and M. E. Baca-Estrada. Z., He, J. Hu, S. Attah-Poku, M. King. Dermal and transdermal delivery of protein pharmaceuticals: lipid-based delivery systems for interferon-α. Biotechnol. Appl. Biochem. 30:129–137 (1999).

    CAS  PubMed  Google Scholar 

  32. 32. J. D. Bos and M. M. H. M. Meinardi. The 500 Dalton rule for the skin penetration of chemical compounds and drugs. Exp. Dermatol. 9:165–169 (2000).

    CAS  PubMed  Google Scholar 

  33. 33. K. Moser, K. Kriwet, A. Naik, Y. N. Kalia, and R. H. Guy. Passive skin penetration enhancement and its quantification in vitro. Eur. J. Pharm. Bipharm 52:103–112 (2001).

    CAS  Google Scholar 

  34. 34. R. F. V. Lopez, M. V. L. B. Bentley, M. B. Delgado-Charro, and R. H. Guy. Iontophoretic delivery of 5- aminolevulinic acid (ALA): effect of pH. Pharm. Res. 18:311–315 (2001).

    CAS  PubMed  Google Scholar 

  35. 35. R. Alvarez-Román, A. Naik, Y. N. Kalia, H. Fessi, and R. H. Guy. Visualization of skin penetration using confocal laser scanning microscopy. Eur. J. Pharm. Biopharm. 58:301–316 (2004).

    PubMed  Google Scholar 

  36. 36. A. C. Williams and B. W. Barry. Penetration enhancers. Adv. Drug Deliv. Rev. 56:603–618 (2004).

    CAS  PubMed  Google Scholar 

  37. 37. T. Ogiso, M. Ywaki, and T. Paku. Effect of various enhancers on transdermal penetration of indomethacin and urea and relationship between penetration parameters and enhancement factors. J. Pharm. Sci. 84:482–488 (1995).

    CAS  PubMed  Google Scholar 

  38. 38. M. G. Carr, J. Corish, and O. I. Corrigan. Drug delivery from a liquid crystalline base across Visking and human stratum corneum. Int. J. Pharm. 157:35–42 (1997).

    CAS  Google Scholar 

  39. 39. P. B. Robbins, S. F. Oliver, S. M. Sheu, P. Goodnough, P. Wender, and P. A. Khavari. Peptide delivery to tissues via reversibly linked protein transduction sequences. Biotechiques 33:190–194 (2002).

    CAS  Google Scholar 

  40. 40. J. Park, J. Ryu, L. H. Jin, J. H. Bahn, J. A. Kim, C. S. Yoon, D. W. Kim, K. H. Han, W. S. Eum, H. Y. Kwon, T. C. Kang, M. H. Won, J. H. Kang, S. W. Cho, and S. Y. Choi. 9-Polylysine protein transduction domain: enhanced penetration efficiency of superoxide dismutase into mammalian cells and skin. Mol. Cells 13:202–208 (2002).

    PubMed  Google Scholar 

  41. 41. V. H. L. Lee. Enzymatic barriers to peptide and protein absorption. Crit. Rev. Ther. Drug Carrier Syst. 5:69–97 (1988).

    CAS  PubMed  Google Scholar 

  42. 42. N. G. Turner, L. Ferry, M. Price, C. Cullander, and R. H. Guy. Iontophoresis of L-poly-lysines: the role of molecular weight? Pharm. Res. 14:1322–1331 (1997).

    CAS  PubMed  Google Scholar 

  43. 43. L. J. Weimann. J. Wu. Transdermal delivery of L-poly-lysine by sonomacroporation. Ultasound Med. Biol 28:1173–1180 (2002).

    Google Scholar 

  44. 44. J. Y. Fang, W. R. Lee, S. C. Shen, H. Y. Wang, C. L. Fang, and C. H. Hu. Transdermal delivery of macromolecules by erbium: YAG laser. J. Control. Rel. 100:75–85 (2004).

    CAS  Google Scholar 

  45. 45. P. J. White, R. D. Fogarty, I. J. Liepe, P. M. Delaney, G. A. Werther, and C. J. Wraight. Live confocal microscopy of oligonucleotide uptake by keratinocytes in human skin grafts on nude mice. J. Invest. Dermatol. 112:887–892 (1999).

    CAS  PubMed  Google Scholar 

  46. 46. T. F. Zioncheck, S. A. Chen, L. Richardson, M. Mora-Worms, C. Lucas, D. Lewis, J. D. Green, and J. Mordenti. Pharmacokinetics and tissue distribution of recombinant human transforming growth factor beta 1 after topical and intravenous administration in male rats. Pharm. Res. 11:213–220 (1994).

    CAS  PubMed  Google Scholar 

  47. 47. S. Frank, B. Stallmeyer, H. Kampfer, and N. Kolbe. J. Pfeilschifter. Leptin enhanes wound re-epithelization and constitutes a direct function of leptin in skin repair. J. Clin. Invest. 106:501–509 (2000).

    CAS  PubMed  Google Scholar 

  48. 48. K. Lintner and O. Peschard. Biologically active peptides: from a laboratory bench curiosity to function skin care product. Int. J. Cosmet. Sci. 22:207–218 (2000).

    CAS  Google Scholar 

  49. 49. C.D. Partidos, A.S. Beignon, F. Mawas, G. Belliard, J.P. Briand, and S. Muller. Immunity under the skin: potential application for topical delivery of vaccines. Vaccine 21:776–780 (2003).

    CAS  PubMed  Google Scholar 

  50. 50. H. Schaefer and T. E. Redelmeier. Skin Barrier. Principles of Percutaneous Absorption. Kaerger, Basel, 1996.

    Google Scholar 

  51. 51. P. E. Thoren, D. Persson, E. K. Esbjorner, M. Goksor, P. Lincoln, and B. Norden. Membrane binding and translocation of cell penetrating peptides. Biochemistry 43:3471–3489 (2004).

    CAS  PubMed  Google Scholar 

  52. 52. K. Ohtake, T. Maeno, H. Ueda, H. Natsume, and Y. Morimoto. Poly-L-arginine predominantly increases the paracelullar permeability of hydrophilic macromolecules across rabbit nasal epithelium in vitro. Pharm. Res. 20:153–160 (2003).

    CAS  PubMed  Google Scholar 

  53. 53. K. Ohtake, T. Maeno, H. Ueda, M. Ogihara, A. Natsume, and Y. Morimoto. Poly-L-arginine enhances paracellular permeability via serine/threonine phosphorylation of ZO-1 and tyrosine dephosphorilation of occludin in rabbit nasal epithelium. Pharm. Res. 20:1838–1845 (2003).

    CAS  PubMed  Google Scholar 

  54. 54. K. Morita and Y. Myachi. Tight junctions in the skin. J. Dermatol. Sci. 31:81–89 (2003).

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Colleen M. Brophy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lopes, L., Brophy, C., Furnish, E. et al. Comparative Study of the Skin Penetration of Protein Transduction Domains and a Conjugated Peptide. Pharm Res 22, 750–757 (2005). https://doi.org/10.1007/s11095-005-2591-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-005-2591-x

Key Words:

Navigation