Skip to main content

Advertisement

Log in

RNA Interference—A Silent but an Efficient Therapeutic Tool

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

RNA interference (RNAi) is an evolutionary conserved gene regulation pathway that has emerged as an important discovery in the field of molecular biology. One of the important advantages of RNAi in therapy is that it brings about efficient downregulation of gene expression by targeting complementary transcripts in comparison with other antisense-based techniques. RNAi can be can be achieved by introducing chemically synthesized small interfering RNAs (siRNAs) into a cell system. A more stable knockdown effect can be brought about by the use of plasmid or viral vectors encoding the siRNA. RNAi has been used in reverse genetics to understand the function of specific genes and also as a therapeutic tool in treating human diseases. This review provides a brief insight into the therapeutic applications of RNAi against debilitating diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Hamilton, A. J., & Baulcombe, D. C. (1999). A species of small antisense RNA in post transcriptional gene silencing in plants. Science, 286, 950–952.

    Article  CAS  Google Scholar 

  2. Zamore, P. D., Tuschl, T., Sharp, P. A., & Bartel, D. P. (2000). RNAi: double-stranded RNA directs the ATP-dependent cleavage of mRNA at 21 to 23 nucleotide intervals. Cell, 101, 25–33.

    Article  CAS  Google Scholar 

  3. Bernstein, E., Caudy, A. A., Hammond, S. M., & Hannon, G. J. (2001). Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature, 409, 363–366.

    Article  CAS  Google Scholar 

  4. Elbashir, S. M., Lendeckel, W., & Tuschl, T. (2001). RNA interference is mediated by 21- and 22-nucleotide RNAs. Genes & Development, 15, 188–200.

    Article  CAS  Google Scholar 

  5. Sawh, A. N., & Duchaine, T. F. (2012). Turning Dicer on its head. Nature Structural and Molecular Biology, 19, 365–366.

    Article  CAS  Google Scholar 

  6. Collins, R., & Cheng, X. (2005). Structural domains in RNAi. FEBS Letters, 579, 5841–5849.

    Article  CAS  Google Scholar 

  7. Nykanen, A., Haley, B., & Zamore, P. D. (2001). ATP requirements and small interfering RNA structure in the RNA interference pathway. Cell, 107, 309–321.

    Article  CAS  Google Scholar 

  8. Khvorova, A., Reynolds, A., & Jayasena, S. D. (2003). Functional siRNAs and miRNAs exhibit strand bias. Cell, 115, 209–216.

    Article  CAS  Google Scholar 

  9. Ahlquist, P. (2002). RNA-dependent RNA polymerases, viruses and RNA silencing. Science, 296, 1270–1273.

    Article  CAS  Google Scholar 

  10. Kwak, P. B., & Tomari, Y. (2012). The N domain of Argonaute drives duplex unwinding during RISC assembly. Nature Structural and Molecular Biology, 19, 145–152.

    Article  CAS  Google Scholar 

  11. Matranga, C., Tomari, Y., Shin, C., Bartel, D. P., & Zamore, P. D. (2005). Passenger-strand cleavage facilitates assembly of siRNA into Ago2-containing RNAi enzyme complexes. Cell, 123, 607–620.

    Article  CAS  Google Scholar 

  12. Rand, T. A., Petersen, S., Du, F., & Wang, X. (2005). Argonaute2 cleaves the anti-guide strand of siRNA during RISC activation. Cell, 123, 621–629.

    Article  CAS  Google Scholar 

  13. Czech, B., & Hannon, G. J. (2011). Small RNA sorting: matchmaking for Argonautes. Nature Reviews Genetics, 12, 19–31.

    Article  CAS  Google Scholar 

  14. Ghildiyal, M., & Zamore, P. D. (2009). Small silencing RNAs: an expanding universe. Nature Reviews Genetics, 10, 94–108.

    Article  CAS  Google Scholar 

  15. Paul, C. P., Good, P. D., Winer, I., & Engelke, D. R. (2002). Effective expression of small interfering RNA in human cells. Nature Biotechnology, 20, 505–508.

    Article  CAS  Google Scholar 

  16. Brummelkamp, T. R., Bernards, R., & Agami, R. (2002). A system for stable expression of short interfering RNAs in mammalian cells. Science, 296, 550–553.

    Article  CAS  Google Scholar 

  17. Kawasaki, H., & Taira, K. (2003). Short hairpin type of dsRNAs that are controlled by tRNA(Val) promoter significantly induce RNAi-mediated gene silencing in the cytoplasm of human cells. Nucleic Acids Research, 31, 700–707.

    Article  CAS  Google Scholar 

  18. Borchert, G. M., Lanier, W., & Davidson, B. L. (2006). RNA polymerase III transcribes human microRNAs. Nature Structural and Molecular Biology, 13, 1097–1101.

    Article  CAS  Google Scholar 

  19. Monteys, A. M., Spengler, R. M., Wan, J., Tecedor, L., Lennox, K. A., Xing, Y., & Davidson, B. L. (2010). Structure and activity of putative intronic miRNA promoters. RNA, 16, 495–505.

    Article  Google Scholar 

  20. Ozsolak, F., Poling, L. L., Wang, Z., Liu, H., Liu, X. S., Roeder, R. G., Zhang, X., Song, J. S., & Fisher, D. E. (2008). Chromatin structure analyses identify miRNA promoters. Genes & Development, 22, 3172–3183.

    Article  CAS  Google Scholar 

  21. Zeng, Y., Yi, R., & Cullen, B. (2005). Recognition and cleavage of primary microRNA precursors by the nuclear processing enzyme Drosha. EMBO Journal, 24, 138–148.

    Article  CAS  Google Scholar 

  22. Lee, Y., Ahn, C., Han, J., Choi, H., Kim, J., Yim, J., Lee, J., Provost, P., Rådmark, O., Kim, S., & Kim, V. N. (2003). The nuclear RNase III Drosha initiates microRNA processing. Nature, 425, 415–419.

    Article  CAS  Google Scholar 

  23. Gregory, R. I., Yan, K. P., Amuthan, G., Chendrimada, T., Doratotaj, B., Cooch, N., & Shiekhattar, R. (2004). The microprocessor complex mediates the genesis of microRNAs. Nature, 432, 235–240.

    Article  CAS  Google Scholar 

  24. Lund, E., Guttinger, S., Calado, A., Dahlberg, J. E., & Kutay, U. (2004). Nuclear export of microRNA precursors. Science, 303, 95–98.

    Article  CAS  Google Scholar 

  25. Yi, R., Qin, Y., Macara, I. G., & Cullen, B. R. (2003). Exportin-5 mediates the nuclear export of pre-microRNAs and short hairpin RNAs. Genes & Development, 17, 3011–3016.

    Article  CAS  Google Scholar 

  26. Provost, P., Dishart, D., Doucet, J., Frendewey, D., Samuelsson, B., & Rådmark, O. (2002). Ribonuclease activity and RNA binding of recombinant human Dicer. EMBO Journal, 21, 5864–5874.

    Article  CAS  Google Scholar 

  27. Förstemann, K., Tomari, Y., Du, T., Vagin, V. V., Denli, A. M., Bratu, D. P., Klattenhoff, C., Theurkauf, W. E., & Zamore, P. D. (2005). Normal microRNA maturation and germ-line stem cell maintenance requires Loquacious, a double-stranded RNA-binding domain protein. PLoS Biology, 3, 1–15.

    Article  CAS  Google Scholar 

  28. Hafner, M., Ascano, M., Jr., & Tuschl, T. (2011). New insights in the mechanism of microRNA-mediated target repression. Nature Structural and Molecular Biology, 18, 1181–1182.

    Article  CAS  Google Scholar 

  29. Kiriakidou, M., Tan, G. S., Lamprinaki, S., De Planell-Saguer, M., Nelson, P. T., & Mourelatos, Z. (2007). An mRNA m7G cap bindinglike motif within human Ago2 represses translation. Cell, 129, 1141–1151.

    Article  CAS  Google Scholar 

  30. Chendrimada, T. P., Finn, K. J., Ji, X., Baillat, D., Gregory, R. I., Liebhaber, S. A., Pasquinelli, A. E., & Shiekhattar, R. (2007). MicroRNA silencing through RISC recruitment of eIF6. Nature, 447, 823–828.

    Article  CAS  Google Scholar 

  31. Sorensen, D. R., Leirdal, M., & Sioud, M. (2003). Gene silencing by systemic delivery of synthetic siRNAs in adult mice. Journal of Molecular Biology, 327, 761–766.

    Article  CAS  Google Scholar 

  32. Sioud, M., & Sorensen, D. R. (2003). Cationic liposome-mediated delivery of siRNAs in adult mice. Biochemical and Biophysical Research Communications, 312, 1220–1225.

    Article  CAS  Google Scholar 

  33. Hamidreza, M., Abadi, A., Landry, B., Sun, C., Tang, T., & Uluda, H. (2012). Supramolecular assemblies in functional siRNA delivery: where do we stand? Biomaterials, 33, 2546–2569.

    Article  CAS  Google Scholar 

  34. Soutschek, J., Akinc, A., Bramlage, B., Charisse, K., Constien, R., Donoghue, M., Elbashir, S., Geick, A., Hadwiger, P., Harborth, J., John, M., Kesavan, V., Lavine, G., Pandey, R. K., Racie, T., Rajeev, K. G., Röhl, I., Toudjarska, I., Wang, G., Wuschko, S., Bumcrot, D., Koteliansky, V., Limmer, S., Manoharan, M., & Vornlocher, H. P. (2004). Therapeutic silencing of an endogenous gene by systemic administration of modified siRNAs. Nature, 432, 173–178.

    Article  CAS  Google Scholar 

  35. Song, E., Lee, S. K., Wang, J., Ince, N., Ouyang, N., Min, J., Chen, J., Shankar, P., & Lieberman, J. (2003). RNA interference targeting Fas protects mice from fulminant hepatitis. Nature Medicine, 9, 347–351.

    Article  CAS  Google Scholar 

  36. Van den Boorn, J. G., Schlee, M., Coch, C., & Hartmann, G. (2011). SiRNA delivery with exosome nanoparticles. Nature Biotechnology, 29, 325–326.

    Article  CAS  Google Scholar 

  37. Kesharwani, P., Gajbhiye, V., & Jain, N. K. (2012). A review of nanocarriers for the delivery of small interfering RNA. Biomaterials, 33, 7138–7150.

    Article  CAS  Google Scholar 

  38. Zhou, J., & Rossi, J. J. (2010). Aptamer-targeted cell-specific RNA interference. Silence, 4, 1–10.

    Google Scholar 

  39. McNamara, J. O. I. I., Andrechek, E. R., Wang, Y., Viles, K. D., Rempel, R. E., Gilboa, E., Sullenger, B. A., & Giangrande, P. H. (2006). Cell type-specific delivery of siRNAs with aptamer-siRNA chimeras. Nature Biotechnology, 24, 1005–1015.

    Article  CAS  Google Scholar 

  40. Monaghan, M., & Pandit, A. (2011). RNA interference therapy via functionalized scaffolds. Advanced Drug Delivery Reviews, 63, 197–208.

    Article  CAS  Google Scholar 

  41. Kulkarni, M., Greiser, U., O'Brien, T., & Pandit, A. (2010). Liposomal gene delivery mediated by tissue-engineered scaffolds. Trends in Biotechnology, 28, 28–36.

    Article  CAS  Google Scholar 

  42. De Laporte, L., & Shea, L. D. (2007). Matrices and scaffolds for DNA delivery in tissue engineering. Advanced Drug Delivery Reviews, 59, 292–307.

    Article  CAS  Google Scholar 

  43. O'Rorke, S., Keeney, M., & Pandit, A. (2010). Non-viral polyplexes: scaffold mediated delivery for gene therapy. Progress in Polymer Science, 35, 441–458.

    Article  CAS  Google Scholar 

  44. Paddison, P. J., Caudy, A. A., Bernstein, E., Hannon, G. J., & Conklin, D. S. (2002). Short hairpin RNAs (shRNAs) induce sequence-specific silencing in mammalian cells. Genes & Development, 16, 948–958.

    Article  CAS  Google Scholar 

  45. Lee, N. S., Dohjima, T., Bauer, G., Li, H., Li, M. J., Ehsani, A., Salvaterra, P., & Rossi, J. (2002). Expression of small interfering RNAs targeted against HIV-1 rev transcripts in human cells. Nature Biotechnology, 20, 500–505.

    CAS  Google Scholar 

  46. Sui, G., Soohoo, C., el Affar, B., Gay, F., Shi, Y., Forrester, W. C., & Shi, Y. (2002). A DNA vector-based RNAi technology to suppress gene expression in mammalian cells. Proceedings of the National Academy of Sciences of the United States of America, 99, 5515–5520.

    Article  CAS  Google Scholar 

  47. Miyagishi, M., & Taira, K. (2002). U6 promoter driven siRNAs with four uridine 3′ overhangs efficiently suppress targeted gene expression in mammalian cells. Nature Biotechnology, 20, 497–500.

    Article  CAS  Google Scholar 

  48. Wang, S., & El-Deiry, W. S. (2004). Inducible silencing of KILLER/DR5 in vivo promotes bioluminescent colon tumor xenograft growth and confers resistance to chemotherapeutic agent 5-fluorouracil. Cancer Research, 64, 6666–6672.

    Article  CAS  Google Scholar 

  49. Gupta, S., Schoer, R. A., Egan, J. E., Hannon, G. J., & Mittal, V. (2004). Inducible, reversible and stable RNA interference in mammalian cells. Proceedings of the National Academy of Sciences of the United States of America, 101, 1927–1932.

    Article  CAS  Google Scholar 

  50. Xia, H., Mao, Q., Paulson, H. L., & Davidson, B. L. (2002). siRNA-mediated gene silencing in vitro and in vivo. Nature Biotechnology, 20, 1006–1010.

    Article  CAS  Google Scholar 

  51. Chung, K. H., Hart, C. C., Al-Bassam, S., Avery, A., Taylor, J., Patel, P. D., Vojtek, A. B., & Turner, D. L. (2006). Polycistronic RNA polymerase II expression vectors for RNA interference based on BIC/miR-155. Nucleic Acids Research, 34, e53.

    Article  CAS  Google Scholar 

  52. Xia, X. G., Zhou, H., & Xu, Z. (2006). Multiple shRNAs expressed by an inducible pol II promoter can knock down the expression of multiple target genes. Biotechniques, 41, 64–68.

    Article  CAS  Google Scholar 

  53. Sun, D., Melegari, M., Sridhar, S., Rogler, C. E., & Zhu, L. (2006). Multi-miRNA hairpin method that improves gene knockdown efficiency and provides linked multi-gene knockdown. Biotechniques, 41, 59–63.

    Article  CAS  Google Scholar 

  54. Hall, K., Blair Zajdel, M. E., & Blair, G. E. (2010). Unity and diversity in the human adenoviruses: exploiting alternative entry pathways for gene therapy. Biochemical Journal, 431, 321–336.

    CAS  Google Scholar 

  55. Li, H., Fu, X., Chen, Y., Hong, Y., Tan, Y., Cao, H., Wu, M., & Wang, H. (2005). Use of adenovirus-delivered siRNA to target oncoprotein p28GANK in hepatocellular carcinoma. Gastroenterology, 128, 2029–2041.

    Article  CAS  Google Scholar 

  56. Osada, H., Tatematsu, Y., Yatabe, Y., Horio, Y., & Takahashi, T. (2005). ASH1 gene is a specific therapeutic target for lung cancers with neuroendocrine features. Cancer Research, 65, 10680–10685.

    Article  CAS  Google Scholar 

  57. Ragozin, S., Niemeier, A., Laatsch, A., Loeffler, B., Merkel, M., Beisiegel, U., & Heeren, J. (2005). Knockdown of hepatic ABCA1 by RNA interference decreases plasma HDL cholesterol levels and influences postprandial lipemia in mice. Arteriosclerosis, Thrombosis, and Vascular Biology, 25, 1433–1438.

    Article  CAS  Google Scholar 

  58. Schaser, T., Wrede, C., Duerner, L., Sliva, K., Cichutek, K., Schnierle, B., & Buchholz, C. J. (2011). RNAi-mediated gene silencing in tumour tissue using replication-competent retroviral vectors. Gene Therapy, 18, 953–960.

    Article  CAS  Google Scholar 

  59. Matrai, J., Chuah, M. K., & VandenDriessche, T. (2010). Recent advances in lentiviral vector development and applications. Molecular Therapy, 18, 477–490.

    Article  CAS  Google Scholar 

  60. Dittgen, T., Nimmerjahn, A., Komai, S., Licznerski, P., Waters, J., Margrie, T. W., Helmchen, F., Denk, W., Brecht, M., & Osten, P. (2004). Lentivirus-based genetic manipulations of cortical neurons and their optical and electrophysiological monitoring in vivo. Proceedings of the National Academy of Sciences of the United States of America, 101, 18206–18211.

    Article  CAS  Google Scholar 

  61. Bahi, A., Boyer, F., Kolira, M., & Dreyer, J. L. (2005). In vivo gene silencing of CD81 by lentiviral expression of small interference RNAs suppresses cocaine-induced behaviour. Journal of Neurochemistry, 92, 1243–1255.

    Article  CAS  Google Scholar 

  62. Singer, O., Marr, R. A., Rockenstein, E., Crews, L., Coufal, N. G., Gage, F. H., Verma, I. M., & Masliah, E. (2005). Targeting BACE1 with siRNAs ameliorates Alzheimer disease neuropathology in a transgenic model. Nature Neuroscience, 8, 1343–1349.

    Article  CAS  Google Scholar 

  63. Heilbronn, R., & Weger, S. (2010). Viral vectors for gene transfer: current status of gene therapeutics. Handbook of Experimental Pharmacology, 197, 143–170.

    Article  CAS  Google Scholar 

  64. Grimm, D. (2009). Small silencing RNAs: state-of-the-art. Advanced Drug Delivery Reviews, 61, 672–703.

    Article  CAS  Google Scholar 

  65. McCown, T. J. (2005). Adeno-associated virus (AAV) vectors in the CNS. Current Gene Therapy, 5, 333–338.

    Article  CAS  Google Scholar 

  66. McLaughlin, J., Cheng, D., Singer, O., Lukacs, R. U., Radu, C. G., Verma, I. M., & Witte, O. N. (2007). Sustained suppression of Bcr-Abl-driven lymphoid leukemia by microRNA mimics. Proceedings of the National Academy of Sciences of the United States of America, 104, 20501–20506.

    Article  CAS  Google Scholar 

  67. Radhakrishnan, S., Layden, T., & Gartel, A. (2004). RNA interference as a new strategy against viral hepatitis. Virology, 323, 173–181.

    Article  CAS  Google Scholar 

  68. Brummelkamp, T. R., Bernards, R., & Agami, R. (2002). Stable suppression of tumorigenicity by virus mediated RNA interference. Cancer Cell, 2, 243–247.

    Article  CAS  Google Scholar 

  69. Yang, G., Thompson, J., Fang, B., & Liu, J. (2003). Silencing of H-ras gene expression by retrovirus-mediated siRNA decreases transformation efficiency and tumour growth in a model of human ovarian cancer. Oncogene, 22, 5694–5701.

    Article  CAS  Google Scholar 

  70. Cioca, D., Aoki, Y., & Kiyosawa, K. (2003). RNA interference is a functional pathway with therapeutic potential in human myeloid leukemia cell lines. Cancer Gene Therapy, 10, 125–133.

    Article  CAS  Google Scholar 

  71. Martinez, L. A., Naguibneva, I., Lehrmann, H., Vervisch, A., Tchénio, T., Lozano, G., & Harel-Bellan, A. (2002). Synthetic small inhibiting RNAs: efficient tools to inactivate oncogenic mutations and restore p53 pathways. Proceedings of the National Academy of Sciences of the United States of America, 99, 14849–14854.

    Article  CAS  Google Scholar 

  72. Takei, Y., Kadomatsu, K., Yuzawa, Y., Matsuo, S., & Muramatsu, T. (2004). A small interfering RNA targeting vascular endothelial growth factor as cancer therapeutics. Cancer Research, 64, 3365–3370.

    Article  CAS  Google Scholar 

  73. Hu-Lieskovan, S., Heidel, J. D., Bartlett, D. W., Davis, M. E., & Triche, T. J. (2005). Sequence-specific knockdown of EWS-FLI1 by targeted, non viral delivery of small interfering RNA inhibits tumor growth in a murine model of metastatic Ewing's sarcoma. Cancer Research, 65, 8984–8992.

    Article  CAS  Google Scholar 

  74. Simmons, O., Maples, P. B., Senzer, N., & Nemunaitis, J. (2012). Ewing's sarcoma: development of RNA interference-based therapy for advanced disease. ISRN Oncology, 2012, 1–13.

    Article  CAS  Google Scholar 

  75. Cui, Y., Wang, Q., Wang, J. Y., Dong, Y., Luo, C., Hu, G., & Lu, Y. (2012). Knockdown of AKT2 expression by RNA interference inhibits proliferation, enhances apoptosis, and increases chemosensitivity to the anticancer drug VM-26 in U87 glioma cells. Brain Research, 1469, 1–9.

    Article  CAS  Google Scholar 

  76. Zhang, Z., Wang, J., Shen, B., Peng, C., & Zheng, M. (2012). The ABCC4 gene is a promising target for pancreatic cancer therapy. Gene, 491, 94–199.

    Google Scholar 

  77. Zhou, W., Wang, L., Gou, S., Wang, T. L., Zhang, M., Liu, T., & Wang, C. (2012). ShRNA silencing glycogen synthase kinase-3 beta inhibits tumor growth and angiogenesis in pancreatic cancer. Cancer Letters, 316, 178–186.

    Article  CAS  Google Scholar 

  78. Hu, Y., Shen, Y., Baofang, J., Wang, L., Zhang, Z., & Zhang, Y. (2011). Combinational RNAi gene therapy of hepatocellular carcinoma by targeting human EGFR and TERT. European Journal of Pharmaceutical Sciences, 42, 387–391.

    Article  CAS  Google Scholar 

  79. Mocellin, S., Costa, R., & Nitti, D. (2006). RNA interference: ready to silence cancer? Journal of Molecular Medicine (Berlin), 84, 4–15.

    Article  CAS  Google Scholar 

  80. Wang, Z., Rao, D. D., Senzer, N., & Nemunaitis, J. (2011). RNA interference and cancer therapy. Pharmaceutical Research, 28, 2983–2995.

    Article  CAS  Google Scholar 

  81. Joost Haasnoot, P., Cupac, D., & Berkhout, B. (2003). Inhibition of virus replication by RNA interference. Journal of Biomedical Science, 10, 607–616.

    Article  CAS  Google Scholar 

  82. McCaffrey, A., Nakai, H., Pandey, K., Huang, Z., Salazar, F., Xu, H., Wieland, S. F., Marion, P. L., & Kay, M. A. (2003). Inhibition of hepatitis B virus in mice by RNA interference. Nature Biotechnology, 21, 639–644.

    Article  CAS  Google Scholar 

  83. Giladi, H., Ketzinel-Gilad, M., Rivkin, L., Felig, Y., Nussbaum, O., & Galun, E. (2003). Small interfering RNA inhibits hepatitis B virus replication in mice. Molecular Therapy, 8, 767–769.

    Article  CAS  Google Scholar 

  84. Klein, C., Bock, C. T., Wedemeyer, H., Wüstefeld, T., Locarnini, S., Dienes, H. P., Kubicka, S., Manns, M. P., & Trautwein, C. (2003). Inhibition of hepatitis B virus replication in vivo by nucleoside analogues and siRNA. Gastroenterology, 125, 9–18.

    Article  CAS  Google Scholar 

  85. Shlomai, A., Lubelsky, Y., Har-Noy, O., & Shaul, Y. (2009). The “Trojan horse” model-delivery of anti-HBV small interfering RNAs by a recombinant HBV vector. Biochemical and Biophysical Research Communications, 390, 619–623.

    Article  CAS  Google Scholar 

  86. Ge, Q., Filip, L., Bai, A., Nguyen, T., Eisen, H., & Chen, J. (2004). Inhibition of influenza virus production in virus-infected mice by RNA interference. Proceedings of the National Academy of Sciences of the United States of America, 101, 88676–88681.

    Google Scholar 

  87. Merl, S., Michaelis, C., Jaschke, B., Vorpahl, M., Seidl, S., & Wessely, R. (2005). Targeting 2A protease by RNA interference attenuates coxsackie viral cytopathogenicity and promotes survival in highly susceptible mice. Circulation, 111, 1583–1592.

    Article  CAS  Google Scholar 

  88. Devincenzo, J., Williams, R. L., Wilkinson, T., Cehelsky, J., Nochur, S., Walsh, E., Meyers, R., Gollob, J., & Vaishnaw, A. (2010). A randomized, double-blind, placebo-controlled study of an RNAi-based therapy directed against respiratory syncytial virus. PNAS, 107, 8800–8805.

    Article  CAS  Google Scholar 

  89. Bitko, V., Musiyenko, A., Shulyayeva, O., & Barik, S. (2005). Inhibition of respiratory viruses by nasally administered siRNA. Nature Medicine, 11, 50–55.

    Article  CAS  Google Scholar 

  90. Blight, K. J., Kolykhalov, A. A., & Rice, C. M. (2000). Efficient initiation of HCV RNA replication in cell culture. Science, 290, 1972–1974.

    Article  CAS  Google Scholar 

  91. Lohmann, V., Körner, F., Koch, J., Herian, U., Theilmann, L., & Bartenschlager, R. (1999). Replication of subgenomic hepatitis C virus RNAs in a hepatoma cell line. Science, 285, 110–113.

    Article  CAS  Google Scholar 

  92. Ikeda, M., Yi, M., Li, K., & Lemon, S. M. (2002). Selectable subgenomic and genome-length dicistronic RNAs derived from an infectious molecular clone of the HCV-N strain of hepatitis C virus replicate efficiently in cultured Huh7 cells. Journal of Virology, 76, 2997–3006.

    Article  CAS  Google Scholar 

  93. Krieger, N., Lohmann, V., & Bartenschlager, R. (2001). Enhancement of hepatitis C virus RNA replication by cell culture-adaptive mutations. Journal of Virology, 75, 4614–4624.

    Article  CAS  Google Scholar 

  94. Pietschmann, T., Lohmann, V., Rutter, G., Kurpanek, K., & Bartenschlager, R. (2001). Characterization of cell lines carrying self-replicating hepatitis C virus RNAs. Journal of Virology, 75, 1252–1264.

    Article  CAS  Google Scholar 

  95. Kishine, H., Sugiyama, K., Hijikata, M., Kato, N., Takahashi, H., Noshi, T., Nio, Y., Hosaka, M., Miyanari, Y., & Shimotohno, K. (2002). Subgenomic replicon derived from a cell line infected with the hepatitis C virus. Biochemical and Biophysical Research Communications, 293, 993–999.

    Article  CAS  Google Scholar 

  96. McCaffrey, A. P., Meuse, L., Pham, T. T., Conklin, D. S., Hannon, G. J., & Kay, M. A. (2002). RNA interference in adult mice. Nature, 418, 38–39.

    Article  CAS  Google Scholar 

  97. Wilson, J. A., Jayasena, S., Khvorova, A., Sabatinos, S., Rodrigue-Gervais, I. G., Arya, S., Sarangi, F., Harris-Brandts, M., Beaulieu, S., & Richardson, C. D. (2003). RNA interference blocks gene expression and RNA synthesis from hepatitis C replicons propagated in human liver cells. Proceedings of the National Academy of Sciences of the United States of America, 100, 2783–2788.

    Article  CAS  Google Scholar 

  98. Coburn, G. A., & Cullen, B. R. (2002). Potent and specific inhibition of human immunodeficiency virus type 1 replication by RNA interference. Journal of Virology, 76, 9225–9331.

    Article  CAS  Google Scholar 

  99. Surabhi, R. M., & Gaynor, R. B. (2002). RNA interference directed against viral and cellular targets inhibits human immunodeficiency Virus Type 1 replication. Journal of Virology, 76, 12963–12973.

    Article  CAS  Google Scholar 

  100. Novina, C. D., Murray, M. F., Dykxhoorn, D. M., Beresford, P. J., Riess, J., Lee, S. K., Collman, R. G., Lieberman, J., Shankar, P., & Sharp, P. A. (2002). siRNA-directed inhibition of HIV-1 infection. Nature Medicine, 8, 681–686.

    CAS  Google Scholar 

  101. Park, W. S., Miyano-Kurosaki, N., Hayafune, M., Nakajima, E., Matsuzaki, T., Shimada, F., & Takaku, H. (2002). Prevention of HIV-1 infection in human peripheral blood mononuclear cells by specific RNA interference. Nucleic Acids Research, 30, 4830–4835.

    Article  CAS  Google Scholar 

  102. Jacque, J. M., Triques, K., & Stevenson, M. (2002). Modulation of HIV-1 replication by RNA interference. Nature, 418, 435–438.

    Article  CAS  Google Scholar 

  103. Martinez, M. A., Gutierrez, A., Armand-Ugon, M., Blanco, J., Parera, M., Gomez, J., Clotet, B., & Esté, J. A. (2002). Suppression of chemokine receptor expression by RNA interference allows for inhibition of HIV-1 replication. AIDS, 16, 2385–2390.

    Article  CAS  Google Scholar 

  104. Capodici, J., Kariko, K., & Weissman, D. (2002). Inhibition of HIV-1 infection by small interfering RNA-mediated RNA interference. Journal of Immunology, 169, 5196–5201.

    Google Scholar 

  105. Banerjea, A., Li, M. J., Bauer, G., Remling, L., Lee, N. S., Rossi, J., & Akkina, R. (2003). Inhibition of HIV-1 by lentiviral vector-transduced siRNAs in T lymphocytes differentiated in SCID-hu mice and CD34+ progenitor cell derived macrophages. Molecular Therapy, 8, 62–71.

    Article  CAS  Google Scholar 

  106. Li, M. J., Bauer, G., Michienzi, A., Yee, J. K., Lee, N. S., Kim, J., Li, S., Castanotto, D., Zaia, J., & Rossi, J. J. (2003). Inhibition of HIV-1 infection by lentiviral vectors expressing Pol III-promoted anti-HIV RNAs. Molecular Therapy, 8, 196–206.

    Article  CAS  Google Scholar 

  107. Boden, D., Pusch, O., Lee, F., Tucker, L., & Ramratnam, B. (2003). Human immunodeficiency virus type 1 escape from RNA interference. Journal of Virology, 77, 11531–11535.

    Article  CAS  Google Scholar 

  108. Nevot, M., Martrus, G., Clotet, B., & Martínez, M. A. (2011). RNA interference as a tool for exploring HIV-1 robustness. Journal of Molecular Biology, 413, 84–96.

    Article  CAS  Google Scholar 

  109. Ng, E. W., & Adamis, A. (2005). Targeting angiogenesis, the underlying disorder in neovascular age-related macular degeneration. Canadian Journal of Ophthalmology, 40, 352–368.

    Google Scholar 

  110. Yuan, M. K., Tao, Y., Yu, W. Z., Kai, W., & Jiang, Y. R. (2010). Lentivirus-mediated RNA interference of vascular endothelial growth factor in monkey eyes with iris neovascularisation. Molecular Vision, 16, 1743–1753.

    CAS  Google Scholar 

  111. Reich, S. J., Fosnot, J., Kuroki, A., Tang, W., Yang, X., Maguire, A. M., Bennett, J., & Tolentino, M. J. (2003). Small interfering RNA (siRNA) targeting VEGF effectively inhibits ocular neovascularization in a mouse model. Molecular Vision, 9, 210–216.

    CAS  Google Scholar 

  112. Kim, B., Tang, Q., Biswas, P. S., Xu, J., Schiffelers, R. M., Xie, F. Y., Ansari, A. M., Scaria, P. V., Woodle, M. C., Lu, P., & Rouse, B. T. (2004). Inhibition of ocular angiogenesis by siRNA targeting vascular endothelial growth factor pathway genes: therapeutic strategy for herpetic stromal keratitis. American Journal of Pathology, 165, 2177–2185.

    Article  CAS  Google Scholar 

  113. Check, E. (2005). A crucial test. Nature Medicine, 11, 243–244.

    Article  CAS  Google Scholar 

  114. Kleinman, M. E., Yamada, K., Takeda, A., Chandrasekaran, V., Nozaki, M., Baffi, J. Z., Albuquerque, R. J., Yamasaki, S., Itaya, M., Pan, Y., Appukuttan, B., Gibbs, D., Yang, Z., Karikó, K., Ambati, B. K., Wilgus, T. A., DiPietro, L. A., Sakurai, E., Zhang, K., Smith, J. R., Taylor, E. W., & Ambati, J. (2008). Sequence- and target-independent angiogenesis suppression by siRNA via TLR3. Nature, 452, 591–597.

    Article  CAS  Google Scholar 

  115. Zwicky, R., Muntener, K., Goldring, M. B., & Baici, A. (2002). Cathepsin B expression and down-regulation by gene silencing and antisense DNA in human chondrocytes. Biochemical Journal, 367, 209–217.

    Article  CAS  Google Scholar 

  116. Kovar, H., Ban, J., & Pospisilova, S. (2003). Potentials for RNAi in sarcoma research and therapy: Ewing's sarcoma as a model. Seminars in Cancer Biology, 13, 275–281.

    Article  CAS  Google Scholar 

  117. Owen, L. A., & Lessnick, S. L. (2006). Identification of target genes in their native cellular context: an analysis of EWS/FLI in Ewing's sarcoma. Cell Cycle, 5, 2049–2053.

    Article  CAS  Google Scholar 

  118. Tomita, T., Takeuchi, E., Tomita, N., Morishita, R., Kaneko, M., Yamamoto, K., Nakase, T., Seki, H., Kato, K., Kaneda, Y., & Ochi, T. (1999). Suppressed severity of collagen-induced arthritis by in vivo transfection of nuclear factor kappa B decoy oligodeoxynucleotides as a gene therapy. Arthritis and Rheumatism, 42, 2532–2542.

    Article  CAS  Google Scholar 

  119. Roman-Blas, J. A., & Jimenez, S. A. (2006). NF-κB as a potential therapeutic target in osteoarthritis and rheumatoid arthritis. Osteoarthritis and Cartilage, 14, 839–848.

    Article  CAS  Google Scholar 

  120. Schiffelers, R. M., Xu, J., Storm, G., Woodle, M. C., & Scaria, P. V. (2005). Effects of treatment with small interfering RNA on joint inflammation in mice with collagen-induced arthritis. Arthritis and Rheumatism, 52, 1314–1318.

    Article  CAS  Google Scholar 

  121. Wang, Y., & Grainger, D. W. (2012). RNA therapeutics targeting osteoclast-mediated excessive bone resorption. Advanced Drug Delivery Reviews, 64, 1341–1357.

    Article  CAS  Google Scholar 

  122. Barringhaus, K. G., & Zamore, P. D. (2009). MicroRNAs: regulating a change of heart. Circulation, 119, 2217–2224.

    Article  Google Scholar 

  123. van Rooij, E., Sutherland, L. B., Liu, N., Williams, A. H., McAnally, J., Gerard, R. D., Richardson, J. A., & Olson, E. N. (2006). A signature pattern of stress-responsive microRNAs that can evoke cardiac hypertrophy and heart failure. Proceedings of the National Academy of Sciences of the United States of America, 103, 18255–18260.

    Article  CAS  Google Scholar 

  124. Xu, T., Zhu, Y., Xiong, Y., Ge, Y. Y., Yun, J. P., & Zhuang, S. M. (2009). MicroRNA-195 suppresses tumorigenicity and regulates G1/S transition of human hepatocellular carcinoma cells. Hepatology, 50, 113–121.

    Article  CAS  Google Scholar 

  125. Thum, T., Gross, C., Fiedler, J., Fischer, T., Kissler, S., Bussen, M., Galuppo, P., Just, S., Rottbauer, W., Frantz, S., Castoldi, M., Soutschek, J., Koteliansky, V., Rosenwald, A., Basson, M. A., Licht, J. D., Pena, J. T., Rouhanifard, S. H., Muckenthaler, M. U., Tuschl, T., Martin, G. R., Bauersachs, J., & Engelhardt, S. (2008). MicroRNA-21 contributes to myocardial disease by stimulating MAP kinase signalling in fibroblasts. Nature, 456, 980–984.

    Article  CAS  Google Scholar 

  126. Carè, A., Catalucci, D., Felicetti, F., Bonci, D., Addario, A., Gallo, P., Bang, M. L., Segnalini, P., Gu, Y., Dalton, N. D., Elia, L., Latronico, M. V., Hoydal, M., Autore, C., Russo, M. A., Dorn, G. W., Ellingsen, O., Ruiz-Lozano, P., Peterson, K. L., Croce, C. M., Peschle, C., & Condorelli, G. (2007). MicroRNA-133 controls cardiac hypertrophy. Nature Medicine, 13, 613–618.

    Article  CAS  Google Scholar 

  127. Sayed, D., Hong, C., Chen, I. Y., Lypowy, J., & Abdellatif, M. (2007). MicroRNAs play an essential role in the development of cardiac hypertrophy. Circulation Research, 100, 416–424.

    Article  CAS  Google Scholar 

  128. Yang, B., Lin, H., Xiao, J., Lu, Y., Luo, X., Li, B., Zhang, Y., Xu, C., Bai, Y., Wang, H., Chen, G., & Wang, Z. (2007). The muscle-specific microRNA miR-1 regulates cardiac arrhythmogenic potential by targeting GJA1 and KCNJ2. Nature Medicine, 13, 486–491.

    Article  CAS  Google Scholar 

  129. Lynn, F. C., Skewes-Cox, P., Kosaka, Y., McManus, M. T., Harfe, B. D., & German, M. S. (2007). MicroRNA expression is required for pancreatic islet cell genesis in the mouse. Diabetes, 56, 2938–2945.

    Article  CAS  Google Scholar 

  130. El Ouaamari, A., Baroukh, N., Martens, G. A., Lebrun, P., Pipeleers, D., & Van Obberghen, E. (2008). MiR-375 targets 30-phosphoinositide-dependent protein kinase-1 and regulates glucose-induced biological responses in pancreatic beta-cells. Diabetes, 57, 2708–2717.

    Article  CAS  Google Scholar 

  131. Herrera, B. M., Lockstone, H. E., Taylor, J. M., Wills, Q. F., Kaisaki, P. J., Barrett, A., Camps, C., Fernandez, C., Ragoussis, J., Gauguier, D., McCarthy, M. I., & Lindgren, C. M. (2009). MicroRNA-125a is over-expressed in insulin target tissues in a spontaneous rat model of type 2 diabetes. BMC Medical Genomics, 2, 54.

    Article  CAS  Google Scholar 

  132. Tang, X., Muniappan, L., Tang, G., & Ozcan, S. (2009). Identification of glucose regulated miRNAs from pancreatic beta cells reveals a role for miR-30d in insulin transcription. RNA, 15, 287–293.

    Article  CAS  Google Scholar 

  133. Rehman, K. K., Trucco, M., Wang, Z., Xiao, X., & Robbins, P. D. (2008). AAV8- mediated gene transfer of interleukin-4 to endogenous beta-cells prevents the onset of diabetes in NOD mice. Molecular Therapy, 16, 1409–1416.

    Article  CAS  Google Scholar 

  134. Yau, W. W. Y., Rujitanaroj, P., Lam, L., & Chew, S. Y. (2012). Directing stem cell fate by controlled RNA interference. Biomaterials, 33, 2608–2628.

    Article  CAS  Google Scholar 

  135. Nguyen, Q. D., Schachar, R. A., Nduaka, C. I., Sperling, M., Basile, A. S., Klamerus, K. J., Chi-Burris, K., Yan, E., Paggiarino, D. A., Rosenblatt, I., Khan, A., Aitchison, R., & Erlich, S. S. (2012). Phase 1 dose-escalation study of a siRNA targeting the RTP801 gene in age-related macular degeneration patients. Eye (London, England), 8, 1099–1105.

    Article  CAS  Google Scholar 

  136. Ahmed, Z., Kalinski, H., Berry, M., Almasieh, M., Ashush, H., Slager, N., Brafman, A., Spivak, I., Prasad, N., Mett, I., Shalom, E., Alpert, E., Di Polo, A., Feinstein, E., & Logan, A. (2011). Ocular neuroprotection by siRNA targeting caspase-2. Cell Death and Diseases, 6, e173.

    Article  CAS  Google Scholar 

  137. Verma, U. N., Surabhi, R. M., Schmaltieg, A., Becerra, C., & Gaynor, R. B. (2003). Small interfering RNAs directed against beta-catenin inhibit the in vitro and in vivo growth of colon cancer cells. Clinical Cancer Research, 4, 1291–1300.

    Google Scholar 

  138. Judge, A. D., Robbins, M., Tavakoli, I., Levi, J., Hu, L., Fronda, A., Ambegia, E., McClintock, K., & MacLachlan, I. (2009). Confirming the RNAi-mediated mechanism of action of siRNA-based cancer therapeutics in mice. The Journal of Clinical Investigation, 119, 661–673.

    Article  CAS  Google Scholar 

  139. Rahman, M. A., Amin, A. R., Wang, X., Zuckerman, J. E., Choi, C. H., Zhou, B., Wang, D., Nannapaneni, S., Koenig, L., Chen, Z., Chen, Z. G., Yen, Y., Davis, M. E., & Shin, D. M. (2012). Systemic delivery of siRNA nanoparticles targeting RRM2 suppresses head and neck tumor growth. Journal of Controlled Release, 159, 384–392.

    Article  CAS  Google Scholar 

  140. Strumberg, D., Schultheis, B., Traugott, U., Vank, C., Santel, A., Keil, O., Giese, K., Kaufmann, J., & Drevs, J. (2012). Phase I clinical development of Atu027, a siRNA formulation targeting PKN3 in patients with advanced solid tumors. International Journal of Clinical Pharmacology and Therapeutics, 50, 76–78.

    CAS  Google Scholar 

  141. Koldehoff, M., & Elmaagacli, A. H. (2009). Therapeutic targeting of gene expression by siRNAs directed against BCR-ABL transcripts in a patient with imatinib-resistant chronic myeloid leukemia. Methods in Molecular Biology, 487, 451–466.

    Article  CAS  Google Scholar 

  142. Dannull, J., Lesher, D. T., Holzknecht, R., Qi, W., Hanna, G., Seigler, H., Tyler, D. S., & Pruitt, S. K. (2007). Immunoproteasome down-modulation enhances the ability of dendritic cells to stimulate antitumor immunity. Blood, 110, 4341–4350.

    Article  CAS  Google Scholar 

  143. Astor, T. L. (2011). RNA interference, RSV, and lung transplantation: a promising future for siRNA therapeutics. American Journal of Respiratory and Critical Care Medicine, 183, 427–428.

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the Entomology Research Institute, Loyola College, Chennai, India for financial assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Savarimuthu Ignacimuthu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ramachandran, P.V., Ignacimuthu, S. RNA Interference—A Silent but an Efficient Therapeutic Tool. Appl Biochem Biotechnol 169, 1774–1789 (2013). https://doi.org/10.1007/s12010-013-0098-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-013-0098-1

Keywords

Navigation