Skip to main content
Log in

Linear spin-zero quantum fields in external gravitational and scalar fields

II. Generally covariant perturbation theory

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

The quantum theory of both linear, and interacting fields on curved space-times is discussed. It is argued that generic curved space-time situations force the adoption of the algebraic approach to quantum field theory: and a suitable formalism is presented for handling an arbitrary quasi-free state in an arbitrary globally hyperbolic space-time.

For the interacting case, these quasi-free states are taken as suitable starting points, in terms of which expectation values of field operator products may be calculated to arbitrary order in perturbation theory. The formal treatment of interacting fields in perturbation theory is reduced to a treatment of “free” quantum fields interacting with external sources.

Central to the approach is the so-called two-current operator, which characterises the effect of external sources in terms of purely algebraic (i.e. representation free) properties of the source-free theory.

The paper ends with a set of “Feynman rules” which seems particularly appropriate to curved space-times in that it takes care of those aspects of the problem which are specific to curved space-times (and independent of interaction). Heuristically, the scheme calculates “in-in” rather than “in-out” matrix elements. Renormalization problems are discussed but not treated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Birrell, N. D., Taylor, J. G.: Analysis of interacting quantum fields in curved spacetime. J. Math. Phys. (to appear)

  2. Kay, B. S.: Linear spin-zero quantum fields in external gravitational and scalar fields I. A one-particle structure for the stationary case. Commun. Math. Phys.62, 55–70 (1978)

    Google Scholar 

  3. Hajicek, P.: A new generating functional for expectation values of field operator products. Preprint, Berne (Oct. 1978)

  4. DeWitt, B. S.: Quantum theory in curved space-time. Phys. Lett.19C, 295–357 (1975)

    Google Scholar 

  5. Parker, L.: The production of elementary particles by strong gravitational fields. In: Proceedings of the Symposium on Asymptotic Properties of Space-Time. New York: Plenum 1977

    Google Scholar 

  6. Parker, L.: Aspects of quantum field theory in curved space-time: Effective action and energy-momentum tensor. In: Proceedings of the NATO Advanced Study Institute on Gravitation: Recent Developments, (eds. M. Levy, S. Deser). New York: Plenum (in press) (Milwaukee preprint UWM-4867-78-9)

  7. Isham, C. J.: Quantum field theory in curved space-time, an overview, In: 8th Texas Symposium on Relativistic Astrophysics. Imperial College preprint ICTP/76/5 (Jan. 1977)

  8. Davies, P. C. W.: Quantum fields in curved space. In: GRG Finstein Centennial Volume. New York: Plenum (to be published) King's College, London Preprint

  9. Hawking, S. W.: Particle creation by black holes. Commun. Math. Phys.43, 199–220 (1975)

    Google Scholar 

  10. Fulling, S. A.: Nonuniqueness of canonical field quantization in Riemannian space-time. Phys. Rev.D7, 2850–2862 (1973)

    Google Scholar 

  11. Emch, G. G.: Algebraic methods in statistical mechanics and quantum field theory. New York-London-Sydney-Toronto: Wiley 1972

    Google Scholar 

  12. Haag, R., Kastler, D.: An algebraic approach to quantum field theory: J. Math. Phys.5, 848–861 (1964)

    Google Scholar 

  13. Streater, R. F. (ed.): Mathematics of contemporary physics: New York-London: Academic 1972

    Google Scholar 

  14. Segal, I. E.: Mathematical problems of relativistic physics. Providence: Am. Math. Soc. 1963

    Google Scholar 

  15. Hajicek, P.: Observables for quantum fields on curved backgrounds. In: Differential geometric methods in mathematical physics II. Proceedings, Bonn, 1977 (eds. K. Bleuler, H. R. Petry, A. Reetz). Berlin, Heidelberg, New York: Springer 1978

    Google Scholar 

  16. Isham, C. J.: Quantum field theory in curved space-time—a general mathematical framework. In: Differential geometric methods in mathematical physics II. Proceedings, Bonn 1977 (eds. K. Bleuler, H. R. Petry, A. Reetz). Berlin, Heidelberg, New York: Springer 1978

    Google Scholar 

  17. Ashtekar, A., Magnon, A.: Quantum fields in curved space-time: Proc. Roy. Soc. Lond.A346, 375–394 (1975)

    Google Scholar 

  18. Kay, B. S.: Linear spin-zero quantum fields in external gravitational and scalar fields II: The description of dynamics in the generic case: Trieste preprint IC/77/143 (unpublished) (a superseded “first edition” of Sects. 1, 2 of present paper)

  19. Boulware, D.: To appear in: Proceedings of NATO advanced study institute on gravitation: Recent developments, (eds. M. Levy, S. Deser). New York: Plenum (in press)

  20. Schwinger, J.: Particles, sources and fields. Vols. I, II. Reading, Mass.: Addison-Wesley 1970, 1973

    Google Scholar 

  21. Schwinger J.: In: 1960 Brandeis Lectures: mimeographed lecture notes, Brandeis University

  22. Hawking, S. W., Ellis, G. F. R.: The large scale structure of space-time. Cambridge: Cambridge University Press 1973

    Google Scholar 

  23. Geroch, R.: Domain of dependence: J. Math. Phys.11, 437–449 (1970)

    Google Scholar 

  24. Seifert, H. J.: Kausal Lorentzräume. Doctoral Dissertation, Hamburg University 1968

  25. Misner, C., Thorne, K., Wheeler, J. A.: Gravitation. San Francisco-London: Freeman 1973

    Google Scholar 

  26. Choquet-Bruhat, Y.: Hyperbolic partial differential equations on a manifold. In: Battelle Rencontres (eds. B. S. deWitt, J. A. Wheeler) New York: Benjamin 1967

    Google Scholar 

  27. Leray, J.: Hyperbolic partial differential equations. Princeton lecture notes. Princeton: Princeton University 1952 (mimeographed)

    Google Scholar 

  28. Lichnerowicz, A.: Propagateurs et commutateurs en relativité générale. Publ. I.H.E.S.10 (1961)

  29. Segal, I. E.: Representations of the canonical commutation relations. In: Cargèse lectures on theoretical physics. New York: Gordon and Breach 1967

    Google Scholar 

  30. Kuchar, K.: Geometry of hyperspace I. J. Math. Phys.17, 777–791 (1976)

    Google Scholar 

  31. Slawny, J.: On factor representations and the C*-algebra of the canonical commutation relations: Commun. Math. Phys.24, 151–170 (1972)

    Google Scholar 

  32. Manuceau, J.: C*-algebra de relations de commutation. Ann. Inst. H. Poincaré8, 139 (1968)

    Google Scholar 

  33. Bogolubov, Logunov, Todorov: Introduction to axiomatic quantum field theory. Reading, Mass.: Benjamin 1975

    Google Scholar 

  34. Robinson, D. W.: The ground state of the Bose gas. Commun. Math. Phys.1, 159–174 (1965)

    Google Scholar 

  35. Robinson, D. W.: A theorem concerning the positive metric. Commun. Math. Phys.1, 89–94 (1965)

    Google Scholar 

  36. Manuceau, J., Verbeure, A.: Quasi-free states of the C.C.R. algebra and Bogolubov transformations. Commun. Math. Phys.9, 293–302 (1968)

    Google Scholar 

  37. Abers, E. S., Lee, B. W.: Gauge Theories. Phys. Lett.9C, 1–141 (1973)

    Google Scholar 

  38. Faddeev, L. D.: Article in: Methods in field theory. (eds. R. Balian, J. Zinn-Justin). Amsterdam-New York-Oxford: North Holland 1976

    Google Scholar 

  39. 't Hooft, G., Veltman, M.: One-loop divergencies in the theory of gravitation. Ann. Inst. H. Poincaré,20, 69–94 (1974)

    Google Scholar 

  40. 't Hooft, G.: Quantum Gravity: A fundamental problem and some radical ideas. Talk given at 8th GRG conference, Waterloo 1977 (to be published). Utrecht Preprint (May 1978)

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by R. Haag

Work partly supported by the Schweizerische Nationalfonds

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kay, B.S. Linear spin-zero quantum fields in external gravitational and scalar fields. Commun.Math. Phys. 71, 29–46 (1980). https://doi.org/10.1007/BF01230084

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01230084

Keywords

Navigation