Skip to main content

Quantum Field Theory on Curved Spacetime and the Standard Cosmological Model

  • Chapter
The Message of Quantum Science

Part of the book series: Lecture Notes in Physics ((LNP,volume 899))

Abstract

The aim of this review is to outline a full route from the fundamental principles of algebraic quantum field theory on curved spacetime in its present-day form to explicit phenomenological applications which allow for comparison with experimental data. We give a brief account on the quantization of the free scalar field and its Wick powers in terms of an algebra of functionals on configuration space. Afterwards we demonstrate that there exist states on this algebra in which the energy momentum tensor is qualitatively and quantitatively of the perfect fluid form assumed in the standard model of cosmology up to small corrections. We indicate the potential relevance of one of these corrections for the actively debated phenomenon of Dark Radiation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ade, P.A.R., et al. [Planck Collaboration]: Planck 2013 results. XVI. Cosmological parameters (2013) [arXiv:1303.5076 [astro-ph.CO]]

    Google Scholar 

  2. Anderson, P.: Effects of quantum fields on singularities and particle horizons in the early universe. Phys. Rev. D 28, 271 (1983)

    Article  ADS  MathSciNet  Google Scholar 

  3. Benini, M., Dappiaggi, C., Hack, T.-P.: Quantum field theory on curved backgrounds—a primer (2013) [arXiv:1306.0527 [gr-qc]]

    Google Scholar 

  4. Bianchi, E., Rovelli, C.: Why all these prejudices against a constant? (2010) [arXiv:1002.3966 [astro-ph.CO]]

    Google Scholar 

  5. Brunetti, R., Fredenhagen, K.: Microlocal analysis and interacting quantum field theories: renormalization on physical backgrounds. Commun. Math. Phys. 208, 623 (2000) [arXiv:math-ph/9903028]

    Article  ADS  MATH  MathSciNet  Google Scholar 

  6. Brunetti, R., Fredenhagen, K., Kohler, M.: The microlocal spectrum condition and wick polynomials of free fields on curved space-times. Commun. Math. Phys. 180, 633 (1996) [arXiv:gr-qc/9510056]

    Article  ADS  MATH  MathSciNet  Google Scholar 

  7. Brunetti, R., Fredenhagen, K., Rejzner, K.: Quantum gravity from the point of view of locally covariant quantum field theory (2013) [arXiv:1306.1058 [math-ph]]

    Google Scholar 

  8. Brunetti, R., Fredenhagen, K., Verch, R.: The generally covariant locality principle: a new paradigm for local quantum field theory. Commun. Math. Phys. 237, 31 (2003) [arXiv:math-ph/0112041]

    Article  ADS  MATH  MathSciNet  Google Scholar 

  9. Calmet, X., Hsu, S.D.H., Reeb, D.: Quantum gravity at a TeV and the renormalization of Newton’s constant. Phys. Rev. D 77, 125015 (2008) [arXiv:0803.1836 [hep-th]]

    Google Scholar 

  10. Dappiaggi, C., Hack, T.-P., Pinamonti, N.: The extended algebra of observables for Dirac fields and the trace anomaly of their stress-energy tensor. Rev. Math. Phys. 21, 1241 (2009) [arXiv:0904.0612 [math-ph]]

    Google Scholar 

  11. Dappiaggi, C., Hack, T.-P., Pinamonti, N.: Approximate KMS states for scalar and spinor fields in Friedmann-Robertson-Walker spacetimes. Ann. Henri Poincare 12, 1449 (2011) [arXiv:1009.5179 [gr-qc]]

    Google Scholar 

  12. Degner, A.: Properties of States of Low Energy on Cosmological Spacetimes. Ph.D. thesis, University of Hamburg (2013). http://www.desy.de/uni-th/theses/Diss_Degner.pdf

  13. Dimock, J.: Algebras of local observables on a manifold. Commun. Math. Phys. 77, 219 (1980)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  14. Eltzner, B., Gottschalk, H.: Dynamical backreaction in Robertson-Walker spacetime. Rev. Math. Phys. 23, 531 (2011) [arXiv:1003.3630 [math-ph]]

    Google Scholar 

  15. Flanagan, E.E., Wald, R.M.: Does backreaction enforce the averaged null energy condition in semiclassical gravity? Phys. Rev. D 54, 6233 (1996) [arXiv:gr-qc/9602052]

    Article  ADS  MathSciNet  Google Scholar 

  16. Fredenhagen, K., Rejzner, K.: Batalin-Vilkovisky formalism in perturbative algebraic quantum field theory. Commun. Math. Phys. 317, 697 (2013) [arXiv:1110.5232 [math-ph]]

    Google Scholar 

  17. Haag, R.: Local Quantum Physics: Fields, Particles, Algebras. Texts and Monographs in Physics, 356 p. Springer, Berlin (1992)

    Google Scholar 

  18. Hack, T.-P.: The Lambda CDM-model in quantum field theory on curved spacetime and dark radiation (2013) [arXiv:1306.3074 [gr-qc]]

    Google Scholar 

  19. Hack, T.-P., Moretti, V.: On the stress-energy tensor of quantum fields in curved spacetimes—comparison of different regularization schemes and symmetry of the Hadamard/Seeley-DeWitt coefficients. J. Phys. A 45, 374019 (2012) [arXiv:1202.5107 [gr-qc]]

    Google Scholar 

  20. Hänsel, M.: Stability of the Semiclassical Einstein Equations in FRW Spacetime. Master thesis, Universität Leipzig (2011)

    Google Scholar 

  21. Holland, J., Hollands, S.: A small cosmological constant due to non-perturbative quantum effects (2013) [arXiv:1305.5191 [gr-qc]]

    Google Scholar 

  22. Hollands, S., Wald, R.M.: Local Wick polynomials and time ordered products of quantum fields in curved space-time. Commun. Math. Phys. 223, 289 (2001) [arXiv:gr-qc/0103074]

    Article  ADS  MATH  MathSciNet  Google Scholar 

  23. Hollands, S., Wald, R.M.: Existence of local covariant time ordered products of quantum fields in curved space-time. Commun. Math. Phys. 231, 309 (2002) [arXiv:gr-qc/0111108]

    Article  ADS  MATH  MathSciNet  Google Scholar 

  24. Hollands, S., Wald, R.M.: Conservation of the stress tensor in interacting quantum field theory in curved spacetimes. Rev. Math. Phys. 17, 227 (2005) [arXiv:gr-qc/0404074]

    Article  MATH  MathSciNet  Google Scholar 

  25. Hörmander, L.: The Analysis of Linear Partial Differential Operators I–IV. Springer, Berlin (1983)

    Google Scholar 

  26. Junker, W., Schrohe, E.: Adiabatic vacuum states on general spacetime manifolds: definition, construction, and physical properties. Ann. Poincare Phys. Theor. 3, 1113 (2002) [arXiv:math-ph/0109010]

    Article  MATH  MathSciNet  Google Scholar 

  27. Kaneda, S., Ketov, S.V., Watanabe, N.: Fourth-order gravity as the inflationary model revisited. Mod. Phys. Lett. A 25, 2753 (2010) [arXiv:1001.5118 [hep-th]]

    Google Scholar 

  28. Kapner, D.J., Cook, T.S., Adelberger, E.G., Gundlach, J.H., Heckel, B.R., Hoyle, C.D., Swanson, H.E.: Tests of the gravitational inverse-square law below the dark-energy length scale. Phys. Rev. Lett. 98, 021101 (2007) [arXiv:hep-ph/0611184]

    Article  ADS  Google Scholar 

  29. Kay, B.S.: Generally covariant perturbation theory: linear spin 0 quantum fields in external gravitational and scalar fields 2. Commun. Math. Phys. 71, 29 (1980)

    Article  ADS  MathSciNet  Google Scholar 

  30. Kay, B.S., Wald, R.M.: Theorems on the uniqueness and thermal properties of stationary, nonsingular, quasifree states on space-times with a Bifurcate Killing Horizon. Phys. Rep. 207, 49 (1991)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  31. Koksma, J.F.: Dynamics driven by the trace anomaly in FLRW universes (2009) [arXiv:0911.2997 [gr-qc]]

    Google Scholar 

  32. Kolb, E.W., Turner, M.S.: The early universe. Front. Phys. 69, 1 (1990)

    ADS  MathSciNet  Google Scholar 

  33. Küskü, M.: A class of almost equilibrium states in Robertson-Walker spacetimes. DESY-THESIS-2008-020 (2009) [arXiv:0901.1440[hep-th]]

    Google Scholar 

  34. Lüders, C., Roberts, J.E.: Local quasiequivalence and adiabatic vacuum states. Commun. Math. Phys. 134, 29–63 (1990)

    Article  ADS  MATH  Google Scholar 

  35. Moretti, V.: Comments on the stress-energy tensor operator in curved spacetime. Commun. Math. Phys. 232, 189 (2003) [arXiv:gr-qc/0109048]

    Article  ADS  MATH  MathSciNet  Google Scholar 

  36. Olbermann, H.: States of low energy on Robertson-Walker spacetimes. Class. Quant. Grav. 24, 5011 (2007) [arXiv:0704.2986 [gr-qc]]

    Google Scholar 

  37. Olver, F.W.J.: Asymptotics and Special Functions. Academic, New York/London (1974)

    Google Scholar 

  38. Parker, L.: Quantized fields and particle creation in expanding universes 1. Phys. Rev. 183, 1057 (1969)

    Article  ADS  MATH  Google Scholar 

  39. Parker, L., Simon, J.Z.: Einstein equation with quantum corrections reduced to second order. Phys. Rev. D 47, 1339 (1993) [arXiv:gr-qc/9211002]

    Article  ADS  MathSciNet  Google Scholar 

  40. Pinamonti, N.: On the initial conditions and solutions of the semiclassical Einstein equations in a cosmological scenario. Commun. Math. Phys. 305, 563 (2011) [arXiv:1001.0864 [gr-qc]]

    Google Scholar 

  41. Radzikowski, M.J.: Micro-local approach to the Hadamard condition in quantum field theory on curved space-time. Commun. Math. Phys. 179, 529 (1996)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  42. Radzikowski, M.J.: A local to global singularity theorem for quantum field theory on curved space-time. Commun. Math. Phys. 180, 1 (1996)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  43. Schlemmer, J.: Ph.D. thesis, Universität Leipzig (2010)

    Google Scholar 

  44. Sola, J.: Cosmological constant and vacuum energy: old and new ideas (2013) [arXiv:1306.1527 [gr-qc]]

    Google Scholar 

  45. Solveen, C.: Local thermal equilibrium and KMS states in curved spacetime. Class. Quant. Grav. 29, 245015 (2012) [arXiv:1211.0431 [gr-qc]]

    Google Scholar 

  46. Starobinsky, A.A.: A new type of isotropic cosmological models without singularity. Phys. Lett. B91, 99 (1980)

    Article  ADS  Google Scholar 

  47. Starobinsky, A.A.: The perturbation spectrum evolving from a nonsingular initially De-Sitte r cosmology and the microwave background anisotropy. Sov. Astron. Lett. 9, 302 (1983)

    ADS  Google Scholar 

  48. Stelle, K.S.: Classical gravity with higher derivatives. Gen. Rel. Gravit. 9, 353 (1978)

    Article  ADS  MathSciNet  Google Scholar 

  49. Verch, R.: Local definiteness, primarity and quasiequivalence of quasifree Hadamard quantum states in curved space-time. Commun. Math. Phys. 160, 507 (1994)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  50. Verch, R.: Local covariance, renormalization ambiguity, and local thermal equilibrium in cosmology. In: Finster, F., et al. (eds.) Quantum Field Theory and Gravity, p. 229. Birkhäuser, Basel (2012) [arXiv:1105.6249 [math-ph]]

    Google Scholar 

  51. Wald, R.M.: Trace anomaly of a conformally invariant quantum field in curved space-time. Phys. Rev. D 17, 1477 (1978)

    Article  ADS  MathSciNet  Google Scholar 

  52. Wald, R.M.: Quantum Field Theory in Curved Space-Time and Black Hole Thermodynamics, 205 pp. Chicago University Press, Chicago (1994)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Klaus Fredenhagen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Fredenhagen, K., Hack, TP. (2015). Quantum Field Theory on Curved Spacetime and the Standard Cosmological Model. In: Blanchard, P., Fröhlich, J. (eds) The Message of Quantum Science. Lecture Notes in Physics, vol 899. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-46422-9_6

Download citation

Publish with us

Policies and ethics