Skip to main content

Vesicoureteral Reflux and Renal Scarring in Children

  • Reference work entry
  • First Online:
Pediatric Nephrology

Abstract

Vesicoureteral reflux (VUR) is the most common congenital anomaly of the urinary tract. The gold standard for diagnosing VUR is a voiding cystourethrogram (VCUG). According to the International Reflux Grading Scheme, the severity of VUR is classified as grade I–V. It is diagnosed in 30–40 % of children with a urinary tract infection (UTI). VUR may be an isolated abnormality (primary VUR) or it may occur in association with other congenital anomalies of the kidney and urinary tract (CAKUT), including renal dysplasia and obstructive uropathy. VUR may also be noted secondary to bladder dysfunction such as neurogenic bladder or other obstructive anomalies (e.g., posterior urethral valves) (secondary VUR). An increasing number of children with VUR are being diagnosed during follow-up for antenatally diagnosed renal abnormalities and no preexisting history of UTI. Renal scarring associated with VUR is called reflux nephropathy (RN). RN is categorized as “congenital,” which is a result of abnormal renal development leading to focal renal dysplasia, or “acquired” as a result of pyelonephritis-induced renal injury. Complications of RN in pediatric patients include proteinuria, hypertension, and end-stage renal failure (ESRF).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 949.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 1,299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ransley PG. Vesicoureteric reflux: continuing surgical dilemma. Urology. 1978;12(3):246–55.

    Article  CAS  PubMed  Google Scholar 

  2. Smellie J, et al. Vesico-ureteric reflux and renal scarring. Kidney Int Suppl. 1975;4:S65–72.

    CAS  PubMed  Google Scholar 

  3. Wennerstrom M, et al. Disappearance of vesicoureteral reflux in children. Arch Pediatr Adolesc Med. 1998;152(9):879–83.

    CAS  PubMed  Google Scholar 

  4. Dick PT, Feldman W. Routine diagnostic imaging for childhood urinary tract infections: a systematic overview. J Pediatr. 1996;128(1):15–22.

    Article  CAS  PubMed  Google Scholar 

  5. Arant Jr BS. Medical management of mild and moderate vesicoureteral reflux: followup studies of infants and young children. A preliminary report of the Southwest Pediatric Nephrology Study Group. J Urol. 1992;148(5 Pt 2):1683–7.

    PubMed  Google Scholar 

  6. Rolleston GL, Shannon FT, Utley WL. Follow-up of vesico-ureteric reflux in the newborn. Kidney Int Suppl. 1975;4:S59–64.

    CAS  PubMed  Google Scholar 

  7. Rolleston GL, Shannon FT, Utley WL. Relationship of infantile vesicoureteric reflux to renal damage. Br Med J. 1970;1(694):460–3.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Skoog SJ, Belman AB, Majd M. A nonsurgical approach to the management of primary vesicoureteral reflux. J Urol. 1987;138(4 Pt 2):941–6.

    CAS  PubMed  Google Scholar 

  9. Dwoskin JY, Perlmutter AD. Vesicoureteral reflux in children: a computerized review. J Urol. 1973;109(5):888–90.

    CAS  PubMed  Google Scholar 

  10. Scott JE. The management of ureteric reflux in children. Br J Urol. 1977;49(2):109–18.

    Article  CAS  PubMed  Google Scholar 

  11. Snodgrass W. The impact of treated dysfunctional voiding on the nonsurgical management of vesicoureteral reflux. J Urol. 1998;160(5):1823–5.

    Article  CAS  PubMed  Google Scholar 

  12. Marra G, et al. Congenital renal damage associated with primary vesicoureteral reflux detected prenatally in male infants. J Pediatr. 1994;124(5 Pt 1):726–30.

    Article  CAS  PubMed  Google Scholar 

  13. Askari A, Belman AB. Vesicoureteral reflux in black girls. J Urol. 1982;127(4):747–8.

    CAS  PubMed  Google Scholar 

  14. Kunin CM. A ten-year study of bacteriuria in schoolgirls: final report of bacteriologic, urologic, and epidemiologic findings. J Infect Dis. 1970;122(5):382–93.

    Article  CAS  PubMed  Google Scholar 

  15. Skoog SJ, Belman AB. Primary vesicoureteral reflux in the black child. Pediatrics. 1991;87(4):538–43.

    CAS  PubMed  Google Scholar 

  16. Hoberman A, et al. Antimicrobial prophylaxis for children with vesicoureteral reflux. N Engl J Med. 2014;370(25):2367–76.

    Article  PubMed  CAS  Google Scholar 

  17. Chand DH, et al. Incidence and severity of vesicoureteral reflux in children related to age, gender, race and diagnosis. J Urol. 2003;170(4 Pt 2):1548–50.

    Article  PubMed  Google Scholar 

  18. Dixon JS, et al. The structure and autonomic innervation of the vesico-ureteric junction in cases of primary ureteric reflux. Br J Urol. 1998;81(1):146–51.

    Article  CAS  PubMed  Google Scholar 

  19. Lebowitz RL, et al. International system of radiographic grading of vesicoureteric reflux. International Reflux Study in Children. Pediatr Radiol. 1985;15(2):105–9.

    Article  CAS  PubMed  Google Scholar 

  20. Zhang G, et al. Grading of reflux by radionuclide cystography. Clin Nucl Med. 1987;12(2):106–9.

    Article  CAS  PubMed  Google Scholar 

  21. Hutch JA. Theory of maturation of the intravesical ureter. J Urol. 1961;86:534–8.

    CAS  PubMed  Google Scholar 

  22. Silva JM, et al. Predictive factors of resolution of primary vesico-ureteric reflux: a multivariate analysis. BJU Int. 2006;97(5):1063–8.

    Article  PubMed  Google Scholar 

  23. Smellie JM, et al. Outcome at 10 years of severe vesicoureteric reflux managed medically: report of the International Reflux Study in Children. J Pediatr. 2001;139(5):656–63.

    Article  CAS  PubMed  Google Scholar 

  24. Prospective trial of operative versus non-operative treatment of severe vesicoureteric reflux in children: five years’ observation. Birmingham Reflux Study Group. Br Med J (Clin Res Ed). 1987;295(6592):237–41.

    Google Scholar 

  25. Tamminen-Mobius T, et al. Cessation of vesicoureteral reflux for 5 years in infants and children allocated to medical treatment. The International Reflux Study in Children. J Urol. 1992;148(5 Pt 2):1662–6.

    CAS  PubMed  Google Scholar 

  26. Schwab Jr CW, et al. Spontaneous resolution of vesicoureteral reflux: a 15-year perspective. J Urol. 2002;168(6):2594–9.

    Article  PubMed  Google Scholar 

  27. Elder JS, et al. Pediatric Vesicoureteral Reflux guidelines panel summary report on the management of primary vesicoureteral reflux in children. J Urol. 1997;157(5):1846–51.

    Article  CAS  PubMed  Google Scholar 

  28. Woodard JR, Holden S. The prognostic significance of fever in childhood urinary infections: observations in 350 consecutive patients. Clin Pediatr (Phila). 1976;15(11):1051–4.

    Article  CAS  Google Scholar 

  29. Siegel SR, et al. Urinary infection in infants and preschool children. Five-year follow-up. Am J Dis Child. 1980;134(4):369–72.

    Article  CAS  PubMed  Google Scholar 

  30. Chen JJ, et al. Infant vesicoureteral reflux: a comparison between patients presenting with a prenatal diagnosis and those presenting with a urinary tract infection. Urology. 2003;61(2):442–6; discussion 446–7.

    Article  PubMed  Google Scholar 

  31. Koff SA, Wagner TT, Jayanthi VR. The relationship among dysfunctional elimination syndromes, primary vesicoureteral reflux and urinary tract infections in children. J Urol. 1998;160(3 Pt 2):1019–22.

    Article  CAS  PubMed  Google Scholar 

  32. Zerin JM, Ritchey ML, Chang AC. Incidental vesicoureteral reflux in neonates with antenatally detected hydronephrosis and other renal abnormalities. Radiology. 1993;187(1):157–60.

    Article  CAS  PubMed  Google Scholar 

  33. Upadhyay J, et al. Natural history of neonatal reflux associated with prenatal hydronephrosis: long-term results of a prospective study. J Urol. 2003;169(5):1837–41; discussion 1841; author reply 1841.

    Article  PubMed  Google Scholar 

  34. Papachristou F, et al. The characteristics and outcome of primary vesicoureteric reflux diagnosed in the first year of life. Int J Clin Pract. 2006;60(7):829–34.

    Article  CAS  PubMed  Google Scholar 

  35. Yeung CK, et al. The characteristics of primary vesico-ureteric reflux in male and female infants with pre-natal hydronephrosis. Br J Urol. 1997;80(2):319–27.

    Article  CAS  PubMed  Google Scholar 

  36. Yeung CK, et al. Urodynamic patterns in infants with normal lower urinary tracts or primary vesico-ureteric reflux. Br J Urol. 1998;81(3):461–7.

    Article  CAS  PubMed  Google Scholar 

  37. Godley ML, et al. The relationship between early renal status, and the resolution of vesico-ureteric reflux and bladder function at 16 months. BJU Int. 2001;87(6):457–62.

    Article  CAS  PubMed  Google Scholar 

  38. Herndon CD, et al. A multicenter outcomes analysis of patients with neonatal reflux presenting with prenatal hydronephrosis. J Urol. 1999;162(3 Pt 2):1203–8.

    Article  CAS  PubMed  Google Scholar 

  39. Noe HN, et al. The transmission of vesicoureteral reflux from parent to child. J Urol. 1992;148(6):1869–71.

    CAS  PubMed  Google Scholar 

  40. Jerkins GR, Noe HN. Familial vesicoureteral reflux: a prospective study. J Urol. 1982;128(4):774–8.

    CAS  PubMed  Google Scholar 

  41. Van den Abbeele AD, et al. Vesicoureteral reflux in asymptomatic siblings of patients with known reflux: radionuclide cystography. Pediatrics. 1987;79(1):147–53.

    PubMed  Google Scholar 

  42. Sirota L, et al. Familial vesicoureteral reflux: a study of 16 families. Urol Radiol. 1986;8(1):22–4.

    Article  CAS  PubMed  Google Scholar 

  43. Noe HN. The long-term results of prospective sibling reflux screening. J Urol. 1992;148(5 Pt 2):1739–42.

    CAS  PubMed  Google Scholar 

  44. Connolly LP, et al. Natural history of vesicoureteral reflux in siblings. J Urol. 1996;156(5):1805–7.

    Article  CAS  PubMed  Google Scholar 

  45. Wan J, et al. Sibling reflux: a dual center retrospective study. J Urol. 1996;156(2 Pt 2):677–9.

    CAS  PubMed  Google Scholar 

  46. Kenda RB, et al. A follow-up study of vesico-ureteric reflux and renal scars in asymptomatic siblings of children with reflux. Nucl Med Commun. 1997;18(9):827–31.

    Article  CAS  PubMed  Google Scholar 

  47. Kenda RB, Zupancic Z. Ultrasound screening of older asymptomatic siblings of children with vesicoureteral reflux: is it beneficial? Pediatr Radiol. 1994;24(1):14–6.

    Article  CAS  PubMed  Google Scholar 

  48. Noe HN. The current status of screening for vesicoureteral reflux. Pediatr Nephrol. 1995;9(5):638–41.

    Article  CAS  PubMed  Google Scholar 

  49. Parekh DJ, et al. Outcome of sibling vesicoureteral reflux. J Urol. 2002;167(1):283–4.

    Article  PubMed  Google Scholar 

  50. Houle AM, et al. Impact of early screening for reflux in siblings on the detection of renal damage. BJU Int. 2004;94(1):123–5.

    Article  PubMed  Google Scholar 

  51. Pirker ME, Colhoun E, Puri P. Renal scarring in familial vesicoureteral reflux: is prevention possible? J Urol. 2006;176(4 Pt 2):1842–6; discussion 1846.

    Article  PubMed  Google Scholar 

  52. Yoneda A, et al. Risk factors for the development of renal parenchymal damage in familial vesicoureteral reflux. J Urol. 2002;168(4 Pt 2):1704–7.

    Article  CAS  PubMed  Google Scholar 

  53. Peters CA, et al. Summary of the AUA guideline on management of primary vesicoureteral reflux in children. J Urol. 2010;184(3):1134–44.

    Article  PubMed  Google Scholar 

  54. Norgaard JP, et al. Standardization and definitions in lower urinary tract dysfunction in children. International Children’s Continence Society. Br J Urol. 1998;81 Suppl 3:1–16.

    Article  PubMed  Google Scholar 

  55. McKenna PH, et al. Pelvic floor muscle retraining for pediatric voiding dysfunction using interactive computer games. J Urol. 1999;162(3 Pt 2):1056–62; discussion 1062–3.

    Article  CAS  PubMed  Google Scholar 

  56. Van Gool J, Tanagho EA. External sphincter activity and recurrent urinary tract infection in girls. Urology. 1977;10(4):348–53.

    Article  PubMed  Google Scholar 

  57. Bloom DA, Faerber G, Bomalaski MD. Urinary incontinence in girls. Evaluation, treatment, and its place in the standard model of voiding dysfunctions in children. Urol Clin North Am. 1995;22(3):521–38.

    CAS  PubMed  Google Scholar 

  58. Farhat W, et al. The dysfunctional voiding scoring system: quantitative standardization of dysfunctional voiding symptoms in children. J Urol. 2000;164(3 Pt 2):1011–5.

    Article  CAS  PubMed  Google Scholar 

  59. Schulman SL, et al. Comprehensive management of dysfunctional voiding. Pediatrics. 1999;103(3):E31.

    Article  CAS  PubMed  Google Scholar 

  60. Shaikh N, et al. Dysfunctional elimination syndrome: is it related to urinary tract infection or vesicoureteral reflux diagnosed early in life? Pediatrics. 2003;112(5):1134–7.

    Article  PubMed  Google Scholar 

  61. Seruca H. Vesicoureteral reflux and voiding dysfunction: a prospective study. J Urol. 1989;142(2 Pt 2):494–8; discussion 501.

    CAS  PubMed  Google Scholar 

  62. Koff SA. Relationship between dysfunctional voiding and reflux. J Urol. 1992;148(5 Pt 2):1703–5.

    CAS  PubMed  Google Scholar 

  63. van Gool JD, et al. Historical clues to the complex of dysfunctional voiding, urinary tract infection and vesicoureteral reflux. The International Reflux Study in Children. J Urol. 1992;148(5 Pt 2):1699–702.

    PubMed  Google Scholar 

  64. Capozza N, Caione P. Dextranomer/hyaluronic acid copolymer implantation for vesico-ureteral reflux: a randomized comparison with antibiotic prophylaxis. J Pediatr. 2002;140(2):230–4.

    Article  CAS  PubMed  Google Scholar 

  65. Traxel E, et al. Risk factors for urinary tract infection after dextranomer/hyaluronic acid endoscopic injection. J Urol. 2009;182(4 Suppl):1708–12.

    Article  PubMed  Google Scholar 

  66. Parekh DJ, et al. The use of radiography, urodynamic studies and cystoscopy in the evaluation of voiding dysfunction. J Urol. 2001;165(1):215–8.

    Article  CAS  PubMed  Google Scholar 

  67. Greenfield SP, Wan J. The relationship between dysfunctional voiding and congenital vesicoureteral reflux. Curr Opin Urol. 2000;10(6):607–10.

    Article  CAS  PubMed  Google Scholar 

  68. Glazier DB, et al. Evaluation of the utility of video-urodynamics in children with urinary tract infection and voiding dysfunction. Br J Urol. 1997;80(5):806–8.

    Article  CAS  PubMed  Google Scholar 

  69. Rushton HG. Wetting and functional voiding disorders. Urol Clin North Am. 1995;22(1):75–93.

    CAS  PubMed  Google Scholar 

  70. O’Regan S, Yazbeck S, Schick E. Constipation, bladder instability, urinary tract infection syndrome. Clin Nephrol. 1985;23(3):152–4.

    PubMed  Google Scholar 

  71. Neumann PZ, DeDomenico IJ, Nogrady MB. Constipation and urinary tract infection. Pediatrics. 1973;52(2):241–5.

    CAS  PubMed  Google Scholar 

  72. Chase JW, et al. Functional constipation in children. J Urol. 2004;171(6 Pt 2):2641–3.

    Article  CAS  PubMed  Google Scholar 

  73. Smellie JM, Normand IC. Bacteriuria, reflux, and renal scarring. Arch Dis Child. 1975;50(8):581–5.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  74. Bhatnagar V, et al. The role of DMSA scans in evaluation of the correlation between urinary tract infection, vesicoureteric reflux, and renal scarring. Pediatr Surg Int. 2002;18(2–3):128–34.

    Article  CAS  PubMed  Google Scholar 

  75. Hodson CJ, Edwards D. Chronic pyelonephritis and vesico-ureteric reflex. Clin Radiol. 1960;11:219–31.

    Article  CAS  PubMed  Google Scholar 

  76. Bailey RR. The relationship of vesico-ureteric reflux to urinary tract infection and chronic pyelonephritis-reflux nephropathy. Clin Nephrol. 1973;1(3):132–41.

    CAS  PubMed  Google Scholar 

  77. Nguyen HT, et al. 99m Technetium dimercapto-succinic acid renal scintigraphy abnormalities in infants with sterile high grade vesicoureteral reflux. J Urol. 2000;164(5):1674–8; discussion 1678–9.

    Article  CAS  PubMed  Google Scholar 

  78. Hiraoka M, et al. Congenitally small kidneys with reflux as a common cause of nephropathy in boys. Kidney Int. 1997;52(3):811–6.

    Article  CAS  PubMed  Google Scholar 

  79. Risdon RA, Yeung CK, Ransley PG. Reflux nephropathy in children submitted to unilateral nephrectomy: a clinicopathological study. Clin Nephrol. 1993;40(6):308–14.

    CAS  PubMed  Google Scholar 

  80. Pennesi M, Travan L, Peratoner L, Bordugo A, Cattaneo A, Ronfani L, Minisini S, Ventura A, for the North East Italy Prophylaxis in VUR study group. Is antibiotic prophylaxis in children with vesicoureteral reflux effective in preventing pyelonephritis and renal scars? A randomized, controlled trial. Pediatrics. 2008;121(6):e1489–94.

    Article  PubMed  Google Scholar 

  81. Wennerstrom M, et al. Primary and acquired renal scarring in boys and girls with urinary tract infection. J Pediatr. 2000;136(1):30–4.

    Article  CAS  PubMed  Google Scholar 

  82. Mattoo TK. Vesicoureteral reflux and reflux nephropathy. Adv Chronic Kidney Dis. 2011;18(5):348–54.

    Article  PubMed Central  PubMed  Google Scholar 

  83. Rushton HG, et al. Renal scarring following reflux and nonreflux pyelonephritis in children: evaluation with 99mtechnetium-dimercaptosuccinic acid scintigraphy. J Urol. 1992;147(5):1327–32 [erratum appears in J Urol 1992;148(3):898].

    CAS  PubMed  Google Scholar 

  84. Jakobsson B, Berg U, Svensson L. Renal scarring after acute pyelonephritis. Arch Dis Child. 1994;70(2):111–5.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  85. Ransley PG, Risdon RA. Renal papillary morphology in infants and young children. Urol Res. 1975;3(3):111–3.

    CAS  PubMed  Google Scholar 

  86. Ransley PG, Risdon RA. Reflux nephropathy: effects of antimicrobial therapy on the evolution of the early pyelonephritic scar. Kidney Int. 1981;20(6):733–42.

    Article  CAS  PubMed  Google Scholar 

  87. Filly R, et al. Development and progression of clubbing and scarring in children with recurrent urinary tract infections. Radiology. 1974;113(1):145–53.

    Article  CAS  PubMed  Google Scholar 

  88. Goldraich NP, Goldraich IH. Update on dimercaptosuccinic acid renal scanning in children with urinary tract infection. Pediatr Nephrol. 1995;9(2):221–6; discussion 227.

    Article  CAS  PubMed  Google Scholar 

  89. Shindo S, Bernstein J, Arant Jr BS. Evolution of renal segmental atrophy (Ask-Upmark kidney) in children with vesicoureteric reflux: radiographic and morphologic studies. J Pediatr. 1983;102(6):847–54.

    Article  CAS  PubMed  Google Scholar 

  90. Roberts JA. Etiology and pathophysiology of pyelonephritis. Am J Kidney Dis. 1991;17(1):1–9.

    Article  CAS  PubMed  Google Scholar 

  91. Roberts JA. Mechanisms of renal damage in chronic pyelonephritis (reflux nephropathy). Curr Top Pathol. 1995;88:265–87.

    Article  CAS  PubMed  Google Scholar 

  92. Roberts JA, et al. Immunology of pyelonephritis in the primate model: live versus heat-killed bacteria. Kidney Int. 1981;19(2):297–305.

    Article  CAS  PubMed  Google Scholar 

  93. McCord JM. Oxygen-derived free radicals in postischemic tissue injury. N Engl J Med. 1985;312(3):159–63.

    Article  CAS  PubMed  Google Scholar 

  94. Smith EA. Pyelonephritis, renal scarring, and reflux nephropathy: a pediatric urologist’s perspective. Pediatr Radiol. 2008;38 Suppl 1:S76–82.

    Article  PubMed  Google Scholar 

  95. Roberts JA. Studies of vesicoureteral reflux: a review of work in a primate model. South Med J. 1978;71(1):28–30.

    Article  CAS  PubMed  Google Scholar 

  96. Eddy AA. Interstitial macrophages as mediators of renal fibrosis. Exp Nephrol. 1995;3(2):76–9.

    CAS  PubMed  Google Scholar 

  97. Muller GA, Strutz FM. Renal fibroblast heterogeneity. Kidney Int Suppl. 1995;50:S33–6.

    CAS  PubMed  Google Scholar 

  98. Roberts JA. Pathogenesis of pyelonephritis. J Urol. 1983;129(6):1102–6.

    CAS  PubMed  Google Scholar 

  99. Matsuoka H, et al. Renal pathology in patients with reflux nephropathy. The turning point in irreversible renal disease. Eur Urol. 1994;26(2):153–9.

    CAS  PubMed  Google Scholar 

  100. Akaoka K, White RH, Raafat F. Glomerular morphometry in childhood reflux nephropathy, emphasizing the capillary changes. Kidney Int. 1995;47(4):1108–14.

    Article  CAS  PubMed  Google Scholar 

  101. Torres VE, et al. The progression of vesicoureteral reflux nephropathy. Ann Intern Med. 1980;92(6):776–84.

    Article  CAS  PubMed  Google Scholar 

  102. Jodal U. The natural history of bacteriuria in childhood. Infect Dis Clin North Am. 1987;1(4):713–29.

    CAS  PubMed  Google Scholar 

  103. Lomberg H, et al. Virulence-associated traits in Escherichia coli causing first and recurrent episodes of urinary tract infection in children with or without vesicoureteral reflux. J Infect Dis. 1984;150(4):561–9.

    Article  CAS  PubMed  Google Scholar 

  104. de Man P, et al. Bacterial attachment as a predictor of renal abnormalities in boys with urinary tract infection. J Pediatr. 1989;115(6):915–22.

    Article  PubMed  Google Scholar 

  105. Ozen S, et al. Implications of certain genetic polymorphisms in scarring in vesicoureteric reflux: importance of ACE polymorphism. Am J Kidney Dis. 1999;34(1):140–5.

    Article  CAS  PubMed  Google Scholar 

  106. Hohenfellner K, et al. ACE I/D gene polymorphism predicts renal damage in congenital uropathies. Pediatr Nephrol. 1999;13(6):514–8.

    Article  CAS  PubMed  Google Scholar 

  107. Majd M, et al. Relationship among vesicoureteral reflux, P-fimbriated Escherichia coli, and acute pyelonephritis in children with febrile urinary tract infection. J Pediatr. 1991;119(4):578–85.

    Article  CAS  PubMed  Google Scholar 

  108. Benador D, et al. Cortical scintigraphy in the evaluation of renal parenchymal changes in children with pyelonephritis. J Pediatr. 1994;124(1):17–20.

    Article  CAS  PubMed  Google Scholar 

  109. Jakobsson B, Soderlundh S, Berg U. Diagnostic significance of 99mTc-dimercaptosuccinic acid (DMSA) scintigraphy in urinary tract infection. Arch Dis Child. 1992;67(11):1338–42.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  110. Benador D, et al. Are younger children at highest risk of renal sequelae after pyelonephritis? Lancet. 1997;349(9044):17–9.

    Article  CAS  PubMed  Google Scholar 

  111. Berg UB. Long-term followup of renal morphology and function in children with recurrent pyelonephritis. J Urol. 1992;148(5 Pt 2):1715–20.

    CAS  PubMed  Google Scholar 

  112. Jacobson SH, et al. Long-term prognosis of post-infectious renal scarring in relation to radiological findings in childhood–a 27-year follow-up. Pediatr Nephrol. 1992;6(1):19–24.

    Article  CAS  PubMed  Google Scholar 

  113. Medical versus surgical treatment of primary vesicoureteral reflux: report of the International Reflux Study Committee. Pediatrics. 1981;67(3):392–400.

    Google Scholar 

  114. Winberg J, et al. Epidemiology of symptomatic urinary tract infection in childhood. Acta Paediatr Suppl. 1974;252:1–20.

    Article  Google Scholar 

  115. Pylkkanen J, Vilska J, Koskimies O. The value of level diagnosis of childhood urinary tract infection in predicting renal injury. Acta Paediatr Scand. 1981;70(6):879–83.

    Article  CAS  PubMed  Google Scholar 

  116. Faust WC, Diaz M, Pohl HG. Incidence of post-pyelonephritic renal scarring: a meta-analysis of the dimercapto-succinic acid literature. J Urol. 2009;181(1):290–7; discussion 297–8.

    Article  PubMed  Google Scholar 

  117. Rushton HG. The evaluation of acute pyelonephritis and renal scarring with technetium 99m-dimercaptosuccinic acid renal scintigraphy: evolving concepts and future directions. Pediatr Nephrol. 1997;11(1):108–20.

    Article  CAS  PubMed  Google Scholar 

  118. Doganis D, et al. Does early treatment of urinary tract infection prevent renal damage? Pediatrics. 2007;120(4):e922–8.

    Article  PubMed  Google Scholar 

  119. Ditchfield MR, et al. Risk factors in the development of early renal cortical defects in children with urinary tract infection. AJR Am J Roentgenol. 1994;162(6):1393–7.

    Article  CAS  PubMed  Google Scholar 

  120. Shaikh N, et al. Risk of renal scarring in children with a first urinary tract infection: a systematic review. Pediatrics. 2010;126(6):1084–91.

    Article  PubMed  Google Scholar 

  121. Gonzalez E, Papazyan J-P, Girardin E. Impact of vesicoureteral reflux on the size of renal lesions after an episode of acute pyelonephritis. J Urol. 2005;173(2):571–4; discussion 574–5.

    Article  PubMed  Google Scholar 

  122. Skoog SJ, et al. Pediatric Vesicoureteral Reflux guidelines panel summary report: clinical practice guidelines for screening siblings of children with vesicoureteral reflux and neonates/infants with prenatal hydronephrosis. J Urol. 2010;184(3):1145–51.

    Article  PubMed  Google Scholar 

  123. Ahmed M, et al. Dimercaptosuccinic acid (DMSA) renal scan in the evaluation of hypertension in children. Pediatr Nephrol. 2008;23(3):435–8.

    Article  PubMed  Google Scholar 

  124. Barai S, et al. Prevalence of vesicoureteral reflux in patients with incidentally diagnosed adult hypertension. Urology. 2004;63(6):1045–8; discussion 1048–9.

    Article  PubMed  Google Scholar 

  125. Ismaili K, et al. Primary vesicoureteral reflux detected in neonates with a history of fetal renal pelvis dilatation: a prospective clinical and imaging study. J Pediatr. 2006;148(2):222–7.

    Article  PubMed  Google Scholar 

  126. Sweeney B, et al. Reflux nephropathy in infancy: a comparison of infants presenting with and without urinary tract infection. J Urol. 2001;166(2):648–50.

    Article  CAS  PubMed  Google Scholar 

  127. Wheeler D, et al. Antibiotics and surgery for vesicoureteric reflux: a meta-analysis of randomised controlled trials. Arch Dis Child. 2003;88(8):688–94.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  128. Wheeler DM, et al. Interventions for primary vesicoureteric reflux. Cochrane Database Syst Rev. 2004;3, CD001532.

    PubMed  Google Scholar 

  129. Craig JC, et al. Does treatment of vesicoureteric reflux in childhood prevent end-stage renal disease attributable to reflux nephropathy? Pediatrics. 2000;105(6):1236–41.

    Article  CAS  PubMed  Google Scholar 

  130. Verber IG, Meller ST. Serial 99mTc dimercaptosuccinic acid (DMSA) scans after urinary infections presenting before the age of 5 years. Arch Dis Child. 1989;64(11):1533–7.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  131. Piepsz A, et al. Five-year study of medical or surgical treatment in children with severe vesico-ureteral reflux dimercaptosuccinic acid findings. International Reflux Study Group in Europe. Eur J Pediatr. 1998;157(9):753–8.

    Article  CAS  PubMed  Google Scholar 

  132. Ditchfield MR, et al. Vesicoureteral reflux: an accurate predictor of acute pyelonephritis in childhood urinary tract infection? Radiology. 1994;190(2):413–5.

    Article  CAS  PubMed  Google Scholar 

  133. Howie AJ, Buist LJ, Coulthard MG. Reflux nephropathy in transplants. Pediatr Nephrol. 2002;17(7):485–90.

    Article  PubMed  Google Scholar 

  134. Coulthard MG, et al. Renal scarring caused by vesicoureteric reflux and urinary infection: a study in pigs. Pediatr Nephrol. 2002;17(7):481–4.

    Article  PubMed  Google Scholar 

  135. Ataei N, et al. Evaluation of acute pyelonephritis with DMSA scans in children presenting after the age of 5 years. Pediatr Nephrol. 2005;20(10):1439–44.

    Article  PubMed  Google Scholar 

  136. Lin KY, et al. Acute pyelonephritis and sequelae of renal scar in pediatric first febrile urinary tract infection. Pediatr Nephrol. 2003;18(4):362–5.

    PubMed  Google Scholar 

  137. Coulthard MG, et al. Can prompt treatment of childhood UTI prevent kidney scarring? Pediatr Nephrol. 2009;24(10):2059–63.

    Article  PubMed  Google Scholar 

  138. Pecile P, et al. Age-related renal parenchymal lesions in children with first febrile urinary tract infections. Pediatrics. 2009;124(1):23–9.

    Article  PubMed  Google Scholar 

  139. Smellie JM, Poulton A, Prescod NP. Retrospective study of children with renal scarring associated with reflux and urinary infection. BMJ. 1994;308(6938):1193–6.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  140. Fernandez-Menendez JM, et al. Risk factors in the development of early technetium-99m dimercaptosuccinic acid renal scintigraphy lesions during first urinary tract infection in children. Acta Paediatr. 2003;92(1):21–6.

    Article  CAS  PubMed  Google Scholar 

  141. Hewitt IK, et al. Early treatment of acute pyelonephritis in children fails to reduce renal scarring: data from the Italian Renal Infection Study Trials. Pediatrics. 2008;122(3):486–90.

    Article  PubMed  Google Scholar 

  142. Kincaid-Smith P. Glomerular lesions in atrophic pyelonephritis and reflux nephropathy. Kidney Int Suppl. 1975;4:S81–3.

    CAS  PubMed  Google Scholar 

  143. Bailey RR, et al. Glomerular lesions in the ‘normal’ kidney in patients with unilateral reflux nephropathy. Contrib Nephrol. 1984;39:126–31.

    Article  CAS  PubMed  Google Scholar 

  144. Zhang Y, Bailey RR. A long term follow up of adults with reflux nephropathy. N Z Med J. 1995;108(998):142–4.

    CAS  PubMed  Google Scholar 

  145. Cotran RS. Nephrology forum. Glomerulosclerosis in reflux nephropathy. Kidney Int. 1982;21(3):528–34.

    Article  CAS  PubMed  Google Scholar 

  146. Bhathena DB, et al. Focal and segmental glomerular sclerosis in reflux nephropathy. Am J Med. 1980;68(6):886–92.

    Article  CAS  PubMed  Google Scholar 

  147. Coppo R, et al. Glomerular permselectivity to macromolecules in reflux nephropathy: microalbuminuria during acute hyperfiltration due to aminoacid infusion. Clin Nephrol. 1993;40(6):299–307.

    CAS  PubMed  Google Scholar 

  148. Morita M, et al. The glomerular changes in children with reflux nephropathy. J Pathol. 1990;162(3):245–53.

    Article  CAS  PubMed  Google Scholar 

  149. Karlen J, et al. Incidence of microalbuminuria in children with pyelonephritic scarring. Pediatr Nephrol. 1996;10(6):705–8.

    Article  CAS  PubMed  Google Scholar 

  150. Tomlinson PA, et al. Differential excretion of urinary proteins in children with vesicoureteric reflux and reflux nephropathy. Pediatr Nephrol. 1994;8(1):21–5.

    Article  CAS  PubMed  Google Scholar 

  151. Miyakita H, Puri P. Urinary levels of N-acetyl-beta-d-glucosaminidase: a simple marker for predicting tubular damage in higher grades of vesicoureteric reflux. Eur Urol. 1994;25(2):135–7.

    CAS  PubMed  Google Scholar 

  152. Salvaggio E, et al. Beta 2 microglobulin in the diagnosis of reflux nephropathy in childhood. Med Surg Pediatr. 1988;10(1):83–8.

    CAS  Google Scholar 

  153. Goonasekera CD, Shah V, Dillon MJ. Tubular proteinuria in reflux nephropathy: post ureteric re-implantation. Pediatr Nephrol. 1996;10(5):559–63.

    Article  CAS  PubMed  Google Scholar 

  154. Bell FG, Wilkin TJ, Atwell JD. Microproteinuria in children with vesicoureteric reflux. Br J Urol. 1986;58(6):605–9.

    Article  CAS  PubMed  Google Scholar 

  155. Smellie JM, et al. Childhood reflux and urinary infection: a follow-up of 10–41 years in 226 adults. Pediatr Nephrol. 1998;12(9):727–36.

    Article  CAS  PubMed  Google Scholar 

  156. Wallace DM, Rothwell DL, Williams DI. The long-term follow-up of surgically treated vesicoureteric reflux. Br J Urol. 1978;50(7):479–84.

    Article  CAS  PubMed  Google Scholar 

  157. Kohler J, et al. Vesicoureteral reflux diagnosed in adulthood. Incidence of urinary tract infections, hypertension, proteinuria, back pain and renal calculi. Nephrol Dial Transplant. 1997;12(12):2580–7.

    Article  CAS  PubMed  Google Scholar 

  158. Simoes e Silva AC, et al. Risk of hypertension in primary vesicoureteral reflux. Pediatr Nephrol. 2007;22(3):459–62.

    Article  PubMed  Google Scholar 

  159. Goonasekera CD, et al. 15-year follow-up of renin and blood pressure in reflux nephropathy. Lancet. 1996;347(9002):640–3.

    Article  CAS  PubMed  Google Scholar 

  160. Winterborn MH, France NE. Arterial changes associated with hydronephrosis in infants and children. Br J Urol. 1972;44(1):96–104.

    Article  CAS  PubMed  Google Scholar 

  161. Stecker Jr JF, Read BP, Poutasse EF. Pediatric hypertension as a delayed sequela of reflux-induced chronic pyelonephritis. J Urol. 1977;118(4):644–6.

    PubMed  Google Scholar 

  162. Savage JM, et al. Five year prospective study of plasma renin activity and blood pressure in patients with longstanding reflux nephropathy. Arch Dis Child. 1987;62(7):678–82.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  163. Wolfish NM, et al. Prevalence of hypertension in children with primary vesicoureteral reflux. J Pediatr. 1993;123(4):559–63.

    Article  CAS  PubMed  Google Scholar 

  164. Wennerstrom M, et al. Ambulatory blood pressure 16–26 years after the first urinary tract infection in childhood. J Hypertens. 2000;18(4):485–91.

    Article  CAS  PubMed  Google Scholar 

  165. Geback C, et al. Twenty-four-hour ambulatory blood pressure in adult women with urinary tract infection in childhood. J Hypertens. 2014;32(8):1658–64.

    Article  PubMed  CAS  Google Scholar 

  166. NAPRTCS, North American Pediatric Renal Transplant Cooperative Study (NAPRTCS); 2008 Annual report

    Google Scholar 

  167. Furth SL, Abraham AG, Jerry-Fluker J, Schwartz GJ, Benfield M, Kaskel F, Wong C, Mak RH, Moxey-Mims M, Warady BA. Metabolic abnormalities, CVD risk factors and GFR decline in children with CKD. Clin J Am Soc Nephrol. 2011;6:2132.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  168. Roberts JP, Atwell JD. Vesicoureteric reflux and urinary calculi in children. Br J Urol. 1989;64(1):10–2.

    Article  CAS  PubMed  Google Scholar 

  169. Jacobson SH, et al. Development of hypertension and uraemia after pyelonephritis in childhood: 27 year follow up. BMJ. 1989;299(6701):703–6.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  170. Mansfield JT, et al. Complications of pregnancy in women after childhood reimplantation for vesicoureteral reflux: an update with 25 years of followup. J Urol. 1995;154(2 Pt 2):787–90.

    CAS  PubMed  Google Scholar 

  171. Jungers P, et al. Pregnancy in women with reflux nephropathy. Kidney Int. 1996;50(2):593–9.

    Article  CAS  PubMed  Google Scholar 

  172. el-Khatib M, et al. Pregnancy-related complications in women with reflux nephropathy. Clin Nephrol. 1994;41(1):50–5.

    CAS  PubMed  Google Scholar 

  173. Williams DG. Reflux nephropathy. Q J Med. 1990;77(284):1205–7.

    Article  CAS  PubMed  Google Scholar 

  174. el-Khatib MT, Becker GJ, Kincaid-Smith PS. Reflux nephropathy and primary vesicoureteric reflux in adults. Q J Med. 1990;77(284):1241–53.

    Article  CAS  PubMed  Google Scholar 

  175. Bailey RR, Lynn KL, Smith AH. Long-term followup of infants with gross vesicoureteral reflux. J Urol. 1992;148(5 Pt 2):1709–11.

    CAS  PubMed  Google Scholar 

  176. Lahdes-Vasama T, Niskanen K, Ronnholm K. Outcome of kidneys in patients treated for vesicoureteral reflux (VUR) during childhood. Nephrol Dial Transplant. 2006;21(9):2491–7.

    Article  PubMed  Google Scholar 

  177. Hollowell JG. Outcome of pregnancy in women with a history of vesico-ureteric reflux. BJU Int. 2008;102(7):780–4.

    Article  PubMed  Google Scholar 

  178. Feather SA, et al. Primary, nonsyndromic vesicoureteric reflux and its nephropathy is genetically heterogeneous, with a locus on chromosome 1. Am J Hum Genet. 2000;66(4):1420–5.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  179. Conte ML, et al. A genome search for primary vesicoureteral reflux shows further evidence for genetic heterogeneity. Pediatr Nephrol. 2008;23(4):587–95.

    Article  PubMed Central  PubMed  Google Scholar 

  180. Williams G, et al. Vesicoureteral reflux. J Am Soc Nephrol. 2008;19(5):847–62.

    Article  CAS  PubMed  Google Scholar 

  181. Bowen SE, et al. Interplay between vesicoureteric reflux and kidney infection in the development of reflux nephropathy in mice. Dis Model Mech. 2013;6(4):934–41.

    Article  PubMed Central  PubMed  Google Scholar 

  182. Murawski IJ, Watt CL, Gupta IR. Vesico-ureteric reflux: using mouse models to understand a common congenital urinary tract defect. Pediatr Nephrol. 2011;26:1513–22.

    Article  PubMed  Google Scholar 

  183. Stephens FD, Joske RA, Simmons RT. Megaureter with vesico-ureteric reflux in twins. Aust N Z J Surg. 1955;24(3):192–4.

    Article  CAS  PubMed  Google Scholar 

  184. Kerr DN, Pillai PM. Identical twins with identical vesicoureteric reflux: chronic pyelonephritis in one. Br Med J (Clin Res Ed). 1983;286(6373):1245–6.

    Article  CAS  Google Scholar 

  185. Mebust WK, Foret JD. Vesicoureteral reflux in identical twins. J Urol. 1972;108(4):635–6.

    CAS  PubMed  Google Scholar 

  186. Tobenkin MI. Hereditary vesicoureteral reflux. South Med J. 1964;57:139–47.

    Article  CAS  PubMed  Google Scholar 

  187. Kaefer M, et al. Sibling vesicoureteral reflux in multiple gestation births. Pediatrics. 2000;105(4):800–4.

    Article  CAS  PubMed  Google Scholar 

  188. Chapman CJ, et al. Vesicoureteric reflux: segregation analysis. Am J Med Genet. 1985;20(4):577–84.

    Article  CAS  PubMed  Google Scholar 

  189. Devriendt K, et al. Vesico-ureteral reflux: a genetic condition? Eur J Pediatr. 1998;157(4):265–71.

    Article  CAS  PubMed  Google Scholar 

  190. Pasch A, et al. Multiple urinary tract malformations with likely recessive inheritance in a large Somalian kindred. Nephrol Dial Transplant. 2004;19(12):3172–5.

    Article  PubMed  Google Scholar 

  191. Weng PL, et al. A recessive gene for primary vesicoureteral reflux maps to chromosome 12p11-q13. J Am Soc Nephrol. 2009;20(7):1633–40.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  192. Burger RH. Familial and hereditary vesicouretral reflux. JAMA. 1971;216(4):680–1.

    Article  CAS  PubMed  Google Scholar 

  193. Burger RH, Smith C. Hereditary and familial vesicoureteral reflux. J Urol. 1971;106(6):845–51.

    CAS  PubMed  Google Scholar 

  194. de Vargas A, et al. A family study of vesicoureteric reflux. J Med Genet. 1978;15(2):85–96.

    Article  PubMed Central  PubMed  Google Scholar 

  195. Lu W, et al. Disruption of ROBO2 is associated with urinary tract anomalies and confers risk of vesicoureteral reflux. Am J Hum Genet. 2007;80(4):616–32.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  196. Grieshammer U, et al. SLIT2-mediated ROBO2 signaling restricts kidney induction to a single site. Dev Cell. 2004;6:709–17.

    Article  CAS  PubMed  Google Scholar 

  197. Darlow JM, et al. The increased incidence of the RET p.Gly691Ser variant in French-Canadian vesicoureteric reflux patients is not replicated by a larger study in Ireland. Hum Mutat. 2009;30(5):E612–7.

    Article  PubMed  Google Scholar 

  198. Hohenfellner K, et al. Angiotensin II, type 2 receptor in the development of vesico-ureteric reflux. BJU Int. 1999;83(3):318–22.

    Article  CAS  PubMed  Google Scholar 

  199. Yang Y, et al. RET Gly691Ser mutation is associated with primary vesicoureteral reflux in the French-Canadian population from Quebec. Hum Mutat. 2008;29(5):695–702.

    Article  CAS  PubMed  Google Scholar 

  200. Sanyanusin P, et al. Mutation of the PAX2 gene in a family with optic nerve colobomas, renal anomalies and vesicoureteric reflux. Nat Genet. 1995;9:358–64.

    Article  CAS  PubMed  Google Scholar 

  201. Rigoli L, et al. Angiotensin-converting enzyme and angiotensin type 2 receptor gene genotype distributions in Italian children with congenital uropathies. Pediatr Res. 2004;56(6):988–93.

    Article  CAS  PubMed  Google Scholar 

  202. Jenkins D, et al. Mutation analyses of Uroplakin II in children with renal tract malformations. Nephrol Dial Transplant. 2006;21(12):3415–21.

    Article  CAS  PubMed  Google Scholar 

  203. Jenkins D, et al. De novo Uroplakin IIIa heterozygous mutations cause human renal adysplasia leading to severe kidney failure. J Am Soc Nephrol. 2005;16(7):2141–9.

    Article  CAS  PubMed  Google Scholar 

  204. Cordell HJ, et al. Whole-genome linkage and association scan in primary, nonsyndromic vesicoureteric reflux. J Am Soc Nephrol. 2010;21(1):113–23.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  205. Kelly H, et al. A genome-wide scan for genes involved in primary vesicoureteric reflux. J Med Genet. 2007;44(11):710–7.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  206. van Eerde AM, et al. Linkage study of 14 candidate genes and loci in four large Dutch families with vesico-ureteral reflux. Pediatr Nephrol. 2007;22(8):1129–33.

    Article  PubMed Central  PubMed  Google Scholar 

  207. Sanna-Cherchi S, et al. Familial vesicoureteral reflux: testing replication of linkage in seven new multigenerational kindreds. J Am Soc Nephrol. 2005;16(6):1781–7.

    Article  PubMed  Google Scholar 

  208. Briggs CE, et al. A genome scan in affected sib-pairs with familial vesicoureteral reflux identifies a locus on chromosome 5. Eur J Hum Genet. 2010;18(2):245–50.

    Article  PubMed Central  PubMed  Google Scholar 

  209. Vats KR, et al. A locus for renal malformations including vesico-ureteric reflux on chromosome 13q33-34. J Am Soc Nephrol. 2006;17(4):1158–67.

    Article  PubMed  Google Scholar 

  210. Gbadegesin RA, et al. TNXB mutations can cause vesicoureteral reflux. J Am Soc Nephrol. 2013;24(8):1313–22.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  211. van Eerde AM, et al. Is joint hypermobility associated with vesico-ureteral reflux? An assessment of 50 patients. BJU Int. 2012;109(8):1243–8.

    Article  PubMed  Google Scholar 

  212. Beiraghdar F, et al. Vesicourethral reflux in pediatrics with hypermobility syndrome. Nephrourol Mon. 2013;5(4):924–7.

    Article  PubMed Central  PubMed  Google Scholar 

  213. Ragnarsdottir B, et al. Genetics of innate immunity and UTI susceptibility. Nat Rev Urol. 2011;8(8):449–68.

    Article  PubMed  Google Scholar 

  214. Sivick KE, Mobley HL. Waging war against uropathogenic Escherichia coli: winning back the urinary tract. Infect Immun. 2010;78(2):568–85.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  215. Chowdhury P, Sacks SH, Sheerin NS. Minireview: functions of the renal tract epithelium in coordinating the innate immune response to infection. Kidney Int. 2004;66(4):1334–44.

    Article  CAS  PubMed  Google Scholar 

  216. Godaly G, et al. Transepithelial neutrophil migration is CXCR1 dependent in vitro and is defective in IL-8 receptor knockout mice. J Immunol. 2000;165(9):5287–94.

    Article  CAS  PubMed  Google Scholar 

  217. Nielubowicz GR, Mobley HL. Host-pathogen interactions in urinary tract infection. Nat Rev Urol. 2010;7(8):430–41.

    Article  CAS  PubMed  Google Scholar 

  218. Meylan PR, et al. Relationship between neutrophil-mediated oxidative injury during acute experimental pyelonephritis and chronic renal scarring. Infect Immun. 1989;57(7):2196–202.

    PubMed Central  CAS  PubMed  Google Scholar 

  219. Mundi H, et al. Extracellular release of reactive oxygen species from human neutrophils upon interaction with Escherichia coli strains causing renal scarring. Infect Immun. 1991;59(11):4168–72.

    PubMed Central  CAS  PubMed  Google Scholar 

  220. Ragnarsdottir B, Svanborg C. Susceptibility to acute pyelonephritis or asymptomatic bacteriuria: host-pathogen interaction in urinary tract infections. Pediatr Nephrol. 2012;27(11):2017–29

    Google Scholar 

  221. Fischer H, et al. Pathogen specific, IRF3-dependent signaling and innate resistance to human kidney infection. PLoS Pathog. 2010;6(9):e1001109.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  222. Hoshino K, et al. Cutting edge: toll-like receptor 4 (TLR4)-deficient mice are hyporesponsive to lipopolysaccharide: evidence for TLR4 as the Lps gene product. J Immunol. 1999;162(7):3749–52.

    CAS  PubMed  Google Scholar 

  223. Hopkins WJ, et al. Time course and host responses to Escherichia coli urinary tract infection in genetically distinct mouse strains. Infect Immun. 1998;66(6):2798–802.

    PubMed Central  CAS  PubMed  Google Scholar 

  224. Godaly G, et al. Neutrophil recruitment, chemokine receptors, and resistance to mucosal infection. J Leukoc Biol. 2001;69(6):899–906.

    CAS  PubMed  Google Scholar 

  225. Hagberg L, et al. Difference in susceptibility to gram-negative urinary tract infection between C3H/HeJ and C3H/HeN mice. Infect Immun. 1984;46(3):839–44.

    PubMed Central  CAS  PubMed  Google Scholar 

  226. Ragnarsdottir B, et al. Toll-like receptor 4 promoter polymorphisms: common TLR4 variants may protect against severe urinary tract infection. PLoS One. 2010;5(5):e10734.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  227. Ragnarsdottir B, et al. Reduced toll-like receptor 4 expression in children with asymptomatic bacteriuria. J Infect Dis. 2007;196(3):475–84.

    Article  CAS  PubMed  Google Scholar 

  228. Svensson M, et al. Natural history of renal scarring in susceptible mIL-8Rh−/− mice. Kidney Int. 2005;67(1):103–10.

    Article  PubMed  Google Scholar 

  229. Svensson M, et al. Acute pyelonephritis and renal scarring are caused by dysfunctional innate immunity in mCxcr2 heterozygous mice. Kidney Int. 2011;80(10):1064–72.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  230. Frendeus B, et al. Interleukin 8 receptor deficiency confers susceptibility to acute experimental pyelonephritis and may have a human counterpart. J Exp Med. 2000;192(6):881–90.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  231. Cheng CH, et al. Genetic polymorphisms and susceptibility to parenchymal renal infection among pediatric patients. Pediatr Infect Dis J. 2011;30(4):309–14.

    Article  PubMed  Google Scholar 

  232. Karoly E, et al. Heat shock protein 72 (HSPA1B) gene polymorphism and Toll-like receptor (TLR) 4 mutation are associated with increased risk of urinary tract infection in children. Pediatr Res. 2007;61(3):371–4.

    Article  CAS  PubMed  Google Scholar 

  233. Gokce I, et al. Urinary levels of interleukin-6 and interleukin-8 in patients with vesicoureteral reflux and renal parenchymal scar. Pediatr Nephrol. 2010;25(5):905–12.

    Article  PubMed  Google Scholar 

  234. Yoneda A, et al. Angiotensin II type 2 receptor gene is not responsible for familial vesicoureteral reflux. J Urol. 2002;168:1138–41.

    Article  CAS  PubMed  Google Scholar 

  235. Savvidou A, et al. Polymorphisms of the TNF-alpha and ACE genes, and renal scarring in infants with urinary tract infection. J Urol. 2010;183(2):684–7.

    Article  CAS  PubMed  Google Scholar 

  236. Sekerli E, et al. ACE gene insertion/deletion polymorphism and renal scarring in children with urinary tract infections. Pediatr Nephrol. 2009;24(10):1975–80.

    Article  PubMed  Google Scholar 

  237. Cotton SA, et al. Role of TGF-beta1 in renal parenchymal scarring following childhood urinary tract infection. Kidney Int. 2002;61(1):61–7.

    Article  CAS  PubMed  Google Scholar 

  238. Kowalewska-Pietrzak M, Klich I, Mlynarski W. TGF-beta1 gene polymorphisms and primary vesicoureteral reflux in childhood. Pediatr Nephrol. 2008;23(12):2195–200.

    Article  PubMed  Google Scholar 

  239. Hussein A, et al. Functional polymorphisms in transforming growth factor-beta-1 (TGFbeta-1) and vascular endothelial growth factor (VEGF) genes modify risk of renal parenchymal scarring following childhood urinary tract infection. Nephrol Dial Transplant. 2010;25(3):779–85.

    Article  CAS  PubMed  Google Scholar 

  240. Cheung HS. Radiological imaging of urinary tract infection in Malaysian children–a private hospital experience. Australas Radiol. 1992;36(1):23–6.

    Article  CAS  PubMed  Google Scholar 

  241. Rosenberg HK, Ilaslan H, Finkelstein MS. Work-up of urinary tract infection in infants and children. Ultrasound Q. 2001;17(2):87–102.

    Article  CAS  PubMed  Google Scholar 

  242. Huang HP, et al. Renal ultrasonography should be done routinely in children with first urinary tract infections. Urology. 2008;71(3):439–43.

    Article  PubMed  Google Scholar 

  243. Greenfield SP, Afshani E. Vesicoureteral reflux in children with and without a history of urinary tract infection: a comparative analysis. Urology. 1992;40(4):339–42.

    Article  CAS  PubMed  Google Scholar 

  244. Bomalaski MD, Ritchey ML, Bloom DA. What imaging studies are necessary to determine outcome after ureteroneocystostomy? J Urol. 1997;158(3 Pt 2):1226–8.

    Article  CAS  PubMed  Google Scholar 

  245. Radmayr C, et al. Importance of the renal resistive index in children suffering from vesicoureteral reflux. Eur Urol. 1999;36(1):75–9.

    Article  CAS  PubMed  Google Scholar 

  246. Oak SN, Kulkarni B, Chaubal N. Color flow doppler sonography: a reliable alternative to voiding cystourethrogram in the diagnosis of vesicoureteral reflux in children. Urology. 1999;53(6):1211–4.

    Article  CAS  PubMed  Google Scholar 

  247. Lavocat MP, et al. Imaging of pyelonephritis. Pediatr Radiol. 1997;27(2):159–65.

    Article  CAS  PubMed  Google Scholar 

  248. Halevy R, et al. Power doppler ultrasonography in the diagnosis of acute childhood pyelonephritis. Pediatr Nephrol. 2004;19(9):987–91.

    Article  PubMed  Google Scholar 

  249. Hitzel A, et al. Color and power doppler sonography versus DMSA scintigraphy in acute pyelonephritis and in prediction of renal scarring. J Nucl Med. 2002;43(1):27–32.

    PubMed  Google Scholar 

  250. Ozcan C, et al. Bladder ultrasound in the evaluation of the efficacy of dextranomer/hyaluronic acid injection for treatment of vesicoureteral reflux. J Clin Ultrasound. 2007;35(7):357–62.

    Article  PubMed  Google Scholar 

  251. McMann LP, Scherz HC, Kirsch AJ. Long-term preservation of dextranomer/hyaluronic acid copolymer implants after endoscopic treatment of vesicoureteral reflux in children: a sonographic volumetric analysis. J Urol. 2007;177(1):316–20; discussion 320.

    Article  PubMed  Google Scholar 

  252. Sathapornwajana P, et al. Timing of voiding cystourethrogram after urinary tract infection. Arch Dis Child. 2008, 93, 229

    Google Scholar 

  253. McDonald A, et al. Voiding cystourethrograms and urinary tract infections: how long to wait? Pediatrics. 2000;105(4):E50.

    Article  CAS  PubMed  Google Scholar 

  254. Bisignani G, Decter RM. Voiding cystourethrography after uncomplicated ureteral reimplantation in children: is it necessary? J Urol. 1997;158(3 Pt 2):1229–31.

    CAS  PubMed  Google Scholar 

  255. Fairley KF, Roysmith J. The forgotten factor in the evaluation of vesicoureteric reflux. Med J Aust. 1977;2(1):10–2.

    CAS  PubMed  Google Scholar 

  256. Ekman H, et al. High diuresis, a factor in preventing vesicoureteral reflux. J Urol. 1966;95(4):511–5.

    CAS  PubMed  Google Scholar 

  257. Zerin JM, Lebowitz RL. Catheter malposition during cystography: a cause of diagnostic errors. AJR Am J Roentgenol. 1989;153(2):363–7.

    Article  CAS  PubMed  Google Scholar 

  258. Merguerian PA, Corbett ST, Cravero J. Voiding ability using propofol sedation in children undergoing voiding cystourethrograms: a retrospective analysis. J Urol. 2006;176(1):299–302.

    Article  PubMed  Google Scholar 

  259. Jequier S, Jequier JC. Reliability of voiding cystourethrography to detect reflux. AJR Am J Roentgenol. 1989;153(4):807–10.

    Article  CAS  PubMed  Google Scholar 

  260. Fettich JJ, Kenda RB. Cyclic direct radionuclide voiding cystography: increasing reliability in detecting vesicoureteral reflux in children. Pediatr Radiol. 1992;22(5):337–8.

    Article  CAS  PubMed  Google Scholar 

  261. Papadopoulou F, et al. Cyclic voiding cystourethrography: is vesicoureteral reflux missed with standard voiding cystourethrography? Eur Radiol. 2002;12(3):666–70.

    Article  PubMed  Google Scholar 

  262. Arsanjani A, Alagiri M. Identification of filling versus voiding reflux as predictor of clinical outcome. Urology. 2007;70(2):351–4.

    Article  PubMed  Google Scholar 

  263. Kleinman PK, et al. Tailored low-dose fluoroscopic voiding cystourethrography for the reevaluation of vesicoureteral reflux in girls. AJR Am J Roentgenol. 1994;162(5):1151–4; discussion 1155–6.

    Article  CAS  PubMed  Google Scholar 

  264. Cleveland RH, et al. Voiding cystourethrography in children: value of digital fluoroscopy in reducing radiation dose. AJR Am J Roentgenol. 1992;158(1):137–42.

    Article  CAS  PubMed  Google Scholar 

  265. Jakobsson B, et al. 99mTechnetium-dimercaptosuccinic acid scan in the diagnosis of acute pyelonephritis in children: relation to clinical and radiological findings. Pediatr Nephrol. 1992;6(4):328–34.

    Article  CAS  PubMed  Google Scholar 

  266. Rushton HG, Majd M. Pyelonephritis in male infants: how important is the foreskin? J Urol. 1992;148(2 Pt 2):733–6; discussion 737–8.

    CAS  PubMed  Google Scholar 

  267. MacKenzie JR. A review of renal scarring in children. Nucl Med Commun. 1996;17(3):176–90.

    Article  CAS  PubMed  Google Scholar 

  268. Applegate KE, et al. A prospective comparison of high-resolution planar, pinhole, and triple-detector SPECT for the detection of renal cortical defects. Clin Nucl Med. 1997;22(10):673–8.

    Article  CAS  PubMed  Google Scholar 

  269. Yen TC, et al. Identification of new renal scarring in repeated episodes of acute pyelonephritis using Tc-99m DMSA renal SPECT. Clin Nucl Med. 1998;23(12):828–31.

    Article  CAS  PubMed  Google Scholar 

  270. Elison BS, et al. Comparison of DMSA scintigraphy with intravenous urography for the detection of renal scarring and its correlation with vesicoureteric reflux. Br J Urol. 1992;69(3):294–302.

    Article  CAS  PubMed  Google Scholar 

  271. Majd M, et al. Acute pyelonephritis: comparison of diagnosis with 99mTc-DMSA, SPECT, spiral CT, MR imaging, and power Doppler US in an experimental pig model. Radiology. 2001;218(1):101–8.

    Article  CAS  PubMed  Google Scholar 

  272. Goldraich NP, Ramos OL, Goldraich IH. Urography versus DMSA scan in children with vesicoureteric reflux. Pediatr Nephrol. 1989;3(1):1–5.

    Article  CAS  PubMed  Google Scholar 

  273. Merrick MV, Uttley WS, Wild SR. The detection of pyelonephritic scarring in children by radioisotope imaging. Br J Radiol. 1980;53(630):544–56.

    Article  CAS  PubMed  Google Scholar 

  274. Patel K, et al. Intra- and interobserver variability in interpretation of DMSA scans using a set of standardized criteria. Pediatr Radiol. 1993;23(7):506–9.

    Article  CAS  PubMed  Google Scholar 

  275. Orellana P, et al. Relationship between acute pyelonephritis, renal scarring, and vesicoureteral reflux. Results of a coordinated research project. Pediatr Nephrol. 2004;19(10):1122–6.

    Article  PubMed  Google Scholar 

  276. Stokland E, et al. Imaging of renal scarring. Acta Paediatr Suppl. 1999;88(431):13–21.

    Article  CAS  PubMed  Google Scholar 

  277. Szlyk GR, et al. Incidence of new renal parenchymal inflammatory changes following breakthrough urinary tract infection in patients with vesicoureteral reflux treated with antibiotic prophylaxis: evaluation by 99MTechnetium dimercapto-succinic acid renal scan. J Urol. 2003;170(4 Pt 2):1566–8; discussion 1568–9.

    Article  CAS  PubMed  Google Scholar 

  278. Preda I, et al. Normal dimercaptosuccinic acid scintigraphy makes voiding cystourethrography unnecessary after urinary tract infection. J Pediatr. 2007;151(6):581–4, 584 e1.

    Article  PubMed  Google Scholar 

  279. Rubenstein JN, et al. The PIC cystogram: a novel approach to identify “occult” vesicoureteral reflux in children with febrile urinary tract infections. J Urol. 2003;169(6):2339–43.

    Article  PubMed  Google Scholar 

  280. Tareen BU, et al. Role of positional instillation of contrast cystography in the algorithm for evaluating children with confirmed pyelonephritis. Urology. 2006;67(5):1055–7; discussion 1058–9.

    Article  PubMed  Google Scholar 

  281. Kavanagh EC, et al. Can MRI replace DMSA in the detection of renal parenchymal defects in children with urinary tract infections? Pediatr Radiol. 2005, 35, 275

    Google Scholar 

  282. Chan YL, et al. Potential utility of MRI in the evaluation of children at risk of renal scarring. Pediatr Radiol. 1999;29(11):856–62.

    Article  CAS  PubMed  Google Scholar 

  283. Perez-Brayfield MR, et al. A prospective study comparing ultrasound, nuclear scintigraphy and dynamic contrast enhanced magnetic resonance imaging in the evaluation of hydronephrosis. J Urol. 2003;170(4 Pt 1):1330–4.

    Article  PubMed  Google Scholar 

  284. Lonergan GJ, et al. Childhood pyelonephritis: comparison of gadolinium-enhanced MR imaging and renal cortical scintigraphy for diagnosis. Radiology. 1998;207(2):377–84.

    Article  CAS  PubMed  Google Scholar 

  285. Sherman RL, et al. N-acetyl-beta-glucosaminidase and beta 2-microglobulin. Their urinary excretion in patients with renal parenchymal disease. Arch Intern Med. 1983;143(6):1183–5.

    Article  CAS  PubMed  Google Scholar 

  286. Mutti A, et al. Urinary excretion of brush-border antigen revealed by monoclonal antibody: early indicator of toxic nephropathy. Lancet. 1985;2(8461):914–7.

    Article  CAS  PubMed  Google Scholar 

  287. Konda R, et al. Urinary excretion of epidermal growth factor in children with reflux nephropathy. J Urol. 1997;157(6):2282–6.

    Article  CAS  PubMed  Google Scholar 

  288. Haraoka M, et al. Elevated interleukin-8 levels in the urine of children with renal scarring and/or vesicoureteral reflux. J Urol. 1996;155(2):678–80.

    Article  CAS  PubMed  Google Scholar 

  289. Ninan GK, Jutley RS, Eremin O. Urinary cytokines as markers of reflux nephropathy. J Urol. 1999;162(5):1739–42.

    Article  CAS  PubMed  Google Scholar 

  290. Komeyama T, et al. Value of urinary endothelin-1 in patients with primary vesicoureteral reflux. Nephron. 1993;65(4):537–40.

    Article  CAS  PubMed  Google Scholar 

  291. Walker RD, Garin EH. Urinary prostaglandin E2 in patients with vesicoureteral reflux. Child Nephrol Urol. 1990;10(1):18–21.

    CAS  PubMed  Google Scholar 

  292. Tomlinson PA. Low molecular weight proteins in children with renal disease. Pediatr Nephrol. 1992;6(6):565–71.

    Article  CAS  PubMed  Google Scholar 

  293. Salvaggio E, et al. Beta 2 microglobulin in the diagnosis of reflux nephropathy in childhood. Pediatr Med Chir. 1988;10(1):83–8.

    CAS  PubMed  Google Scholar 

  294. Quattrin T, et al. Microalbuminuria in an adolescent cohort with insulin-dependent diabetes mellitus. Clin Pediatr (Phila). 1995;34(1):12–7.

    Article  CAS  Google Scholar 

  295. Lama G, et al. Angiotensin converting enzyme inhibitors and reflux nephropathy: 2-year follow-up. Pediatr Nephrol. 1997;11(6):714–8.

    Article  CAS  PubMed  Google Scholar 

  296. Ohtomo Y, et al. Angiotensin converting enzyme gene polymorphism in primary vesicoureteral reflux. Pediatr Nephrol. 2001;16(8):648–52.

    Article  CAS  PubMed  Google Scholar 

  297. Small G, et al. Hemolytic uremic syndrome: defining the need for long-term follow-up. Clin Nephrol. 1999;52(6):352–6.

    CAS  PubMed  Google Scholar 

  298. Shakil A, et al. Clinical inquiries. Do antibiotics prevent recurrent UTI in children with anatomic abnormalities? J Fam Pract. 2004;53(6):498–500.

    PubMed  Google Scholar 

  299. Brendstrup L, et al. Nitrofurantoin versus trimethoprim prophylaxis in recurrent urinary tract infection in children. A randomized, double-blind study. Acta Paediatr Scand. 1990;79(12):1225–34.

    Article  CAS  PubMed  Google Scholar 

  300. Sullivan TD, Ellerstein NS, Neter E. The effects of ampicillin and trimethoprim/sulfamethoxazole on the periurethral flora of children with urinary tract infection. Infection. 1980;8 Suppl 3:S339–41.

    Article  Google Scholar 

  301. Ellerstein NS, et al. Trimethoprim/sulfamethoxazole and ampicillin in the treatment of acute urinary tract infections in children: a double-blind study. Pediatrics. 1977;60(2):245–7.

    CAS  PubMed  Google Scholar 

  302. Thompson M, et al. Timing of follow-up voiding cystourethrogram in children with primary vesicoureteral reflux: development and application of a clinical algorithm. Pediatrics. 2005;115(2):426–34.

    Article  PubMed  Google Scholar 

  303. Cooper CS, et al. The outcome of stopping prophylactic antibiotics in older children with vesicoureteral reflux. J Urol. 2000;163(1):269–72; discussion 272–3.

    Article  CAS  PubMed  Google Scholar 

  304. Allen UD, et al. Risk factors for resistance to “first-line” antimicrobials among urinary tract isolates of Escherichia coli in children. CMAJ. 1999;160(10):1436–40.

    PubMed Central  CAS  PubMed  Google Scholar 

  305. Karpman E, Kurzrock EA. Adverse reactions of nitrofurantoin, trimethoprim and sulfamethoxazole in children. J Urol. 2004;172(2):448–53.

    Article  CAS  PubMed  Google Scholar 

  306. Uhari M, Nuutinen M, Turtinen J. Adverse reactions in children during long-term antimicrobial therapy. Pediatr Infect Dis J. 1996;15(5):404–8.

    Article  CAS  PubMed  Google Scholar 

  307. Bollgren I. Antibacterial prophylaxis in children with urinary tract infection. Acta Paediatr Suppl. 1999;88(431):48–52.

    Article  CAS  PubMed  Google Scholar 

  308. Conway PH, et al. Recurrent urinary tract infections in children: risk factors and association with prophylactic antimicrobials. JAMA. 2007;298(2):179–86.

    Article  CAS  PubMed  Google Scholar 

  309. Williams G, Lee A, Craig J. Antibiotics for the prevention of urinary tract infection in children: a systematic review of randomized controlled trials. J Pediatr. 2001;138(6):868–74.

    Article  CAS  PubMed  Google Scholar 

  310. Gordon I, et al. Primary vesicoureteric reflux as a predictor of renal damage in children hospitalized with urinary tract infection: a systematic review and meta-analysis. J Am Soc Nephrol. 2003;14(3):739–44.

    Article  PubMed  Google Scholar 

  311. Garin EH, et al. Clinical significance of primary vesicoureteral reflux and urinary antibiotic prophylaxis after acute pyelonephritis: a multicenter, randomized, controlled study. Pediatrics. 2006;117(3):626–32.

    Article  PubMed  Google Scholar 

  312. Montini G, et al. Prophylaxis after first febrile urinary tract infection in children? A multicenter, randomized, controlled, noninferiority trial. Pediatrics. 2008;122(5):1064–71.

    Article  PubMed  Google Scholar 

  313. Craig JC, et al. Antibiotic prophylaxis and recurrent urinary tract infection in children. N Engl J Med. 2009;361(18):1748–59.

    Article  CAS  PubMed  Google Scholar 

  314. Brandstrom P, et al. The Swedish reflux trial in children: I. Study design and study population characteristics. J Urol. 2010;184(1):274–9.

    Article  PubMed  Google Scholar 

  315. Roussey-Kesler G, et al. Antibiotic prophylaxis for the prevention of recurrent urinary tract infection in children with low grade vesicoureteral reflux: results from a prospective randomized study. J Urol. 2008;179(2):674–9; discussion 679.

    Article  CAS  PubMed  Google Scholar 

  316. Brandstrom P, et al. The Swedish reflux trial in children: III. Urinary tract infection pattern. J Urol. 2010;184(1):286–91.

    Article  PubMed  Google Scholar 

  317. Brandstrom P, et al. The Swedish reflux trial in children: IV. Renal damage. J Urol. 2010;184(1):292–7.

    Article  PubMed  Google Scholar 

  318. O’Regan S, et al. Constipation a commonly unrecognized cause of enuresis. Am J Dis Child. 1986;140(3):260–1.

    PubMed  Google Scholar 

  319. Herndon CD, Decambre M, McKenna PH. Interactive computer games for treatment of pelvic floor dysfunction. J Urol. 2001;166(5):1893–8.

    Article  CAS  PubMed  Google Scholar 

  320. Upadhyay J, et al. Use of the dysfunctional voiding symptom score to predict resolution of vesicoureteral reflux in children with voiding dysfunction. J Urol. 2003;169(5):1842–6; discussion 1846; author reply 1846.

    Article  PubMed  Google Scholar 

  321. Praga M, et al. Long-term beneficial effects of angiotensin-converting enzyme inhibition in patients with nephrotic proteinuria. Am J Kidney Dis. 1992;20(3):240–8.

    Article  CAS  PubMed  Google Scholar 

  322. Litwin M, et al. Add-on therapy with angiotensin II receptor 1 blocker in children with chronic kidney disease already treated with angiotensin-converting enzyme inhibitors. Pediatr Nephrol. 2006;21(11):1716–22.

    Article  PubMed  Google Scholar 

  323. Risdon RA. The small scarred kidney in childhood. Pediatr Nephrol. 1993;7(4):361–4.

    Article  CAS  PubMed  Google Scholar 

  324. Huang YY, et al. Adjunctive oral methylprednisolone in pediatric acute pyelonephritis alleviates renal scarring. Pediatrics. 2011;128(3):e496–504.

    PubMed  Google Scholar 

  325. Dalirani R, et al. Role of vitamin A in preventing renal scarring after acute pyelonephritis. Iran J Kidney Dis. 2011;5(5):320–3.

    PubMed  Google Scholar 

  326. Ayazi P, et al. The effect of vitamin A on renal damage following acute pyelonephritis in children. Eur J Pediatr. 2011;170(3):347–50.

    Article  CAS  PubMed  Google Scholar 

  327. Gruneberg RN, et al. Bowel flora in urinary tract infection: effect of chemotherapy with special reference to cotrimoxazole. Kidney Int Suppl. 1975;4:S122–9.

    CAS  PubMed  Google Scholar 

  328. Olbing H, et al. Renal growth in children with severe vesicoureteral reflux: 10-year prospective study of medical and surgical treatment: the International Reflux Study in Children (European branch). Radiology. 2000;216(3):731–7.

    Article  CAS  PubMed  Google Scholar 

  329. Diamond DA, Mattoo TK. Endoscopic treatment of primary vesicoureteral reflux. N Engl J Med. 2012;366(13):1218–26.

    Article  CAS  PubMed  Google Scholar 

  330. O’Donnell B, Puri P. Technical refinements in endoscopic correction of vesicoureteral reflux. J Urol. 1988;140(5 Pt 2):1101–2.

    PubMed  Google Scholar 

  331. Leonard MP, et al. Endoscopic injection of glutaraldehyde cross-linked bovine dermal collagen for correction of vesicoureteral reflux. J Urol. 1991;145(1):115–9.

    CAS  PubMed  Google Scholar 

  332. Atala A, et al. Endoscopic treatment of vesicoureteral reflux with a self-detachable balloon system. J Urol. 1992;148(2 Pt 2):724–7.

    CAS  PubMed  Google Scholar 

  333. Diamond DA, Caldamone AA. Endoscopic correction of vesicoureteral reflux in children using autologous chondrocytes: preliminary results. J Urol. 1999;162(3 Pt 2):1185–8.

    CAS  PubMed  Google Scholar 

  334. Elder JS, et al. Endoscopic therapy for vesicoureteral reflux: a meta-analysis. I. Reflux resolution and urinary tract infection. J Urol. 2006;175(2):716–22.

    Article  PubMed  Google Scholar 

  335. Lendvay TS, et al. The evolution of vesicoureteral reflux management in the era of dextranomer/hyaluronic acid copolymer: a pediatric health information system database study. J Urol. 2006;176(4 Pt 2):1864–7.

    Article  CAS  PubMed  Google Scholar 

  336. Routh JC, Inman BA, Reinberg Y. Dextranomer/hyaluronic acid for pediatric vesicoureteral reflux: systematic review. Pediatrics. 2010;125(5):1010–9.

    Article  PubMed  Google Scholar 

  337. Lackgren G, et al. Long-term followup of children treated with dextranomer/hyaluronic acid copolymer for vesicoureteral reflux. J Urol. 2001;166(5):1887–92.

    Article  CAS  PubMed  Google Scholar 

  338. Stenberg AM, et al. Lack of distant migration after injection of a 125iodine labeled dextranomer based implant into the rabbit bladder. J Urol. 1997;158(5):1937–41.

    Article  CAS  PubMed  Google Scholar 

  339. Perez-Brayfield M, et al. Endoscopic treatment with dextranomer/hyaluronic acid for complex cases of vesicoureteral reflux. J Urol. 2004;172(4 Pt 2):1614–6.

    Article  CAS  PubMed  Google Scholar 

  340. Vandersteen DR, et al. Postoperative ureteral obstruction after subureteral injection of dextranomer/hyaluronic acid copolymer. J Urol. 2006;176(4 Pt 1):1593–5.

    Article  CAS  PubMed  Google Scholar 

  341. Nelson CP, Chow JS. Dextranomer/hyaluronic acid copolymer (Deflux) implants mimicking distal ureteral calculi on CT. Pediatr Radiol. 2008, 38, 104

    Google Scholar 

  342. Lakshmanan Y, Fung LC. Laparoscopic extravesicular ureteral reimplantation for vesicoureteral reflux: recent technical advances. J Endourol. 2000;14(7):589–93; discussion 593–4.

    Article  CAS  PubMed  Google Scholar 

  343. Shu T, Cisek Jr LJ, Moore RG. Laparoscopic extravesical reimplantation for postpubertal vesicoureteral reflux. J Endourol. 2004;18(5):441–6.

    Article  PubMed  Google Scholar 

  344. Kutikov A, et al. Initial experience with laparoscopic transvesical ureteral reimplantation at the Children’s Hospital of Philadelphia. J Urol. 2006;176(5):2222–5; discussion 2225–6.

    Article  PubMed  Google Scholar 

  345. Kaplan WE, Firlit CF. Management of reflux in the myelodysplastic child. J Urol. 1983;129(6):1195–7.

    CAS  PubMed  Google Scholar 

  346. Kennelly MJ, et al. Outcome analysis of bilateral Cohen cross-trigonal ureteroneocystostomy. Urology. 1995;46(3):393–5.

    Article  CAS  PubMed  Google Scholar 

  347. Sheu JC, et al. Results of surgery for vesicoureteral reflux in children: 6 years’ experience in an Asian country. Pediatr Surg Int. 1998;13(2–3):138–40.

    Article  CAS  PubMed  Google Scholar 

  348. Hoenig DM, et al. Contralateral reflux after unilateral ureteral reimplantation. J Urol. 1996;156(1):196–7.

    Article  CAS  PubMed  Google Scholar 

  349. Jodal U, Lindberg U. Guidelines for management of children with urinary tract infection and vesico-ureteric reflux. Recommendations from a Swedish state-of-the-art conference. Swedish Medical Research Council. Acta Paediatr Suppl. 1999;88(431):87–9.

    CAS  PubMed  Google Scholar 

  350. National Institute for Health and Clinical Excellence (NICE). Urinary tract infection in children. 2007. http://guidance.nice.org.uk/CG54

  351. Roberts KB. Urinary tract infection: clinical practice guideline for the diagnosis and management of the initial UTI in febrile infants and children 2 to 24 months. Pediatrics. 2011;128(3):595–610.

    Article  PubMed  Google Scholar 

  352. Ammenti A, et al. Febrile urinary tract infections in young children: recommendations for the diagnosis, treatment and follow-up. Acta Paediatr. 2012;101(5):451–7.

    Article  PubMed  Google Scholar 

  353. Saadeh SA, Mattoo TK. Managing urinary tract infections. Pediatr Nephrol. 2011;26(11):1967–76.

    Article  PubMed Central  PubMed  Google Scholar 

  354. Mattoo TK, Moxey-Mims M. Reflux nephropathy. In: Kimmel PL, Rosenberg M, editors. Chronic renal disease. Elsevier Inc, London UK; 2014, 825–832.

    Google Scholar 

  355. Baracco R, Mattoo KT. Diagnosis and management of urinary tract infections and vesicoureteral reflux in the neonate. Clin Perinatol. 2014, 41, 633

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tej K. Mattoo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Mattoo, T.K., Mathews, R., Gupta, I.R. (2016). Vesicoureteral Reflux and Renal Scarring in Children. In: Avner, E., Harmon, W., Niaudet, P., Yoshikawa, N., Emma, F., Goldstein, S. (eds) Pediatric Nephrology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-43596-0_50

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-43596-0_50

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-43595-3

  • Online ISBN: 978-3-662-43596-0

  • eBook Packages: MedicineReference Module Medicine

Publish with us

Policies and ethics