Skip to main content

The Mouse Genome

  • Chapter
  • First Online:
Genetics of the Mouse

Abstract

In Chap. 4 we explained how mouse geneticists were able to develop high-density and high-resolution genetic maps of the mouse genome by taking advantage of the unequaled strategies and tools they had at their disposition: i.e., inter sub-specific crosses, recombinant inbred strains, radiation hybrids and a wealth of polymorphic molecular markers of all kinds. We also explained how the same geneticists could develop physical maps by anchoring virtual (i.e., in silico) DNA fragments cloned into BACs, YACs or cosmids onto the molecular markers previously ordered along each chromosome.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The mitochondrial DNA has also been sequenced. See Sect. 5.6.

  2. 2.

    https://www.rosettacommons.org/.

  3. 3.

    Sequencher version 5.1 sequence analysis software, Gene Codes Corporation, Ann Arbor, MI USA http://www.genecodes.com.

  4. 4.

    Barbara McClintock was awarded the Nobel Prize in 1983 for the discovery of “jumping genes”.

  5. 5.

    The ancestral SINEs are sometimes designated MIR3 (for mammalian-wide interspersed repeat elements).

  6. 6.

    IAPs are a class of defective endogenous retroviral sequences measuring ~7 kb. These IAPs are mostly abundant in the endoplasmic reticulum.

  7. 7.

    Full-length cDNA libraries are established from all RNA transcripts (protein-coding and non-protein-coding). Manual annotation of such libraries is a guarantee of their quality.

  8. 8.

    A. Fire and C. Mello were awarded the Nobel Prize in Physiology or Medicine in 2006 for their discovery of “RNA interference—gene silencing by double-stranded RNA”.

  9. 9.

    There are a few differences between the vertebrate mtDNA code and the “universal” code. In the mtDNA, UGA codes for Trp rather than being a stop codon. In the same mtDNA there are two Met codons (AUA and AUG) rather than only one. Finally, both AGA and AGG are read as stop codons.

  10. 10.

    Two inbred strains of mice with the same genomic (nuclear) DNA but different mtDNAs are said to be conplasmic. The production of such strains can be achieved by normal sexual reproduction or by direct cytoplasmic transfer (See Chap. 9).

  11. 11.

    Most of the data provided in this chapter concerning the Mouse Genome are from the Ensembl website: http://www.ensembl.org/Mus_musculus/Info/Annotation#assembly and http://www.ncbi.nlm.nih.gov/projects/mapview/stats/BuildStats.cgi?taxid=10090&build=38&ver=1.

References

  • Ahituv N, Zhu Y, Visel A, Holt A, Afzal V, Pennacchio LA, Rubin EM (2007) Deletion of ultraconserved elements yields viable mice. PLoS Biol 5:e234

    Article  PubMed Central  PubMed  Google Scholar 

  • Arnold CN, Xia Y, Lin P, Ross C, Schwander M, Smart NG, Müller U, Beutler B (2011) Rapid identification of a disease allele in mouse through whole genome sequencing and bulk segregation analysis. Genetics 187:633–641

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Balakirev ES, Ayala FJ (2003) Pseudogenes: are they “junk” or functional DNA? Annu Rev Genet 37:123–151

    Article  CAS  PubMed  Google Scholar 

  • Barash Y, Calarco JA, Gao W, Pan Q, Wang X, Shai O, Blencowe BJ, Frey BJ (2010) Deciphering the splicing code. Nature 465:53–59

    Google Scholar 

  • Bayona-Bafaluy MP, Acín-Pérez R, Mullikin JC, Park JS, Moreno-Loshuertos R, Hu P, Pérez-Martos A, Fernández-Silva P, Bai Y, Enríquez JA (2003) Revisiting the mouse mitochondrial DNA sequence. Nucleic Acids Res 31:5349–5355

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bejerano G, Pheasant M, Makunin I, Stephen S, Kent WJ, Mattick JS, Haussler D (2004) Ultraconserved elements in the human genome. Science 304:1321–1325

    Article  CAS  PubMed  Google Scholar 

  • Belancio VP, Roy-Engel AM, Pochampally RR, Deininger P (2010) Somatic expression of LINE-1 elements in human tissues. Nucleic Acids Res 38:3909–3922

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Birnbaum RY, Clowney EJ, Agamy O, Kim MJ, Zhao J, Yamanaka T, Pappalardo Z, Clarke SL, Wenger AM, Nguyen L, Gurrieri F, Everman DB, Schwartz CE, Birk OS, Bejerano G, Lomvardas S, Ahituv N (2012) Coding exons function as tissue-specific enhancers of nearby genes. Genome Res 22:1059–1068

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Blanco E, Guigo R (2005) Predictive methods using DNA sequences—analysis at the nucleotide level. In: Baxevanis AD, Francis Ouellette BF (eds) Bioinformatics: a practical guide to the analysis of genes and proteins, 3rd edn. Wiley, Hoboken

    Google Scholar 

  • Buckler AJ, Chang DD, Graw SL, Brook JD, Haber DA, Sharp PA, Housman DE (1991) Exon amplification: a strategy to isolate mammalian genes based on RNA splicing. Proc Natl Acad Sci U S A. 88:4005–4009

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Burge C, Karlin S (1997) Prediction of complete gene structures in human genomic DNA. J Mol Biol 268:78–94

    Article  CAS  PubMed  Google Scholar 

  • Cachon-Gonzalez MB, Fenner S, Coffin JM, Moran C, Best S, Stoye JP (1994) Structure and expression of the hairless gene of mice. Proc Natl Acad Sci U S A 91:7717–7721

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Canales CP, Walz K (2011) Copy number variation and susceptibility to complex traits. EMBO Mol Med. 3:1–4

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Carlson CM, Largaespada DA (2005) Insertional mutagenesis in mice: new perspectives and tools. Nat Rev Genet 6:568–580

    Article  CAS  PubMed  Google Scholar 

  • Carninci P, Kasukawa T, Katayama S, Gough J, Frith MC, Maeda N, Oyama R, Ravasi T, Lenhard B, Wells C, Kodzius R, Shimokawa K et al (2005) The transcriptional landscape of the mammalian genome. Science 309:1559–1563

    Article  CAS  PubMed  Google Scholar 

  • Carninci P, Sandelin A, Lenhard B, Katayama S, Shimokawa K, Ponjavic J, Semple CA, Taylor MS, Engström PG, Frith MC, Forrest AR, Alkema WB, Tan SL, Plessy C, Kodzius R, Ravasi T, Kasukawa T, Fukuda S, Kanamori-Katayama M, Kitazume Y, Kawaji H, Kai C, Nakamura M, Konno H, Nakano K, Mottagui-Tabar S, Arner P, Chesi A, Gustincich S, Persichetti F, Suzuki H, Grimmond SM, Wells CA, Orlando V, Wahlestedt C, Liu ET, Harbers M, Kawai J, Bajic VB, Hume DA, Hayashizaki Y (2006) Genome-wide analysis of mammalian promoter architecture and evolution. Nat Genet 38:626–635

    Article  CAS  PubMed  Google Scholar 

  • Cazaux B, Catalan J, Veyrunes F, Douzery EJ, Britton-Davidian J (2011) Are ribosomal DNA clusters rearrangement hotspots?: a case study in the genus Mus (Rodentia, Muridae). BMC Evol Biol 11:124. doi:10.1186/1471-2148-11-124

    Article  PubMed Central  PubMed  Google Scholar 

  • Cook EH, Scherer SW (2008) Copy-number variations associated with neuropsychiatric conditions. Nature 455:919–923

    Article  CAS  PubMed  Google Scholar 

  • Copeland NG, Jenkins NA (2010) Harnessing transposons for cancer genes discovery. Nat Rev Cancer 10:696–706

    Article  CAS  PubMed  Google Scholar 

  • Coughlin DJ, Babak T, Nihranz C, Hughes TR, Engelke DR (2009) Prediction and verification of mouse tRNA gene families. RNA Biol 6:195–202

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cutler G, Kassner PD (2008) Copy number variation in the mouse genome: implications for the mouse as a model organism for human disease. Cytogenet Genome Res 123:297–306

    Article  CAS  PubMed  Google Scholar 

  • Demuth JP, Hahn MW (2009) The life and death of gene families. BioEssays 31:29–39

    Article  PubMed  Google Scholar 

  • Ebert MS, Sharp PA (2012) Roles for microRNAs in conferring robustness to biological processes. Cell 149:515–524

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Egan CM, Sridhar S, Wigler M, Hall I (2007) Recurrent DNA copy number variation in the laboratory mouse. Nat Genet 39:1384–1389

    Article  CAS  PubMed  Google Scholar 

  • Ehrnhoefer DE, Butland SL, Pouladi MA, Hayden MR (2009) Mouse models of Huntington disease: variations on a theme. Dis Model Mech 2:123–129

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • ENCODE Project Consortium (2011) A user’s guide to the encyclopedia of DNA elements (ENCODE). PLoS Biol 4:e1001046

    Google Scholar 

  • ENCODE Project Consortium, Dunham I, Kundaje A, Aldred SF, Collins PJ, Davis CA, Doyle F, Epstein CB, Frietze S, Harrow J, Kaul R, Khatun J, Lajoie BR et al (2012) An integrated encyclopedia of DNA elements in the human genome. Nature 489:57–74

    Article  CAS  Google Scholar 

  • Fire A, Xu S, Montgomery M, Kostas S, Driver S, Mello C (1998) Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391:806–811

    Article  CAS  PubMed  Google Scholar 

  • Gardner P, Bateman A, Poole AM (2010) SnoPatrol: how many snoRNA genes are there? J Biol 9:1–4

    Article  Google Scholar 

  • Gibbs RA, Weinstock GM, Metzker ML, Muzny DM, Sodergren EJ, Scherer S, Scott G, Steffen D, Worley KC, Burch PE et al (2004) Genome sequence of the Brown Norway rat yields insights into mammalian evolution. Nature 428:493–521

    Article  CAS  PubMed  Google Scholar 

  • Goios A, Pereira L, Bogue M, Macaulay V, Amorim A (2007) mtDNA phylogeny and evolution of laboratory mouse strains. Genome Res 17:293–298

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Goios A, Gusmão L, Rocha AM, Fonseca A, Pereira L, Bogue M, Amorim A (2008) Identification of mouse inbred strains through mitochondrial DNA single-nucleotide extension. Electrophoresis 29:4795–4802

    Article  CAS  PubMed  Google Scholar 

  • Goldberg ML. 1979. PhD Diss. Stanford University, Stanford, CA

    Google Scholar 

  • Gonzalez E, Kulkarni H, Bolivar H, Mangano A, Sanchez R, Catano G, Nibbs RJ, Freedman BI, Quinones MP, Bamshad MJ, Murthy KK, Rovin BH, Bradley W, Clark RA, Anderson SA, O’connell RJ, Agan BK, Ahuja SS, Bologna R, Sen L, Dolan MJ, Ahuja SK (2005) The influence of CCL3L1 gene-containing segmental duplications on HIV-1/AIDS susceptibility. Science 307:1434–1440

    Article  CAS  PubMed  Google Scholar 

  • Gustincich S, Sandelin A, Plessy C, Katayama S, Simone R, Lazarevic D, Hayashizaki Y, Carninci P (2006) The complexity of the mammalian transcriptome. J Physiol 575:321–332

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hardison RC, Taylor J (2012) Genomic approaches towards finding cis-regulatory modules in animals. Nat Rev Genet 13:469–483

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Harrow J, Nagy A, Reymond A, Alioto T, Patthy L, Antonarakis SE, Guigó R (2009) Identifying protein-coding genes in genomic sequences. Genome Biol 10:201 Epub

    Google Scholar 

  • Hatzis P, van der Flier LG, van Driel MA, Guryev V, Nielsen F, Denissov S, Nijman IJ, Koster J, Santo EE, Welboren W, Versteeg R, Cuppen E, van de Wetering M, Clevers H, Stunnenberg HG (2008) Genome-wide pattern of TCF7L2/TCF4 chromatin occupancy in colorectal cancer cells. Mol Cell Biol 28:2732–2744

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hayashizaki Y, Carninci P (2006) Genome Network and FANTOM3: Assessing the Complexity of the Transcriptome. PLoS Genet 2(4):e63

    Article  PubMed Central  PubMed  Google Scholar 

  • Henderson AS, Eicher EM, Yu MT, Atwood KC (1974) The chromosomal location of ribosomal DNA in the mouse. Chromosoma 49:155–160

    Article  CAS  PubMed  Google Scholar 

  • Hill RE (2007) How to make a zone of polarizing activity: insights into limb development via the abnormality preaxial polydactyly. Dev Growth Differ 49:439–448

    Article  CAS  PubMed  Google Scholar 

  • Hoskins AA, Moore MJ (2012) The spliceosome: a flexible, reversible macromolecular machine. Trends Biochem Sci 37:179–188

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Howell VM (2012) Sleeping beauty—a mouse model for all cancers? Cancer Lett 317:1–8

    Article  CAS  PubMed  Google Scholar 

  • International Human Genome Sequencing Consortium, Lander E, Linton L, Birren B, Nusbaum C, Zody MC, Baldwin J, Devon K, Dewar K, Doyle M, FitzHugh W et al (2001) Initial sequencing and analysis of the human genome. Nature 409:890–921

    Article  Google Scholar 

  • Izsvák Z, Ivics Z (2005) Sleeping Beauty hits them all: transposon-mediated saturation mutagenesis in the mouse germline. Nat Methods 2:735–736

    Article  PubMed  Google Scholar 

  • Julier C, de Gouyon B, Georges M, Guénet JL, Nakamura Y, Avner P, Lathrop GM (1990) Minisatellite linkage maps in the mouse by cross-hybridization with human probes containing tandem repeats. Proc Natl Acad Sci U S A. 87:4585–4589

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kapranov P, St Laurent G (2012) Dark matter RNA: existence, function, and controversy. Front Genet. 3:60

    Google Scholar 

  • Kapranov P, Cawley SE, Drenkow J, Bekiranov S, Strausberg RL, Fodor SP, Gingeras TR (2002) Large-scale transcriptional activity in chromosomes 21 and 22. Science 296:916–919

    Article  CAS  PubMed  Google Scholar 

  • Katayama S, Tomaru Y, Kasukawa T, Waki K, Nakanishi M, Nakamura M, Nishida H, Yap CC, Suzuki M, Kawai J, Suzuki H, Carninci P, Hayashizaki Y, Wells C, Frith M, Ravasi T, Pang KC, Hallinan J, Mattick J, Hume DA, Lipovich L, Batalov S, Engström PG, Mizuno Y, Faghihi MA, Sandelin A, Chalk AM, Mottagui-Tabar S, Liang Z, Lenhard B, Wahlestedt C; RIKEN Genome Exploration Research Group; Genome Science Group (Genome Network Project Core Group); FANTOM Consortium (2005) Antisense transcription in the mammalian transcriptome. Science 309:1564–1566

    Google Scholar 

  • Katzman S, Kern AD, Bejerano G, Fewell G, Fulton L, Wilson RK, Salama SR, Haussler D (2007) Human genome ultraconserved elements are ultraselected. Science 317:915

    Article  CAS  PubMed  Google Scholar 

  • Kozak M (1987) At least six nucleotides preceding the AUG initiator codon enhance translation in mammalian cells. J Mol Biol 196:947–950

    Article  CAS  PubMed  Google Scholar 

  • Kung JT, Colognori D, Lee JT (2013) Long noncoding RNAs: past, present, and future. Genetics 193:651–669

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kuznetsova IS, Prusov AN, Enukashvily NI, Podgornaya OI (2005) New types of mouse centromeric satellite DNAs. Chromosome Res 13:9–25

    Article  CAS  PubMed  Google Scholar 

  • Lagha M, Bothma JP, Levine M (2012) Mechanisms of transcriptional precision in animal development. Trends Genet 28:409–416

    Article  CAS  PubMed  Google Scholar 

  • Lai F, Orom UA, Cesaroni M, Beringer M, Taatjes DJ, Blobel GA, Shiekhattar R (2013) Activating RNAs associate with Mediator to enhance chromatin architecture and transcription. Nature 494:497–501

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lander ES, Linton LM, Birren B, Nusbaum C, Zody MC, Baldwin J, Devon K, Dewar K, Doyle M, FitzHugh W, Funke R, Gage D et al (2001) Initial sequencing and analysis of the human genome. Nature 409:860–921

    Article  CAS  PubMed  Google Scholar 

  • Lettice LA, Horikoshi T, Heaney SJ, van Baren MJ, van der Linde HC, Breedveld GJ, Joosse M, Akarsu N, Oostra BA, Endo N, Shibata M, Suzuki M, Takahashi E, Shinka T, Nakahori Y, Ayusawa D, Nakabayashi K, Scherer SW, Heutink P, Hill RE, Noji S (2002) Disruption of a long-range cis-acting regulator for Shh causes preaxial polydactyly. Proc Natl Acad Sci U S A. 99:7548–7553

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lewis MA, Steel KP (2010) microRNAS in mouse development and diseases. Semin Cell Develop Biol 21:774–780

    Article  CAS  Google Scholar 

  • Lewis MA, Quint E, Glazier AM, Fuchs H, De Angelis MH, Langford C, van Dongen S, Abreu-Goodger C, Piipari M, Redshaw N, Dalmay T, Moreno-Pelayo MA, Enright AJ, Steel KP (2009) An ENU-induced mutation of miR-96 associated with progressive hearing loss in mice. Nat Genet 41:614–618

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Li G, Ruan X, Auerbach RK, Sandhu KS, Zheng M, Wang P, Poh HM, Goh Y, Lim J, Zhang J, Sim HS, Peh SQ, Mulawadi FH, Ong CT, Orlov YL, Hong S, Zhang Z, Landt S, Raha D, Euskirchen G, Wei CL, Ge W, Wang H, Davis C, Fisher-Aylor KI, Mortazavi A, Gerstein M, Gingeras T, Wold B, Sun Y, Fullwood MJ, Cheung E, Liu E, Sung WK, Snyder M, Ruan Y (2012) Extensive promoter-centered chromatin interactions provide a topological basis for transcription regulation. Cell 148:84–98

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lin CS, Sharpley MS, Fan W, Waymire KG, Sadun AA, Carelli V, Ross-Cisneros FN, Baciu P, Sung E, McManus MJ, Pan BX, Gil DW, Macgregor GR, Wallace DC (2012) Mouse mtDNA mutant model of Leber hereditary optic neuropathy. Proc Natl Acad Sci U S A. 109:20065–20070

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mashimo T, Glaser P, Lucas M, Simon-Chazottes D, Ceccaldi PE, Montagutelli X, Desprès P, Guénet JL (2003) Structural and functional genomics and evolutionary relationships in the cluster of genes encoding murine 2′,5'-oligoadenylate synthetases. Genomics 82:537–552

    Article  CAS  PubMed  Google Scholar 

  • Mattick JS, Makunin IV (2006) Non-coding RNA. Hum Mol Genet 15 Spec No 1:R17–29

    Google Scholar 

  • Modrek B, Lee CJ (2003) Alternative splicing in the human, mouse and rat genomes is associated with an increased frequency of exon creation and/or loss. Nat Genet 34:177–180

    Article  CAS  PubMed  Google Scholar 

  • Mouse ENCODE Consortium (2012) An encyclopedia of mouse DNA elements (Mouse ENCODE). Genome Biol 13:418

    Article  Google Scholar 

  • Mouse Genome Sequencing Consortium, Waterston RH, Lindblad-Toh K, Birney E, Rogers J, Abril JF, Agarwal P, Agarwala R, Ainscough R, Alexandersson M, An P, et al (2002) Initial sequencing and comparative analysis of the mouse genome. Nature 420:520–562

    Google Scholar 

  • Mülhardt C, Fischer M, Gass P, Simon-Chazottes D, Guénet JL, Kuhse J, Betz H, Becker CM (1994) The spastic mouse: aberrant splicing of glycine receptor beta subunit mRNA caused by intronic insertion of L1 element. Neuron 13:1003–1015

    Article  PubMed  Google Scholar 

  • Munroe R, Schimenti J (2009) Mutagenesis of mouse embryonic stem cells with ethylmethanesulfonate. Methods Mol Biol 530:131–138

    Article  CAS  PubMed  Google Scholar 

  • Mural RJ, Adams MD, Myers EW, Smith HO, Miklos GL, Wides R, Halpern A, Li PW, Sutton GG, Nadeau J et al (2002) A comparison of whole-genome shotgun-derived mouse chromosome 16 and the human genome. Science 296:1661–1671

    Article  CAS  PubMed  Google Scholar 

  • Napoli C, Lemieux C, Jorgensen R (1990) Introduction of a chimeric chalcone synthase gene into petunia results in reversible co-suppression of homologous genes in trans. Plant Cell 2:279–289

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Nouvel P (1994) The mammalian genome shaping activity of reverse transcriptase. Genetica 93:191–201

    Article  CAS  PubMed  Google Scholar 

  • Ohno S (1972) So much “junk” DNA in our genome. In: Smith HH (ed) Evolution of genetic systems. Gordon and Breach, New York, pp 366–370

    Google Scholar 

  • Okazaki Y, Furuno M, Kasukawa T, Adachi J, Bono H, Kondo S, Nikaido I, Osato N, Saito R, Suzuki H, Yamanaka I et al (2002) Analysis of the mouse transcriptome based on functional annotation of 60,770 full-length cDNAs. Nature 420:563–573

    Article  PubMed  Google Scholar 

  • Panthier JJ, Dreyfus M, Roux TL, Rougeon F (1984) Mouse kidney and submaxillary gland renin genes differ in their 5' putative regulatory sequences. Proc Natl Acad Sci U S A. 81:5489–5493

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Perelygin AA, Zharkikh AA, Scherbik SV, Brinton MA (2006) The mammalian 2′-5' oligoadenylate synthetase gene family: evidence for concerted evolution of paralogous Oas1 genes in Rodentia and Artiodactyla. J Mol Evol 63:562–576

    Article  CAS  PubMed  Google Scholar 

  • Perez CJ, Dumas A, Vallières L, Guénet JL, Benavides F (2013) Several classical mouse inbred strains, including DBA/2, NOD/Lt, FVB/N, and SJL/J, carry a putative loss-of-function allele of Gpr84. J Hered 104:565–571

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Petkov PM, Graber JH, Churchill GA, DiPetrillo K, King BL, Paigen K (2007) Evidence of a large-scale functional organization of Mammalian chromosomes. PLoS Biol 5(5):e127

    Article  PubMed Central  PubMed  Google Scholar 

  • Ramachandran PV, Ignacimuthu S (2013) RNA interference-a silent but an efficient therapeutic tool. Appl Biochem Biotechnol 169:1774–1789

    Article  CAS  PubMed  Google Scholar 

  • Roberts RL, Diaz-Gallo LM, Barclay ML, Gómez-García M, Cardeña C, Merriman TR, Gearry RB, Martin J (2012) Independent replication of an association of CNVR7113.6 with Crohn’s disease in Caucasians. Inflamm Bowel Dis 18:305–311

    Article  PubMed  Google Scholar 

  • Rowe LB, Janaswami PM, Barter ME, Birkenmeier EH (1996) Genetic mapping of 18S ribosomal RNA-related loci to mouse chromosomes 5, 6, 9, 12, 17, 18, 19, and X. Mamm Genome 12:886–889

    Article  Google Scholar 

  • Sakuraba Y, Kimura T, Masuya H, Noguchi H, Sezutsu H, Takahasi KR, Toyoda A, Fukumura R, Murata T, Sakaki Y, Yamamura M, Wakana S, Noda T, Shiroishi T, Gondo Y (2008) Identification and characterization of new long conserved noncoding sequences in vertebrates. Mamm Genome 19:703–712

    Article  CAS  PubMed  Google Scholar 

  • Savarese F, Grosschedl R (2006) Blurring cis and trans in gene regulation. Cell 126:248–250

    Article  CAS  PubMed  Google Scholar 

  • Saxena A, Carninci P (2011) Long non-coding RNA modifies chromatin: epigenetic silencing by long non-coding RNAs. BioEssays 33:830–839

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Schaefer A, O’Carroll D, Tan CL, Hillman D, Sugimori M, Llinas R et al (2007) Cerebellar neurodegeneration in the absence of microRNAs. J Exp Med 204:1553–1558

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sebat J, Lakshmi B, Malhotra D, Troge J, Lese-Martin C, Walsh T, Yamrom B, Yoon S, Krasnitz A, Kendall J, Leotta A, Pai D, Zhang R, Lee YH, Hicks J, Spence SJ, Lee AT, Puura K, Lehtimäki T, Ledbetter D, Gregersen PK, Bregman J, Sutcliffe JS, Jobanputra V, Chung W, Warburton D, King MC, Skuse D, Geschwind DH, Gilliam TC, Ye K, Wigler M (2007) Strong association of de novo copy number mutations with autism. Science 316:445–449

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sharpley MS, Marciniak C, Eckel-Mahan K, McManus M, Crimi M, Waymire K, Lin CS, Masubuchi S, Friend N, Koike M, Chalkia D, MacGregor G, Sassone-Corsi P, Wallace DC (2012) Heteroplasmy of mouse mtDNA is genetically unstable and results in altered behavior and cognition. Cell 151:333–343

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Shen Y, Yue F, McCleary DF, Ye Z, Edsall L, Kuan S, Wagner U, Dixon J, Lee L, Lobanenkov VV, Ren B (2012) A map of the cis-regulatory sequences in the mouse genome. Nature 488:116–120

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Silver LM (1995) Mouse genetics—concepts and applications. Oxford University Press, Oxford

    Google Scholar 

  • Sookdeo A, Hepp CM, McClure MA, Boissinot S (2013) Revisiting the evolution of mouse LINE-1 in the genomic era. Mob DNA 4:3. doi:10.1186/1759-8753-4-3

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Specht CG, Schoepfer R (2001) Deletion of the alpha-synuclein locus in a subpopulation of C57BL/6 J inbred mice. BMC Neurosci 2:11

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Stoye JP, Fenner S, Greenoak GE, Moran C, Coffin JM (1988) Role of endogenous retroviruses as mutagens: the hairless mutation of mice. Cell 54:383–391

    Article  CAS  PubMed  Google Scholar 

  • Valentijn LJ, Baas F, Wolterman RA, Hoogendijk JE, van den Bosch NH, Zorn I, Gabreëls-Festen AW, de Visser M, Bolhuis PA (1992a) Identical point mutations of PMP-22 in Trembler-J mouse and Charcot-Marie-Tooth disease type 1A. Nat Genet 4:288–291

    Article  Google Scholar 

  • Valentijn LJ, Bolhuis PA, Zorn I, Hoogendijk JE, van den Bosch N, Hensels GW, Stanton VP Jr, Housman DE, Fischbeck KH, Ross DA et al (1992b) The peripheral myelin gene PMP-22/GAS-3 is duplicated in Charcot-Marie-Tooth disease type 1A. Nat Genet 1:166–170

    Article  CAS  PubMed  Google Scholar 

  • Venter JC, Adams MD, Myers EW, Li PW, Mural RJ, Sutton GG, Smith HO, Yandell M, Evans CA, Holt RA et al (2001) The sequence of the human genome. Science 291:1304–1351

    Article  CAS  PubMed  Google Scholar 

  • Wallace DC (2009) The pathophysiology of mitochondrial disease as modeled in the mouse. Genes Dev 23:1714–1736

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Watkins-Chow DE, Pavan WJ (2008) Genomic copy number and expression variation within the C57BL/6 J inbred mouse strain. Genome Res 18:60–66

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wessler SR (2006) Transposable elements and the evolution of eukaryotic genomes. Proc Natl Acad Sci U S A. 103:17600–17601

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wong K, Bumpstead S, Van Der Weyden L, Reinholdt LG, Wilming LG, Adams DJ, Keane TM (2012) Sequencing and characterization of the FVB/NJ mouse genome. Genome Biol 13:R72

    Article  PubMed Central  PubMed  Google Scholar 

  • Xia Y, Won S, Du X, Lin P, Ross C, La Vine D, Wiltshire S, Leiva G, Vidal SM, Whittle B, Goodnow CC, Koziol J, Moresco EM, Beutler B (2010) Bulk segregation mapping of mutations in closely related strains of mice. Genetics 186:1139–1146

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yonekawa H, Moriwaki K, Gotoh O, Miyashita N, Migita S, Bonhomme F, Hjorth JP, Petras ML, Tagashira Y (1982) Origins of laboratory mice deduced from restriction patterns of mitochondrial DNA. Differentiation 22:222–226

    Article  CAS  PubMed  Google Scholar 

  • Yu X, Wester-Rosenlöf L, Gimsa U, Holzhueter SA, Marques A, Jonas L, Hagenow K, Kunz M, Nizze H, Tiedge M, Holmdahl R, Ibrahim SM (2009) The mtDNA nt7778 G/T polymorphism affects autoimmune diseases and reproductive performance in the mouse. Hum Mol Genet 18:4689–4698

    Article  CAS  PubMed  Google Scholar 

  • Zelnick CR, Burks DJ, Duncan CH (1987) A composite transposon 3' to the cow fetal globin gene binds a sequence specific factor. Nucleic Acids Res 15:10437–10453

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank Doctor Benoît Robert, Institut Pasteur, for his contribution to Sect. 5.3.3 of this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Louis Guenet .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Guenet, JL., Benavides, F., Panthier, JJ., Montagutelli, X. (2015). The Mouse Genome. In: Genetics of the Mouse. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-44287-6_5

Download citation

Publish with us

Policies and ethics